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Abstract

Weakly supervised learning generally faces chal-
lenges in applicability to various scenarios with
diverse weak supervision and in scalability due
to the complexity of existing algorithms, thereby
hindering the practical deployment. This paper
introduces a general framework for learning from
weak supervision (GLWS) with a novel algorithm.
Central to GLWS is an Expectation-Maximization
(EM) formulation, adeptly accommodating vari-
ous weak supervision sources, including instance
partial labels, aggregate statistics, pairwise obser-
vations, and unlabeled data. We further present
an advanced algorithm that significantly simpli-
fies the EM computational demands using a Non-
deterministic Finite Automaton (NFA) along with
a forward-backward algorithm, which effectively
reduces time complexity from quadratic or fac-
torial often required in existing solutions to lin-
ear scale. The problem of learning from arbi-
trary weak supervision is therefore converted to
the NFA modeling of them. GLWS not only en-
hances the scalability of machine learning models
but also demonstrates superior performance and
versatility across 11 weak supervision scenarios.
We hope our work paves the way for further ad-
vancements and practical deployment in this field.

1. Introduction
Over the past few years, machine learning models have
shown promising performance in virtually every aspect of
our lives (Radford et al., 2021; Rombach et al., 2022; De-
hghani et al., 2023; OpenAI, 2023). This success is typically
attributed to large-scale and high-quality training data with
complete and accurate supervision. However, obtaining
such precise labels in realistic applications is often pro-
hibitive due to various factors, such as the cost of annotation
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Figure 1. Average performance overview of the proposed method
on 11 common weak supervision settings, compared to previous
best methods (margins shown on the top of bars). GLWS is capable
of learning from any weak supervision universally and effectively.

(Settles et al., 2008; Gadre et al., 2023), the biases and sub-
jectivity of annotators (Tommasi et al., 2017; Pagano et al.,
2023), and privacy concerns (Mireshghallah et al., 2020;
Strobel & Shokri, 2022). The resulting incomplete, inexact,
and inaccurate forms of supervision are typically referred
to as weak supervision (Zhou, 2018; Sugiyama et al., 2022).

Previous literature has explored numerous configurations of
weak supervision problems, including learning from sets of
instance label candidates (Luo & Orabona, 2010; Cour et al.,
2011; Ishida et al., 2019; Feng et al., 2020a;c; Wang et al.,
2022a; Wu et al., 2022), aggregate group statistics (Maron
& Lozano-Pérez, 1997; Zhou, 2004; Kück & de Freitas,
2005; Quadrianto et al., 2008; Ilse et al., 2018; Zhang et al.,
2020; Scott & Zhang, 2020; Zhang et al., 2022), pairwise
observations (Bao et al., 2018; 2020; Feng et al., 2021;
Cao et al., 2021b; Wang et al., 2023a), and unlabeled data
(Lu et al., 2018; Sohn et al., 2020; Shimada et al., 2021;
Wang et al., 2022b; Tang et al., 2023). More recently, some
efforts have been made to design versatile techniques that
can handle multiple settings simultaneously (Van Rooyen &
Williamson, 2018; Zhang et al., 2020; Chiang & Sugiyama,
2023; Shukla et al., 2023; Wei et al., 2023).

Despite the prosperous developments in various settings, we
identify two challenges that impede the practical applica-
tion of these weakly supervised methods. First, designing a
method capable of universally handling all configurations re-
mains difficult. The variation in forms of weak supervision
often necessitates specialized and tailored solutions (Ilse
et al., 2018; Yan et al., 2018; Yang et al., 2022; Zhang et al.,
2022; Scott & Zhang, 2020). Even recent versatile solutions
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𝑓 𝜃 :  𝒳 →  ℝ2

{𝑝(𝑦|𝒙1:4); 𝜃)} 

𝑞0 = 0 ∶
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Figure 2. Overview of GLWS for learning from arbitrary weak
supervision. We model weak supervision as a Non-deterministic
Finite Automaton (NFA). By taking the product of the prediction
sequence and NFA, we can utilize the forward-backward algorithm
to solve the proposed complete EM formulation in linear time.

are limited in their applicability to certain contexts (Shukla
et al., 2023; Wei et al., 2023). Second, prior works typically
exhibit limited scalability in realistic problems due to over-
simplifications and unfavorable modeling complexity. Some
methods assume conditional independence of instances for
aggregate observations (Van Rooyen & Williamson, 2018;
Cui et al., 2020; Zhang et al., 2020; Wei et al., 2023), making
them unsuitable for handling long sequence data prevalent
in practical scenarios. Moreover, despite such simplifica-
tions, they still require infeasible computational complexity,
either quadratic (Shukla et al., 2023) or factorial (Wei et al.,
2023), to address specific weak supervision configurations.

To overcome these challenges and effectively apply weakly
supervised learning in real-world scenarios, we propose a
general framework and a novel algorithm that allows ef-
ficient learning from arbitrary weak supervision, termed
as GLWS, as in the results demonstrated in Fig. 1. At
the core of GLWS is an Expectation-Maximization (EM)
(Dempster et al., 1977) learning objective formulation for
weak supervision, and a forward-backward algorithm (Ra-
biner, 1989; Graves et al., 2006) designed to solve the EM
in linear time by representing arbitrary form of weak su-
pervision as a Non-deterministic Finite Automaton (NFA)
(Rabin & Scott, 1959). More specifically, to train a clas-
sification model with learnable parameters θ on weak su-
pervision, denoted abstractly as W , we treat the ground
truth label Y as a missing latent variable and maximize the
log-likelihood of joint input X and W : logP (X,W ; θ) =
log

∑
Y P (X,W ; θ)P (Y |X,W ; θ). As P (Y |X,W ; θ) is

unknown before determining θ, solving the problem usu-
ally requires iterative hill-climbing solutions. Therefore,
we employ the widely used EM algorithm, which iter-
atively maximizes the expectation of the log-likelihood
EY |X,W ;θt [logP (X,W, Y ; θ)] at time step t. It leads to
two training objectives: an unsupervised instance consis-
tency term EY |X,W ;θt [logP (Y |X; θ)] that encourages the
prediction to be consistent with the labeling distribution im-

posed by W , and a supervised objective logP (W |Y,X; θ)
that fosters the group predictions fulfilling W . We further
propose a novel perspective to perform the EM formula-
tion. Without loss of generality, we treat both the inputs
and the precise labels as sequence1. Thus, the problem of
identifying all possible labelings is converted into assign-
ing labels/symbols to the input sequence in a manner that
adheres to W . This process can be effectively modeled us-
ing an NFA (Rabin & Scott, 1959), where the finite set of
states and transition is dictated by W , and the finite set of
symbols corresponds to Y . The EM learning objectives can
then be computed efficiently in linear time using a forward-
backward algorithm on the trellis expanded from the NFA
and model’s predictions. An overview is shown in Fig. 2.

While this is not the first EM perspective of weak supervi-
sion (Denœux, 2011; Quost & Denoeux, 2016; Wang et al.,
2022a; Wei et al., 2023), GLWS distinguishes from prior
arts in solving the complete EM efficiently and practically.
Compared to the recent efforts towards the unification of
weak supervision, our method neither relies on the afore-
mentioned conditional independence assumption as in Wei
et al. (2023) nor involves approximation of EM as in Wang
et al. (2022a); Shukla et al. (2023) that solves the supervised
term of EM only. Our contributions can be summarized as:

• We propose an EM framework that accommodates weak
supervision of arbitrary forms, leading to two learning
objectives, as a generalization of the prior arts.

• We design a forward-backward algorithm that performs
the EM by treating weak supervision as an NFA. The
EM can thus be computed via iterative forward-backward
pass on the trellis expanded from the NFA in linear time.

• On 11 weak supervision settings, the proposed method
consistently achieves the state-of-the-art performance,
demonstrating its universality and effectiveness. The
codebase covering all these settings will be released.

2. Related Work
2.1. Learning from Weak Supervision

Various problems for learning from weak supervision have
been extensively studied in the past, and we categorize them
into four broad categories: instance label candidates, aggre-
gate observations, pairwise observations, and unlabeled data.
Learning from instance label candidates, also known as par-
tial label (PartialL) or complementary label (CompL) learn-
ing (Cour et al., 2011; Luo & Orabona, 2010; Feng et al.,
2020b; Wang et al., 2019; Wen et al., 2021; Wu et al., 2022;

1For aggregate and pairwise observations, the inputs are nat-
urally sequences of instances. The inputs can be viewed as
permutation-invariant sequences at the batch (dataset) level for
weak supervision of partial labels and unlabeled data. The same
applies to the precise labels and predictions from the model.
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Wang et al., 2022a; Ishida et al., 2019; Feng et al., 2020a),
involves weak supervision as a set of label candidates, either
containing or complementary to the ground truth label for
each instance. Aggregate observation assumes supervision
over a group of instances (Zhang et al., 2020), with multi-
ple instances (MultiIns) learning (Maron & Lozano-Pérez,
1997; Ilse et al., 2018) and label proportion (LProp) learning
(Quadrianto et al., 2008; Scott & Zhang, 2020; Zhang et al.,
2022) as common examples. The weak supervision here
usually denotes statistics over a group of instances. Pair-
wise observation, a special case of aggregate observation,
deals with pairs of instances. Pairwise comparison (Pcomp)
(Feng et al., 2021) and pairwise similarity (PSim) (Bao
et al., 2018; Zhang et al., 2020), along with more recent
developments such as similarity confidence (SimConf) (Cao
et al., 2021b) and confidence difference (ConfDiff) (Wang
et al., 2023a), fall into this category. Similarity, comparison,
confidence scores, and relationships from the pre-trained
models are usually adopted as weak supervision for pair-
wise observations. The fourth category, unlabeled data, is
often supplemented by the labeled dataset as the weak su-
pervision in this setting, which is sometimes complemented
by the class’s prior information. Semi-supervised learn-
ing (SemiSL) (Sohn et al., 2020; Xie et al., 2020; Zhang
et al., 2021; Wang et al., 2023b; Chen et al., 2023), positive
unlabeled (PosUlb) learning (du Plessis et al., 2015; Ham-
moudeh & Lowd, 2020; Chen et al., 2020; Garg et al., 2021;
Kiryo et al., 2017; Zhao et al., 2022), similarity dissimi-
larity unlabeled (SDUlb) learning (Shimada et al., 2021),
and Unlabeled unlabeled (UlbUlb) learning (Lu et al., 2018;
Tang et al., 2023) fall into this category. Our framework is
capable of addressing and unifying these diverse categories.

2.2. Towards the Unification of Weak Supervision

Although researchers have invested significant efforts in
finding solutions to different forms of weak supervision,
the practical unification of these problems still remains a
distant goal. PosUlb, SDUlb, and UlbUlb learning can be
connected to each other by substituting parameters (Lu et al.,
2018; Feng et al., 2021). Zhang et al. (2020) have developed
a probabilistic framework for pairwise (Hsu et al., 2019) and
triplet comparison (Cui et al., 2020). Shukla et al. (2023)
proposed a unified solution for weak supervision involving
count statistics. They used a dynamic programming method
over the aggregate observation to compute and maximize
the count loss of P (W |Y,X; θ), corresponding to the su-
pervised term in our EM formulation. The computational
complexity is thus quadratic to the group length since the
proposed dynamic programming algorithm iterates through
the entire group. Wei et al. (2023) introduced the universal
unbiased method (UUM) for aggregate observation, which
is also interpretable from the EM perspective. Based on
the assumptions of conditional independence of instances

within a group and weak supervision given true labels, Wei
et al. (2023) derived closed-form objectives for MultiIns,
LProp, and PSim settings. However, the oversimplification
of conditional independence limits UUM’s scalability, par-
ticularly for LProp learning with long sequences. Chiang &
Sugiyama (2023) provided a comprehensive risk analysis for
various types of weak supervision from the perspective of
the contamination matrix. Our framework offers a versatile
and scalable solution, capable of efficiently handling a wider
range of weak supervision without the limitations imposed
by oversimplifications or computational complexity.

3. Method
In this section, we introduce our proposed framework and
algorithm for learning from arbitrary weak supervision
(GLWS). GLWS is based on the EM formulation (Dempster
et al., 1977), where we consider the precise labels as the
latent variable. We introduce an NFA (Rabin & Scott, 1959)
modeling of weak supervision, which allows us to compute
EM using the forward-backward algorithm in linear time.

3.1. Preliminaries

Let x ∈ X be a training instance and y ∈ Y the correspond-
ing precise supervision, where the input space X ⊂ RD

has D dimensions, and the label space Y = [K − 1] :=
{0, 1, . . . ,K−1} encompasses a total of K classes. In fully
supervised learning, the training dataset with complete and
precise annotations is defined as D = {(xi, yi)}i∈[N ] and
consists of N samples. Assume that each training example
(x, y) is identically and independently sampled from the
joint distribution p(x, y). The classifier f(θ) : X → RK

predicts p(y|x; θ) with learnable parameters θ, and is trained
to maximize the log-likelihood logP (X,Y ; θ):

θ∗ = argmax
θ

logP (X,Y ; θ). (1)

This process results in the cross-entropy (CE) loss function:

LFull =

N∑
i=1

K∑
k=0

−1[yi = k] log p(yi|xi; θ). (2)

3.2. General Framework for Weak Supervision

In practice, we may not have fully accessible precise su-
pervision, i.e., Y is unknown. Instead, we may encounter
various types of weak supervision for training instances,
e.g., instance-wise label candidates, aggregated count statis-
tics, pairwise similarity, unlabeled data, etc. We define weak
supervision abstractly as W , representing an arbitrary form
of information given to the training instances. For example,
in PartialL (Feng et al., 2020c; Wang et al., 2022a; Wu et al.,
2022), W is given as a set of label candidates for each in-
stance S ⊆ Y . In MultiIns (Maron & Lozano-Pérez, 1997;
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Figure 3. NFA for common weak supervision types for a sequence input of size L. (a) Partial labels, where the NFA has L transitions for
each input with partial labels as symbols; (b) Multiple instances, whose NFA has 2 states, and can only transit to the accepting state via 1
to ensure at least one positive instance in the sequence; (c) Label proportion, whose NFA has m+ 1 states for m positive samples in the
sequence; (d) Pairwise comparison, whose NFA has 3 states and covers {(1, 1), (1, 0), (0, 0)}; (e) Pairwise similarity with confidence
score c. The NFA also has 3 states and covers {(1, 1), (0, 0)}. If c is given as in similarity confidence and confidence difference, each
edge is weighted by c; (f) Pairwise dissimilarity with confidence c for {(1, 0), (0, 1)}; (g) Positive confidence, whose NFA also has L
transitions weighted by confidence c; (h) Unlabeled data with class prior p. The NFA is equivalent to expectation of label count as pn.

Zhou, 2004) and LProp learning (Yu et al., 2014) that deals
with aggregate observations, W is given as the count statis-
tics for each label {

∑L
j=1 1[y

j = k] ≥ 1 | ∀k ∈ Y} and

{
∑L

j=1 1[y
j = k] | ∀k ∈ Y} over a group of L instances

{xj}j∈[L]
2, respectively. When W represents the precise

labels, it recovers fully supervised learning. With W , we
must estimate the model to maximize the likelihood of the
data X and the information W we have been provided:

θ∗ = argmax
θ

logP (X,W ; θ)

= argmax
θ

∑
Y
logP (X,W, Y ; θ).

(3)

As Y is unknown and the marginalization over Y requires θ,
it is infeasible to solve Eq. (3) in a closed form, and instead
typically needs the iterative hill-climbing solutions like EM
algorithm. Thus, the maximum log-likelihood estimation in
Eq. (3) can be solved by iteratively maximizing the varia-
tional lower bound of the log-likelihood logP (X,W, Y ; θ):

θt+1 = argmax
θ

EY |X,W ;θt [logP (X,W, Y ; θ)] , (4)

where θt denotes the t-th estimation of θ. P (Y |X,W ; θt)
represents a distribution on all possible labelings imposed
by W with θt. The log-likelihood is then maximized on the
expectation over the distribution of all possible labelings.
The derivation of Eq. (4) is provided in Appendix A.1.

To derive the loss function for arbitrary weak supervision
that includes instance-level and group-level W from Eq. (4),
without loss of generality, we treat the realization of training
instances X and the corresponding true precise labels Y

2We use xi (yi) to denote an instance/group in dataset of size
N , and xj (yj) to denote an instance in the group {xj}j∈[L] of
size L. Each xi (yi) in the dataset can denote a group with L ≥ 1.

all as sequence: x1:L = {xj}j∈[L] and y1:L = {yj}j∈[L]

of size L and L could be 1. We also treat different types
of weak supervision w ∈ W as the information given for
the input sequence. The sequence can be naturally formed
from a batch of training samples, an aggregate observation,
or a pairwise observation. Each instance in the dataset is
thus generalized to xi → x1:L

i with L ≥ 1. We make the
following assumption, which almost always holds in reality:
Assumption 3.1. The sequence of predictions on precise
labels y1:L is conditionally independent given the whole se-
quence of inputs x1:L, i.e., p(y1:L|x1:L) =

∏L
j p(yj |x1:L).

This notation allows us to deal with different weak supervi-
sion for both instance and group/bag data more flexibly.
Proposition 3.2. For weakly supervised learning problems,
the training objectives can be derived from Eq. (4) as:

LWeak = LU + LS,

LU =

N∑
i=1

L∑
j=1

−p(yji |x
1:L
i , wi; θ

t) log p(yji |x
j
i ; θ),

LS =

N∑
i

− log p(wi|x1:L
i , y1:Li ; θ).

(5)

The detailed derivation of Eq. (5) is shown in Appendix A.2.
Eq. (5) consists of two parts: an unsupervised loss LU that
encourages the instance-wise predictions from the classifier
to align with the probability of this prediction given all
possible labelings imposed by W , and a supervised loss LS

that encourages the sequence predictions to fulfill W .

3.3. Weak Supervision as NFA

Although the proposed EM formulation can deal with vari-
ous types of weak supervision flexibly, it is still computa-
tional intensive to calculate the probability p(yj |x1:L, w; θ)

4
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and p(w|y1:L,x1:L; θ) for all possible labelings imposed by
the given weak supervision. For example, in LProp learning
where W is the label count over a group of L instances,
the complexity of finding all possible labelings is of facto-
rial O(L!). In most cases, the complexity is of exponential
O(KL) where K is the total number of classes. Moreover,
while some recent methods towards unification can also
be related to the proposed EM formulation (Shukla et al.,
2023; Wei et al., 2023), they both involve a certain degree of
simplification to approximate the complete EM formulation,
which limits their scalability, as discussed in Section 2.2.
Our method notably distinguishes from the prior arts in that
we tackle weak supervision with the complete EM.

Here, we present a novel perspective to overcome the infea-
sibility of computing the complete EM. Under the sequential
view, we treat the problem of assigning labels {yj}j∈[L] to
inputs {xj}j∈[L] as generating a sequence of symbols y1:L

to x1:L fulfilling W . For simplicity, we only consider bi-
nary classification problems here. In Section 3.5, we will
show the generalization to multi-class classification prob-
lems. This process naturally fits the mechanism of the NFA
(Rabin & Scott, 1959). We can thus model weak supervision
W as an NFA that defines a set of finite states and transition
rules, summarizing all possible labelings imposed by W .
Definition 3.3. (Rabin & Scott, 1959) A Non-deterministic
Finite Automaton (NFA) is defined as a tuple (Q, Σ, δ, q0,
F ), where Q is a finite set of states, Σ is a finite set of
symbols, δ is a transition function Q×Σ→ P (Q), q0 ∈ Q
is the initial state, and F ⊆ Q is a set of accepting states.

We define the NFA of weak supervision W similarly, with
states Q, initial state q0, and accepting states F determined
by W , symbols Σ = Y = {0, 1}, and a transition function
δ defining the possible transitions between states. We can
now represent all possible labelings imposed by W as the
language accepted by the NFA: {y1:L|δ(q0, y1:L) ∈ F}.
The problem of finding all possible labelings is thereby
converted to modeling the NFA of different types of weak
supervision. We present the modeling of NFA for common
forms of W in Fig. 3. For example, in MultiIns learning
(Fig. 3(b)) with W denoting at least one positive sample
within a group instance, its NFA contains 2 states Q =
{q0, q1}. The initial state q0 can only transit to the accepting
state q1 via symbol 1 to ensure W is satisfied. Once reaching
q1, transit via 0 and 1 are both allowed. For LProp with m
positive labels (Fig. 3(c)), its NFA must transit via 1 for m
times from q0 to qm to satisfy W , resulting in m+ 1 states.

3.4. The Forward-Backward Algorithm

We are now set to compute the EM formulation with NFA.
Proposition 3.4. Given the inputs x1:L, we treat the out-
puts sequence from the classifier p(y1:L|x1:L; θ) as a linear
chain graph. By taking the product on the linear chain graph

𝒙1 𝒙2 𝒙3 𝒙4

𝛽3 𝑞1 = 0 =
𝑝(𝑦4|𝒙1:4 , 𝑦1:2, 𝑦3 = 0; 𝜃)

𝛼3 𝑞1 = 0 =
𝑝(𝑦1:2, 𝑦3 = 0|𝒙1:4; 𝜃)

Forward Pass Backward Pass

𝛼2(𝑞0 = 1)

𝑞0 = 0 ∶
𝑝(𝑦 = 0|𝒙1:4; 𝜃)

𝑞0 = 1 ∶
𝑝(𝑦 = 1|𝒙1:4; 𝜃)

𝑞1 = 0:
𝑝(𝑦 = 0|𝒙1:4; 𝜃)

𝑞1 = 1:
𝑝(𝑦 = 1|𝒙1:4; 𝜃)

𝛼2(𝑞1 = 0)

𝛼2(𝑞1 = 1)

𝛽4(𝑞1 = 0)

𝛽4(𝑞1 = 1)

Figure 4. Illustration of the forward pass and backward pass in
forward-backward algorithm to compute p(yj , w|x1:L; θt).

of p(y1:L|x1:L; θ) and the NFA graph of W , we obtain the
trellis in the resulting graph as possible labelings.

We have p(yj |x1:L, w; θt) ∝ p(yj , w|x1:L; θt) from Bayes’
theorem, where the latter denotes the total probability of all
valid labelings that go through yj , and p(w|y1:L,x1:L; θ) in
Eq. (5) denotes the total probability from accepting states
of the resulting graph. Fortunately, both the probability of
p(yj , w|x1:L; θt) and p(w|y1:L,x1:L; θ) can be computed
in linear time to the sequence length with dynamic program-
ming on the trellis of the resulting graph, specifically the
forward-backward algorithm (Rabiner, 1989; Graves et al.,
2006). The core idea of the forward-backward algorithm is
that the sum over paths corresponding to a labeling can be
broken down into iterative sum over paths corresponding
to the prefixes and the postfixes of that labeling. Thus, the
probabilities can be obtained iteratively in linear time.

We illustrate the trellis expanded from the NFA of W in
MultiIns learning with L = 4, with the help of Fig. 2 (more
illustrations on other settings are shown in Appendix B.1),
and the process of the forward-backward algorithm as shown
in Fig. 4. The resulting graph has 4 states at each step of the
sequence, where the first two correspond to q0, the others to
q1, and the trellis to the transition rules in NFA. Each path
from x1 to xL denotes an available labeling. To compute
the probabilities, we define the forward score αj(q = y)
and backward score βj(q = y) for each state q at step j:

αj(q = y) =
∑

y′∈{yi−1|δ(q0,y1:L)∈F}

αi−1(q = y′)p(yj |x1:L; θt),

β̂j(q = y) =
∑

y′∈{yj+1|δ(q0,y1:L)∈F}

β̂j+1(q = y′)p(yj |x1:L; θt),

βj(q = y) =
β̂j(q = y)

p(yj |x1:L; θt)
,

(6)
where β̂j(q = y) is used as a proxy for easier com-
putation of βj(q = y) (Graves et al., 2006). The for-
ward score αj(q = y) indicates the total probability of
all preceding labeling that fulfills W at j-th inputs with
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p(y1:j |x1:L; θt), and correspondingly, the backward score
βj(q = y) indicates the total probability of all succeed-
ing labeling that fulfills W at j-th inputs given the preced-
ing p(yj+1:L|x1:L, y1:j ; θt), ∀yj ∈ {yj |δ(q0, y1:L) ∈ F}.
Both αj(q = y) and βj(q = y) can be calculated recur-
sively through the forward and backward pass on the graph,
with linear complexity ofO(|Q|L), where |Q| is the number
of states on the NFA of W . The joint probability at each
position of the sequence thus can be calculated as:

p(yj , w|x1:L; θt) =
∑

q∈Q
αj(q=yj)βj(q=yj)∑

y′∈Y αj(q=y′)βj(q=y′) . (7)

Moreover, the probability for supervised objective can also
be easily computed as the summation of the probabilities at
the accepting nodes on the graph with linear complexity:

p(w|y1:L,x1:L; θ) =
∑
q∈F

∑
y′∈Y

αL(q = y′). (8)

Now, we can bring these quantities back to Eq. (5) to
perform training. In practice, we implement the forward-
backward algorithm in log space and adopt the re-scaling
strategy (McAuley & Leskovec, 2013) for numerical sta-
bility. We present the pseudo-algorithm of the forward-
backward process of the common settings in Appendix B.2.

3.5. Extension to Multi-Class or Multi-Label Scenarios

In the analysis above, we model the NFA of W only for
binary classification problems. Here, we demonstrate how
to extend the modeling to multi-class (multi-label) classifi-
cation problems. While it is natural to extend to multiple
classes, for example, for partial labels as shown in Fig. 3(a),
it is not straightforward to directly model the NFA of W
with more than two values in its symbols Σ for aggregate
observations. Considering the example with MultiIns learn-
ing, where the group of instances has two multi-class labels:
at least one cat and at least one dog, the complexity of |Q|
in the NFA modeling will increase exponentially, thus also
increasing the complexity in computing the loss functions.
Instead, to deal with it, we treat each class as a separate posi-
tive class and other classes as a negative class, build an NFA
on this class, and train each class as a binary classification
problem with binary cross-entropy (BCE) loss. This is the
common technique widely adopted in pre-training (Wight-
man et al.; Touvron et al., 2022) and we demonstrate its
effectiveness in Section 4.2 for weakly supervised learning.

4. Experiments
In this section, we demonstrate the universality and effective-
ness of the proposed method comprehensively on various
weakly supervised learning settings. We conduct the evalua-
tion mainly on CIFAR-10 (Krizhevsky et al., 2009), CIFAR-
100 (Krizhevsky et al., 2009), STL-10 (Coates et al., 2011),

Table 1. Accuracy on partial label (PartialL) learning for instance-
wise weak supervision. All results are averaged over three runs.
Dataset CIFAR-10 CIFAR-100 STL-10 ImageNet-100

Ratio 0.50 0.70 0.10 0.20 0.10 0.30 0.01 0.05

CC 92.51±0.04 89.01±0.20 77.44±0.32 74.60±0.17 77.02±0.69 73.26±0.34 73.14±0.94 64.67±0.74

LWS 85.66±0.32 80.71±0.10 50.67±0.33 43.51±0.32 67.65±0.33 58.18±1.65 72.04±0.77 62.13±0.95

PRODEN 93.32±0.23 90.26±0.20 77.50±0.15 74.89±0.13 77.44±0.26 73.19±1.05 78.61±0.63 77.59±0.60

PiCO 93.85±0.60 91.11±0.70 77.80±0.31 74.99±0.57 77.74±0.52 74.18±0.41 80.93±0.81 78.74±1.34

RCR 94.04±0.02 91.45±0.10 78.03±0.07 75.40±0.12 78.02±0.40 74.67±0.56 81.52±0.94 79.67±1.22

GLWS 94.31±0.09 92.06±0.14 78.35±0.11 75.82±0.25 78.56±0.27 74.79±0.21 82.66±0.54 81.09±0.50

and ImageNet-100 (Russakovsky et al., 2015). Results on
MNIST (Deng, 2012) and F-MNIST (Xiao et al., 2017) are
included in the Appendix, where most of the baseline meth-
ods were evaluated. We compare our method (GLWS) on 11
weak supervision settings of partial labels in Section 4.1, ag-
gregate observations in Section 4.2, pairwise observations in
Section 4.3, and unlabeled data in Section 4.4. Additionally,
we provide more analysis and discussion in Section 4.5. We
develop a codebase for implementations and experiments
of all baselines and the proposed method, which will be
open-sourced. Experiments are conducted three times with
the average performance and standard deviation reported.

4.1. Partial Labels

Setup. Here, we evaluate the proposed method of PartialL
learning for multi-class classification, where W is a set of
label candidates for each training instance. Following Wu
et al. (2022) and Lv et al. (2020), we generate synthetic
uniform partial labels for each dataset. We uniformly select
labels other than the ground truth label with a specified
partial ratio. For baselines, we adopt CC (Feng et al., 2020b),
LWS (Wen et al., 2021), PRODEN (Lv et al., 2020), PiCO
(Wang et al., 2022a), and RCR (Wu et al., 2022). We follow
the hyper-parameters from Wu et al. (2022) for training all
methods, with more details provided in Appendix C.2.1.

Results. The main results are shown in Table 1. Due to
space limitations, more results are presented in Table 8 of
Appendix C.2.2. Our method generally outperforms the
baselines across different partial ratios, especially on the
more practical ImageNet-100 with an improvement margin
over RCR of 1.28%. The complete EM formulation serves
as a generalized method of the prior arts. Moreover, our
method is simple and straightforward to implement, requir-
ing no additional loss functions like the contrastive loss in
PiCO or training tricks like multiple augmentations in RCR.

4.2. Aggregate Observations

Setup. For aggregate observations, we evaluate two com-
mon settings: MultiIns learning and LProp learning. Mul-
tiIns learning considers W as the indicator of at least one
positive sample for a class in a bag of instances, while LProp
learning views W as the exact count or proportion of pos-
itive samples for a class within the bag. We form training
bags with instances sampled randomly, where the bag size
is Gaussian-distributed with specified parameters. Previous
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Table 2. Accuracy on multi-class multi-label aggregate observa-
tions of multiple instance (MultiIns) learning and label proportion
(LProp) learning. All results are averaged over three runs.
Dataset CIFAR-10 CIFAR-100 STL-10 ImageNet-100

Dist N (10, 2) N (20, 5) N (5, 1) N (10, 2) N (5, 1) N (10, 2) N (3, 1) N (5, 1)
# Bags 5,000 2,500 10,000 5,000 2,000 1,000 20,000 20,000

Multiple Instance Learning

Count Loss 86.84±0.34 65.97±0.94 52.04±1.49 30.66±0.68 73.79±1.51 63.80±1.66 71.48±1.61 70.58±1.14

UUM 13.86±1.31 13.21±0.52 1.27±0.29 1.01±0.20 18.25±2.58 15.45±1.66 1.33±0.17 1.25±0.18

GLWS 87.15±0.32 71.88±0.55 56.28±1.16 52.29±2.93 74.66±1.64 64.35±0.52 73.92±1.38 73.08±1.76

Label Proportion Learning

LLP-VAT 85.33±0.44 79.70±0.48 51.95±2.74 52.26±0.46 74.76±0.08 70.76±0.78 59.97±3.45 68.45±1.82

Count Loss 89.46±0.24 84.54±0.39 54.13±1.43 36.21±0.49 76.60±0.13 73.36±0.33 72.17±0.47 72.21±0.91

UUM - - 53.25±1.96 - 77.26±0.67 - 71.51±0.94 71.14±1.31

GLWS 89.77±0.45 86.41±0.11 58.25±0.61 57.14±1.71 78.27±0.77 73.70±0.19 73.93±0.33 73.09±0.84

methods typically focus on binary classification in these
settings. However, in our main paper, we extend this to
multi-class classification (additional binary classification
results are in Appendix C.3.2), with W being multi-labeled.
For instance, in MultiIns learning, the weak supervision
could indicate that at least one positive instance for both
dog and cat classes are present in a group. Baselines for
our evaluation include Count Loss (Shukla et al., 2023)
and UUM (Wei et al., 2023). In LProp learning, we also
compare against LLP-VAT (Tsai & Lin, 2020). Details of
training hyper-parameters are shown in Appendix C.3.1.

Results. The results are presented in Table 2. Our method
demonstrates a significant performance gain compared to
baselines across various setups. In MultiIns learning, our
method surpasses Count Loss by 1.46% on CIFAR-10,
12.93% on CIFAR-100, 0.71% on STL-10, and 2.47% on
ImageNet-100, showcasing its effectiveness in more com-
plex datasets with a larger number of classes and training
group sizes. For LProp learning, it notably outperforms pre-
vious methods, with improvements of 4.50% on CIFAR-100
and 2.19% on ImageNet-100. The oversimplified modeling
of UUM, while adequate for smaller bags and datasets (e.g.,
sizes 3 and 5, MNIST and Fashion-MNIST as shown in
Table 10), makes it struggle with larger datasets and bag
sizes as shown in Table 2. Furthermore, for bags with an
average size greater than 5, LProp learning becomes compu-
tationally infeasible in UUM due to the factorial complexity.
Compared to UUM’s factorial complexity and Count Loss’s
quadratic complexity, our proposed method efficiently ad-
dresses various settings with linear complexity.

4.3. Pairwise Observations

Setup. We conduct evaluation on four common settings
of pairwise observations (x1,x2) for binary classification:
PComp (Feng et al., 2021), PSim (Wei et al., 2023), Sim-
Conf (Cao et al., 2021b), and ConfDiff learning (Wang et al.,
2023a). We treat a subset of classes of each dataset as the
positive class, and others as the negative class. Details on
the class split are shown in Appendix C.1. We first set a
class prior, and then sample data to form the training pairs
accordingly for each setting, following the baselines (Feng

Table 3. Accuracy on binary classification of pairwise comparison
(PComp) and pairwise similarity (PSim) averaged over three runs.
Dataset CIFAR-10 CIFAR-100 STL-10

Pairwise Comparison

#Pairs 20,000 20.000 5,000
Prior 0.5 0.8 0.5 0.8 0.5 0.8

PComp ABS 91.78±0.10 87.37±1.89 81.67±0.24 66.06±1.19 79.07±0.40 56.45±1.86

PComp ReLU 92.18±0.22 90.57±0.21 81.77±0.59 66.57±1.27 79.68±0.75 67.01±1.71

PComp Teacher 93.33±0.38 91.35±0.27 78.59±0.60 67.43±3.09 77.33±0.14 72.88±0.15

PComp Unbiased 91.71±0.48 88.22±0.58 67.80±0.07 60.86±2.19 77.46±0.19 71.60±0.95

Rank Pruning 93.98±0.40 91.97±0.27 78.90±0.48 71.51±0.73 77.89±0.42 73.62±1.38

GLWS 94.15±0.10 93.28±0.38 83.15±0.16 80.50±0.20 81.26±0.54 79.24±0.87

Pairwise Similarity

#Pairs 25,000 25.000 5,000
Prior 0.4 0.6 0.4 0.6 0.4 0.6

RiskSD 85.78±1.70 85.61±1.34 70.41±0.21 64.26±3.81 74.15±3.27 69.35±0.32

UUM 97.24±0.23 97.16±0.24 87.13±0.40 85.19±2.45 83.55±0.80 83.64±0.25

GLWS 97.44±0.07 97.18±0.22 87.25±0.16 86.96±0.33 84.81±0.60 85.19±0.26

Table 4. Accuracy on binary classification of similarity confidence
(SimConf) and confidence difference (ConfDiff) over three runs.
Dataset CIFAR-10 CIFAR-100 STL-10

#Pairs 25,000 25.000 5,000
Prior 0.4 0.4 0.4 0.4 0.4 0.4
Conf Model WRN-28-2 CLIP ViT-B-16 ResNet-18 CLIP ViT-B-16 ResNet-18 CLIP ViT-B-16

Similarity Confidence

Sconf Abs 87.36±1.22 90.16±1.32 75.79±0.27 69.51±0.44 76.84±0.75 74.44±0.78

Sconf ReLU 88.56±0.57 90.50±0.44 74.95±0.55 69.67±1.51 77.40±0.31 75.26±0.66

Sconf NN Abs 89.04±0.88 89.05±2.11 74.55±0.23 68.93±2.00 77.55±0.31 75.66±0.51

Sconf Unbiased 88.72±0.52 88.71±0.59 72.87±1.30 69.55±0.31 77.76±0.40 74.36±0.60

GLWS 95.97±0.11 97.88±0.11 85.58±0.88 87.94±0.34 78.64±0.16 79.06±0.05

Confidence Difference

ConfDiff Abs 90.12±4.19 88.61±7.50 82.89±0.32 81.45±0.26 73.17±2.06 77.33±0.74

ConfDiff ReLU 90.36±4.07 88.78±7.91 83.13±0.27 81.68±0.46 72.39±3.06 77.59±0.17

ConfDiff Unbiased 90.05±5.23 87.91±9.03 83.65±0.11 81.94±0.43 72.13±2.70 77.98±0.08

GLWS 95.36±0.19 96.14±0.67 86.12±0.76 83.42±1.12 77.99±0.75 78.49±0.31

et al., 2021; Wei et al., 2023; Cao et al., 2021b; Wang et al.,
2023a). For PComp, W indicates the unlabeled pairs that x1

can only be more positive than x2. We adopt PComp (and
its variants) (Feng et al., 2021) and Rank Pruning (Northcutt
et al., 2017) as baselines. For PSim, W indicates whether
the instances in the pair have similar labels or dissimilar
labels. We use RiskSD (Shimada et al., 2021) and UUM
(Wei et al., 2023) as baselines for this setting. For SimConf
and ConfDiff, W is the confidence score of similarity and
difference between x1 and x2, respectively. The confidence
score is given by a pre-trained model, and we follow the
previous method (Cao et al., 2021b; Wang et al., 2023a) to
train a model on excluded data first to compute the confi-
dence score. We additionally adopt CLIP (Radford et al.,
2021; Cherti et al., 2023) with its zero-shot confidence score.
Since only a non-identifiable classifiers can be learned from
pairwise observations, we use clustering algorithms of Hun-
garian matching (Crouse, 2016) similar to Wei et al. (2023)
on the predictions to evaluate. We present more training
details of these settings in Appendix C.4.1.

Results. We present the main results for PComp and Psim in
Table 3, and for SimConf and ConfDiff in Table 4. The pro-
posed method presents consistent and superior performance,
where the improvement margin is significant especially on
larger datasets. On CIFAR-100, our method improves the
previous best by 10.23% on pairwise comparison and by
14.03% on similarity confidence. All the baseline methods
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Table 5. Accuracy on positive unlabeled (PosUlb) learning for bi-
nary classification. All results are averaged over three runs.

CIFAR-10 CIFAR-100 STL-10

# Pos 500 1000 1000 2000 500 1000

Count Loss 87.76±0.59 88.61±0.68 70.57±1.50 78.13±0.19 77.11±0.60 78.79±0.96

CVIR 88.65±2.59 93.37±0.24 78.56±0.22 82.94±0.37 77.67±1.11 81.84±1.10

Dist PU 83.61±4.52 82.60±2.48 69.12±1.39 69.83±1.43 71.07±1.12 70.89±0.63

NN PU 87.45±0.66 90.32±0.50 75.49±0.88 77.26±0.47 74.57±0.54 77.32±0.95

U PU 81.38±2.17 87.51±0.24 68.70±0.79 70.08±0.98 73.37±0.57 75.31±0.74

Var PU 77.00±2.82 84.45±2.58 61.02±0.22 66.02±0.29 60.98±0.78 62.37±1.44

GLWS 91.67±0.19 93.69±0.28 80.30±0.12 83.32±0.23 79.60±0.95 82.87±0.83

here require the class prior in the proposed loss functions,
which must be given or estimated. Ours does not require
class prior and still achieves the best performance. More
results of pairwise observations are in Appendix C.4.2.

4.4. Unlabeled Data

Setup. For unlabeled data, we consider the settings of bi-
nary classification where only the class prior is given to
the unlabeled data as weak supervision: PosUlb (du Plessis
et al., 2015), UlbUlb (Lu et al., 2018), and SDUlb learn-
ing (Shimada et al., 2021). We present only the results of
PosUlb learning in the main paper, and other settings are
shown in Appendix C.5.2. We similarly split the classes into
either the positive subset or the negative subset as pairwise
observations. For PosUlb learning, we first randomly select
a specified number of positive samples as a labeled set, and
treat the remaining data as an unlabeled set. For STL-10, we
additionally add its split of extra data to the unlabeled set.
We consider Count Loss (Shukla et al., 2023), CVIR (Garg
et al., 2021), DistPU (Zhao et al., 2022), NNPU (Kiryo et al.,
2017), UPU (Kiryo et al., 2017), and VarPU (Chen et al.,
2020) as baselines. More details are in Appendix C.5.1.

Results. On weak supervision with unlabeled data, our
method also presents superior performance, as shown in
Table 5. Notably, our method outperforms the previous best
by 3.02% on CIFAR-10 with 500 positive labeled data and
4.81% on CIFAR-100 with 1000 positive labeled data. Com-
pared to Count Loss, which computes only the supervised
objective in the proposed EM formulation with quadratic
complexity, its performance often falls short of other base-
lines such as CVIR. Our method only requires linear time.

4.5. Analysis and Discussion

Convergence. EM algorithm might be notoriously known
for difficulty in convergence and converging to local minima.
We present the convergence plots, especially for aggregate
observations with long sequence lengths, to show that this
is not a limitation for GLWS in weakly supervised learning.
As shown in Fig. 5, our method converges faster to a better
solution with a more stable training process (narrower error
bars), compared to Count Loss (Shukla et al., 2023).

Runtime. We compare the running time explicitly in Fig. 6
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Figure 5. Convergence of accuracy with error bar on multiple in-
stance learning with long input sequence. (a) CIFAR-10 with bag
length distribution of N (20, 5); (b) CIFAR-100 with N (10, 2).
Our method shows superior convergence with more stable training.
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Figure 6. Runtime (s/iter.) vs. average input length for aggregate
observations on evaluated datasets. (a) Multiple instance; (b) Label
proportion. Our method shows a reasonable runtime trade-off.

for aggregate observations. It is obvious that Count Loss
(Shukla et al., 2023) presents (approximately) a quadratic
trend in runtime as input length increases. UUM (Wei et al.,
2023) shows consistent runtime for MultiIns learning with
its oversimplification, leading to a practical performance
gap as shown in Table 2 and Table 10. On label proportion, it
is only applicable to input length of 5 because of its factorial
complexity. Ours achieves the most reasonable performance
and runtime trade-off with the proposed efficient algorithm.

Extension. Our framework is flexibly extensible to other
settings (shown in Appendix C.6) and also adaptable to
noisy weak supervision Ŵ with an inherent learnable noise
model P (W |Ŵ ; θ) in the EM, which is left for future work.

5. Conclusion
In this paper, we demonstrated a general framework for
learning from arbitrary weak supervision that unifies vari-
ous forms of weak supervision and can be extended to more
settings flexibly, including instance partial labels, aggregate
observations, pairwise observations, and unlabeled data,
which addresses a significant gap in the practical applicabil-
ity and scalability of weakly supervised learning methods.
Experiments across various settings and practical datasets
validated the superiority of the proposed method. We hope
our work can inspire more research on weak supervision.

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

A General Framework for Learning from Weak Supervision

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Bao, H., Niu, G., and Sugiyama, M. Classification from

pairwise similarity and unlabeled data. In International
Conference on Machine Learning, pp. 452–461. PMLR,
2018.

Bao, H., Shimada, T., Xu, L., Sato, I., and Sugiyama, M.
Pairwise supervision can provably elicit a decision bound-
ary. arXiv preprint arXiv:2006.06207, 2020.

Cao, Y., Feng, L., Shu, S., Xu, Y., An, B., Niu, G., and
Sugiyama, M. Multi-class classification from single-class
data with confidences. arXiv preprint arXiv:2106.08864,
2021a.

Cao, Y., Feng, L., Xu, Y., An, B., Niu, G., and Sugiyama,
M. Learning from similarity-confidence data. In Interna-
tional Conference on Machine Learning, pp. 1272–1282.
PMLR, 2021b.

Chen, H., Liu, F., Wang, Y., Zhao, L., and Wu, H. A varia-
tional approach for learning from positive and unlabeled
data. Advances in Neural Information Processing Sys-
tems, 33:14844–14854, 2020.

Chen, H., Tao, R., Fan, Y., Wang, Y., Wang, J., Schiele, B.,
Xie, X., Raj, B., and Savvides, M. Softmatch: Addressing
the quantity-quality trade-off in semi-supervised learning.
In International Conference on Learning Representations
(ICLR), 2023.

Cherti, M., Beaumont, R., Wightman, R., Wortsman,
M., Ilharco, G., Gordon, C., Schuhmann, C., Schmidt,
L., and Jitsev, J. Reproducible scaling laws for con-
trastive language-image learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2818–2829, 2023.

Chiang, C.-K. and Sugiyama, M. Unified risk analy-
sis for weakly supervised learning. arXiv preprint
arXiv:2309.08216, 2023.

Coates, A., Ng, A., and Lee, H. An analysis of single-
layer networks in unsupervised feature learning. In Pro-
ceedings of the fourteenth international conference on
artificial intelligence and statistics, pp. 215–223. JMLR
Workshop and Conference Proceedings, 2011.

Cour, T., Sapp, B., and Taskar, B. Learning from partial
labels. The Journal of Machine Learning Research, 12:
1501–1536, 2011.

Crouse, D. F. On implementing 2d rectangular assignment
algorithms. IEEE Transactions on Aerospace and Elec-
tronic Systems, 52(4):1679–1696, 2016.

Cui, Z., Charoenphakdee, N., Sato, I., and Sugiyama, M.
Classification from triplet comparison data. Neural Com-
putation, 32(3):659–681, 2020.

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P.,
Heek, J., Gilmer, J., Steiner, A. P., Caron, M., Geirhos,
R., Alabdulmohsin, I., et al. Scaling vision transformers
to 22 billion parameters. In International Conference on
Machine Learning, pp. 7480–7512. PMLR, 2023.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum
likelihood from incomplete data via the em algorithm.
Journal of the royal statistical society: series B (method-
ological), 39(1):1–22, 1977.

Deng, L. The mnist database of handwritten digit images
for machine learning research. IEEE Signal Processing
Magazine, 29(6):141–142, 2012.

Denœux, T. Maximum likelihood estimation from fuzzy
data using the em algorithm. Fuzzy sets and systems, 183
(1):72–91, 2011.

du Plessis, M., Niu, G., and Sugiyama, M. Convex formu-
lation for learning from positive and unlabeled data. In
International conference on machine learning, pp. 1386–
1394. PMLR, 2015.

Feng, L., Kaneko, T., Han, B., Niu, G., An, B., and
Sugiyama, M. Learning with multiple complementary
labels. In Proceedings of the International Conference
on Machine Learning (ICML), pp. 3072–3081. PMLR,
2020a.

Feng, L., Lv, J., Han, B., Xu, M., Niu, G., Geng, X., An,
B., and Sugiyama, M. Provably consistent partial-label
learning. ArXiv, abs/2007.08929, 2020b.

Feng, L., Lv, J., Han, B., Xu, M., Niu, G., Geng, X., An,
B., and Sugiyama, M. Provably consistent partial-label
learning. Advances in neural information processing
systems, 33:10948–10960, 2020c.

Feng, L., Shu, S., Lu, N., Han, B., Xu, M., Niu, G., An, B.,
and Sugiyama, M. Pointwise binary classification with
pairwise confidence comparisons. In International Con-
ference on Machine Learning, pp. 3252–3262. PMLR,
2021.

Gadre, S. Y., Ilharco, G., Fang, A., Hayase, J., Smyrnis, G.,
Nguyen, T., Marten, R., Wortsman, M., Ghosh, D., Zhang,
J., et al. Datacomp: In search of the next generation of
multimodal datasets. arXiv preprint arXiv:2304.14108,
2023.

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

A General Framework for Learning from Weak Supervision

Garg, S., Wu, Y., Smola, A., Balakrishnan, S., and Lipton,
Z. C. Mixture proportion estimation and pu learning: A
modern approach, 2021.

Graves, A., Fernández, S., Gomez, F., and Schmidhuber,
J. Connectionist temporal classification: labelling unseg-
mented sequence data with recurrent neural networks. In
Proceedings of the International Conference on Machine
Learning (ICML), pp. 369–376, 2006.

Hammoudeh, Z. and Lowd, D. Learning from positive and
unlabeled data with arbitrary positive shift. Advances
in Neural Information Processing Systems, 33:13088–
13099, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 770–778, 2016.

Hsu, Y.-C., Lv, Z., Schlosser, J., Odom, P., and Kira,
Z. Multi-class classification without multi-class labels.
arXiv preprint arXiv:1901.00544, 2019.

Ilse, M., Tomczak, J., and Welling, M. Attention-based deep
multiple instance learning. In International Conference
on Machine Learning (ICML), pp. 2127–2136. PMLR,
2018.

Ishida, T., Niu, G., and Sugiyama, M. Binary classifica-
tion from positive-confidence data. Advances in neural
information processing systems, 31, 2018.

Ishida, T., Niu, G., Menon, A., and Sugiyama, M.
Complementary-label learning for arbitrary losses and
models. In International Conference on Machine Learn-
ing, pp. 2971–2980. PMLR, 2019.

Ishida, T., Yamane, I., Charoenphakdee, N., Niu, G., and
Sugiyama, M. Is the performance of my deep network
too good to be true? a direct approach to estimating
the bayes error in binary classification. arXiv preprint
arXiv:2202.00395, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kiryo, R., Niu, G., Du Plessis, M. C., and Sugiyama, M.
Positive-unlabeled learning with non-negative risk estima-
tor. Advances in neural information processing systems,
30, 2017.

Krizhevsky, A. et al. Learning multiple layers of features
from tiny images. 2009.

Kück, H. and de Freitas, N. Learning about individuals
from group statistics. In Proceedings of the Twenty-
First Conference on Uncertainty in Artificial Intelligence,

UAI’05, pp. 332–339, Arlington, Virginia, USA, 2005.
AUAI Press. ISBN 0974903914.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gradient
descent with warm restarts. International Conference on
Learning Representations (ICLR), 2016.

Lu, N., Niu, G., Menon, A. K., and Sugiyama, M.
On the minimal supervision for training any binary
classifier from only unlabeled data. arXiv preprint
arXiv:1808.10585, 2018.

Luo, J. and Orabona, F. Learning from candidate labeling
sets. Advances in Neural Information Processing Systems
(NeurIPS), 2010.

Lv, J., Xu, M., Feng, L., Niu, G., Geng, X., and Sugiyama,
M. Progressive identification of true labels for partial-
label learning. In Proceedings of the International Con-
ference on Machine Learning (ICML), pp. 6500–6510.
PMLR, 2020.
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A. Proofs
A.1. Derivation of Eq. (4)

Evidence lower bound (ELBO), or equivalently variational lower bound (Dempster et al., 1977), is the core quantity in EM.
We provide the detailed derivation for Eq. (4) here. To model logP (X,W ; θ):

logP (X,W ; θ) = log
∑
Y

P (X,W, Y ; θ)

= logQ(Y )
P (X,W, Y ; θ)

Q(Y )

= logEQ(Y )[
P (X,W, Y ; θ)

Q(Y )
]

≥ EQ(Y )[log
P (X,W, Y ; θ)

Q(Y )
] Jensen’s inequality

= EQ(Y )[logP (X,W, Y ; θ)]− EQ(Y )[logQ(Y )]

= ELBO(θ,Q(Y )),

(9)

where the first term in ELBO is the lower bound and the second term is the entropy over Q(Y ) that is independent of θ.
Given the ELBO, we also have:

ELBO(θ,Q(Y )) = EQ(Y )[log
P (X,W, Y ; θ)

Q(Y )
]

= EQ(Y )[log
P (X,W, Y ; θ)P (Y |X,W ; θ)

Q(Y )P (Y |X,W ; θ)
]

= EQ(Y )[log
P (Y |X,W ; θ)P (X,W ; θ)P (Y |X,W ; θ)

Q(Y )P (Y |X,W ; θ)
]

= EQ(Y )[logP (X,W ; θ)
P (Y |X,W ; θ)

Q(Y )
]

= EQ(Y )[logP (X,W ; θ)]− EQ(Y )[
Q(Y )

P (Y |X,W ; θ)
]

= logP (X,W ; θ)−KL(Q(Y )||P (Y |X,W ; θ)).

(10)

Thus we can see that maximizing the ELBO is equivalent to maximizing logP (X,W ; θ) when P (Y |X,W ; θ) is close
to Q(Y ), i.e., the Kullback-Leibier divergence KL(Q(Y )||P (Y |X,W ; θ)) is approaching to 0. Thus we take Q(Y ) =
P (Y |X,Y ; θt) with current estimation θt from the model, and obtain Eq. (4).

A.2. Proof of Proposition 3.2

Proof. Applying the maximum log-likelihood estimation to the weak supervision dataset D = {(x1:L
i , wi)}i∈[N ], where

w ∈W is the weak supervision for each sequence input x1:L with L ≥ 1. When L = 1, x represents an individual training
instance, otherwise it represents a group of sequence as discussed in the main paper. For simplicity, we consider L as a fixed
value for L here, but in practice it can denote variable length. We have Assumption 3.1 that the predictions and precise
labels in the sequence are conditionally independent given whole input sequence.

argmax
θ

EY |X,W ;θt [logP (X,W, Y ; θ)]

= argmax
θ

EY |X,W ;θt [logP (W |Y,X; θ)P (Y |X; θ)P (X; θ)]

= argmax
θ

EY |X,W ;θt [logP (Y |X; θ)] + EY |X,W ;θt [logP (W |Y,X; θ)] P (X) is independent of θ

=argmax
θ

EY |X,W ;θt [logP (Y |X; θ)] + logP (W |Y,X; θ) P (W |Y,X; θ) is fixed for any P (Y |X,W ; θt)

(11)
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The derived objective LWeak on the dataset D from the EM formulation thus have two terms, where the first unsupervised
term LU corresponds to:

LU =

N∑
i=1

Ey1:L
i |x1:L

i ,wi;θt [log p(y1:Li |x1:L
i ; θ)]

=

N∑
i=1

p(y1:Li |x1:L
i , wi; θ

t) log

L∏
j=1

p(yji |x
j
i ; θ) Instance-level model

=

N∑
i=1

L∑
j=1

p(yji |x
1:L
i , wi; θ

t) log p(yji |x
j
i ; θ) Conditional independence in Assumption 3.1,

(12)

and the supervised term LS as:

LS =

N∑
i=1

log p(wi|y1:Li ,x1:L
i ; θ) (13)

B. Method
B.1. Illustration of Possible Labelings as Trellis of Common Weak Supervision Settings

Here, we present more illustration of the expanded trellis from the NFA in Fig. 3. The demonstration of weak supervision is
over a group of 4 instances for LProp and 2 instances for pairwise observations.

The trellis of LProp with exact two positive samples is shown in Fig. 7. Note that for LProp, the number of states in its NFA
depends on the exact count from the weak supervision as discussed in the main paper. The unlabeled data with class prior
information can also be represented as expected label count and uses the trellis representation of LProp.

𝑞0 = 0 ∶
𝑝(𝑦 = 0|𝒙1:4; 𝜃)

𝑞0 = 1 ∶
𝑝(𝑦 = 1|𝒙1:4; 𝜃)

𝑞1 = 0:
𝑝(𝑦 = 0|𝒙1:4; 𝜃)

𝑞1 = 1:
𝑝(𝑦 = 1|𝒙1:4; 𝜃)

𝒙1 𝒙2 𝒙3 𝒙4
Trellis from NFA

𝑞2 = 0:
𝑝(𝑦 = 0|𝒙1:4; 𝜃)

NFA

1
𝑞

0
𝑞

1

0
0

𝑞
2 0

1

Figure 7. Illustration of trellis expanded from the NFA of label proportion on 4 instances whose weak supervision is exact two positive
samples. We omit the last state of q2 = 1 for simplicity because no path goes through it.

We also present the illustration of PComp, PSim, and PDsim in Fig. 8, Fig. 9(a), and Fig. 9(b) respectively. Although we
use 3 states in their NFA, we instead directly use 4 states in the expanded trellis to represent all the labelings for pairwise
observations, i.e., {(0, 0), (1, 1), (0, 1), (1, 0)}. Despite the notation difference, they represent the same weak supervision.
SimConf and ConfDiff can also be represented similarly by weighting the path with confidence score and similarity score.

For totally unlabeled data, every symbol in Y can be allowed for transition, thus its trellis degenerate to the prediction
probability of each instance.
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𝑝(𝑦 = 0|𝒙1:4; 𝜃)

𝑝(𝑦 = 1|𝒙1:4; 𝜃)

𝑝(𝑦 = 0|𝒙1:4; 𝜃)

𝑝(𝑦 = 1|𝒙1:4; 𝜃)

𝒙1 𝒙2
Trellis from NFA

NFA

𝑞
0

𝑞
1

0
/
1

𝑞
2 0

1

0

Figure 8. Illustration of trellis expanded from the NFA of pairwise comparison on 2 instances whose weak supervision is the first instance
is more position than the second. We directly use 4 states to fully represent the cases {(0, 0), (1, 1), (0, 1), (1, 0)}, which might looks
different from its NFA who has only 3 states, but they indicate the same weak supervision.
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(b) Pairwise dissimilarity

Figure 9. Illustration of trellis expanded from the NFA of (a) pairwise similarity and (b) pairwise dissimilarity on 2 instances whose
weak supervision is the whether the pair has similar or dissimilar supervision. We directly use 4 states to fully represent the cases
{(0, 0), (1, 1), (0, 1), (1, 0)}, which might looks different from its NFA who has only 3 states, but they indicate the same weak supervision.
Similarity confidence and confidence different can also be represented using the trellis here by weighting each path according to the
similarity or confidence score.

B.2. Pseudo-algorithm of the Forward-Backward Algorithm of Common Weak Supervision Settings

We present the pseudo-algorithm of performing the forward-backward algorithms on common weak supervision settings we
evaluated. The pseudo-algorithm also corresponds to description of the trellis expanded from the NFA. Note that the only
difference for each weak supervision setting is the NFA modeling. Once having the NFA modeling of weak supervision, the
finite states and the transition between states are determined, and thus the forward-backward algorithm can be performed
accordingly. We perform the forward-backward algorithm in log-space for numerical stability. Moreover, we use the
log-sum-exp trick for computing the addition in log-space. For illustration simplicity, we present the pseudo-algorithm on
single instance/group inputs and binary predictions, but in practice we implement the forward-backward pass at batch of
instances/groups inputs and multi-class predictions. Here we illustrate the pseudo-algorithm for MultiIns in Algorithm 1,
LProp in Algorithm 2, PComp in Algorithm 3, respectively. Other settings should either be similar or simple to solve.
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A General Framework for Learning from Weak Supervision

Algorithm 1 Forward-Backward Algorithm for multiple instance (MultiIns) Learning
Require: Predicted probability in log-space as log probs from x1:L, w with 0 for no positive and 1 for at least one positive in the bag,

bag length as L.
1: Number of states as Q← 4.
2: Initialize α ∈ R2Q×L with −1e12 for forward pass.
3: α[0, 0], α[1, 0]← log probs[0, 0], log probs[0, 1].
4: for i = 1 to L do
5: if i < L− 1 then
6: Update α[0, i] = α[0, i− 1] + log probs[i, 0].
7: else
8: Update α[0, i] = −1e12.
9: end if

10: if i ≥ 2 then
11: Update α[2, i] = α[1, i− 1] + α[2, i− 1] + α[3, i− 1] + log probs[i, 0].
12: Update α[3, i] = α[1, i− 1] + α[2, i− 1] + α[3, i− 1] + log probs[i, 1].
13: else
14: Update α[2, i] = α[1, i− 1] + log probs[i, 0].
15: Update α[3, i] = α[1, i− 1] + log probs[i, 1].
16: end if
17: end for
18: Compute forward probability p(w|x1:L, y1:L; θ) from exp(α) as sup preds.
19: if w = 0 then
20: em targets = ones like(log probs)
21: Return sup preds, em targets
22: end if
23: Initialize β ∈ R2Q×L with −1e12 for backward pass.
24: β[1, L− 1], β[2, L− 1], β[3, L− 1]← log probs[L− 1, 1], log probs[L− 1, 0], log probs[L− 1, 1].
25: for i = L− 2 down to 0 do
26: β[0, i] = β[0, i+ 1] + β[1, i+ 1] + log probs[i, 0].
27: β[1, i] = β[2, i+ 1] + β[3, i+ 1] + log probs[i, 1].
28: if i > 0 then
29: β[2, i] = β[2, i+ 1] + β[3, i+ 1] + log probs[i, 0].
30: β[3, i] = β[2, i+ 1] + β[3, i+ 1] + log probs[i, 1].
31: end if
32: end for
33: Adjust β based on log probs.
34: γ = α+ β.
35: γ = exp(γ.transpose(0, 1)).
36: Compute joint probability p(yj |x1:L, w; θ) as em targets
37: Return sup preds, em targets
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A General Framework for Learning from Weak Supervision

Algorithm 2 Forward-Backward Algorithm for label proportion (LProp) Learning
Require: Predicted probability in log-space as log probs of x1:L, w indicates the count of positive instance.
1: Number of states Q← 2× w + 1.
2: Initialize α ∈ RQ×L with −1e12 for forward pass.
3: α[0, 0]← log probs[0, 0].
4: if count > 0 then
5: α[1, 0]← log probs[0, 1].
6: end if
7: for i = 1 to L do
8: Update α[0, i] = α[0, i− 1] + log probs[i, 0].
9: if count > 0 then

10: Update α[1, i] = α[0, i− 1] + log probs[i, 1].
11: end if
12: for j = 2 to Q do
13: if i < w − (Q− j)//2 then
14: Continue to next iteration of j.
15: end if
16: if j % 2 = 0 then
17: Update α[j, i] = α[j, i− 1] + α[j − 1, i− 1] + log probs[i, 0]
18: else
19: Update α[j, i] = α[j − 1, i− 1] + α[j − 2, i− 1] + log probs[i, 1]
20: end if
21: end for
22: end for
23: Compute forward probability sup preds from exp(α).
24: Adjust α based on w and Q to avoid underflow.
25: Initialize β ∈ RQ×L with −1e12 for backward pass.
26: Set initial values of β[−1,−1] and β[−2,−1] based on w.
27: for i = b− 2 down to 0 do
28: if i ≥ w then
29: β[−1, i] = β[−1, i+ 1] + log probs[i, 0]
30: end if
31: if i ≥ w&w > 0 then
32: β[−2, i] = β[−1, i+ 1] + log probs[i, 0]
33: end if
34: for j = 0 to k − 2 do
35: if i < count− (k − j)//2 then
36: Continue to next iteration of j.
37: end if
38: if j % 2 = 0 then
39: Update β[j, i] = β[j, i+ 1] + β[j + 1, i+ 1] + log probs[i, 0]
40: else
41: Update β[j, i] = β[j + 1, i+ 1] + β[j + 2, i+ 1] + log probs[i, 1]
42: end if
43: end for
44: end for
45: Adjust β based on log probs.
46: β = exp(β)
47: γ = α+ β.
48: γ = exp(γ.transpose(0, 1)).
49: Compute joint probability p(yj |x1:L, w; θ) as em targets
50: Return sup preds, em targets
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A General Framework for Learning from Weak Supervision

Algorithm 3 Forward-Backward Algorithm for pairwise comparison (PComp) Learning
Require: Predicted probability in log-space as log probs of x1:L.

1: Number of states Q← 4.
2: Initialize log alpha ∈ R4×2 with −1e12 for the forward pass.
3: α[0, 0] = log probs[0, 0]
4: α[1, 0] = log probs[0, 1]
5: α[3, 0] = log probs[0, 1]
6: α[0, 1] = α[0, 0] + log probs[1, 0]
7: α[1, 1] = α[1, 0] + log probs[1, 1]
8: α[2, 1] = α[3, 0] + log probs[1, 0]
9: Compute forward probability from exp(α).

10: Initialize log beta ∈ R4×2 with −1e12 for the backward pass.
11: β[0, 1] = log probs[1, 0]
12: β[1, 1] = log probs[1, 1]
13: β[2, 1] = log probs[1, 0]
14: β[0, 0] = β[0, 1] + log probs[0, 0]
15: β[1, 0] = β[1, 1] + log probs[0, 1]
16: β[3, 0] = β[1, 2] + log probs[0, 1]
17: Adjust β based on repeated log probs.
18: γ = α+ β.
19: γ = exp(γ.transpose(0, 1)).
20: Compute the EM targets em targets from γ.
21: Return em targets, sup preds
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A General Framework for Learning from Weak Supervision

C. Experiments
In this section, we provide more details on the training setup and hyper-parameters for our evaluations. We also present
the details on datasets and class split of the datasets. More results of other weak supervision settings can be found in
Appendix C.6.

C.1. Datasets and Classes Splits

Table 6. Dataset details
Dataset # Classes # Training # Validation # Unlabeled

MNIST 10 60,000 10,000 -
F-MNIST 10 60,000 10,000 -
CIFAR-10 10 50,000 10,000 -

CIFAR-100 100 50,000 10,000 -
STL-10 10 5,000 8,000 100,000

ImageNet-100 100 130,000 5,000 -

The datasets details are shown in Table 6.

For some weak supervision settings, such as pairwise observations, positive unlabeled, and unlabeled unlabeled learning, we
split the classes of each dataset into binary as follows.

MNIST. For multiple instance learning and label proportion learning, we set digit 9 as positive class, and others as negative
class for binary classification. For other settings, we set digits 0-4 as positive class, and others as negative class.

F-MNIST. Similarly, for multiple instance learning and label proportion learning, we set the 9-th class as positive class. For
other settings, we set the classes related to tops as positive class, i.e., {5, 7, 9}.

CIFAR-10 and STL-10. For multiple instance learning and label proportion learning, we set bird, i.e., class 3, as positive
class. For other settings, we set transportation related classes as positive class, i.e., airplane, automobile, ship, truck.

CIFAR-100. Binary classification on CIFAR-100 is not conduced on multiple instance learning and label proportion
learning. For other settings, we select the 40 animal related classes from 100 total classes as positive class.

C.2. Partial Labels

Here we provide more training details and results of partial label learning.

C.2.1. SETUP

We follow RCR (Wu et al., 2022) for experiments of partial label learning. More specifically, we generate synthetic uniform
partial label datasets, where we uniformly select each incorrect label for each instance into a candidate label set with partial
ratio as probability. We adopt same training hyper-parameters for the baseline methods and GLWS for fair comparison. A
summarize of training parameters is shown in Table 7.

Table 7. Hyper-parameters for partial label (PartialL) learning used in experiments.
Hyper-parameter MNIST & F-MNIST CIFAR-10 CIFAR-100 STL-10 ImageNet-100

Image Size 28 32 32 96 224
Model LeNet-5 WRN-34-10 WRN-34-10 ResNet-18 ResNet-34

Batch Size 64 64 64 64 32
Optimizer SGD SGD SGD AdamW AdamW

Learning Rate 0.1 0.1 0.1 0.001 0.001
Weight Decay 1e-4 1e-4 1e-4 1e-4 1e-4
LR Scheduler MultiStep MultiStep MultiStep Cosine Cosine

Training Epochs 200 200 200 200 200

For MNIST and F-MNIST, we use LeNet-5 (LeCun et al., 1998). We adopt WideResNet-34-10 variant (Zagoruyko &
Komodakis, 2016) for CIFAR-10 and CIFAR-100, ResNet-18 (He et al., 2016) for STL-10, and ResNet-34 for ImageNet-100.
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A General Framework for Learning from Weak Supervision

Table 8. Accuracy on partial label (PartialL) learning. All results are averaged over three runs. This table is complementary to Table 1.
Dataset MNIST F-MNIST CIFAR-10 CIFAR-100 STL-10 ImageNet-100

Partial Ratio 0.10 0.30 0.50 0.70 0.10 0.300 0.50 0.70 0.10 0.30 0.50 0.70 0.01 0.05 0.10 0.20 0.10 0.30 0.01 0.05

CC 99.25±0.02 99.18±0.05 99.08±0.03 98.93±0.05 91.44±0.16 91.10±0.07 90.45±0.09 89.55±0.28 95.25±0.03 94.13±0.09 92.51±0.04 89.01±0.20 79.68±0.14 78.73±0.24 77.44±0.32 74.60±0.17 77.02±0.69 73.26±0.34 73.14±0.94 64.67±0.74

LWS 98.23±0.02 98.04±0.12 97.95±0.11 96.96±0.10 88.17±0.11 88.10±0.05 87.59±0.18 86.60±0.13 91.42±0.03 88.76±0.45 85.66±0.32 80.71±0.10 69.46±0.28 55.49±0.67 50.67±0.33 43.51±0.32 67.65±0.33 58.18±1.65 72.04±0.77 62.13±0.95

PRODEN 99.12±0.52 98.89±0.52 98.27±0.68 97.77±0.82 90.95±0.63 91.96±0.70 90.40±0.58 89.20±0.45 95.25±0.45 95.68±0.40 93.85±0.60 91.11±0.70 79.06±0.24 79.17±0.36 77.80±0.31 74.99±0.57 77.74±0.52 74.18±0.41 78.61±0.63 77.59±0.60

PiCO 99.22±0.01 99.20±0.01 99.10±0.02 98.96±0.09 90.30±1.44 91.41±0.05 90.42±0.14 89.73±0.21 95.37±0.12 95.14±0.16 93.32±0.23 90.26±0.20 79.49±0.13 78.71±0.18 77.50±0.15 74.89±0.13 77.44±0.26 73.19±1.05 80.93±0.81 78.74±1.34

RCR 99.25±0.04 99.21±0.04 99.11±0.03 99.01±0.05 91.26±0.17 91.26±0.08 90.82±0.12 90.06±0.03 95.57±0.19 94.65±0.05 94.04±0.02 91.45±0.10 79.89±0.23 78.93±0.30 78.03±0.07 75.40±0.12 78.02±0.40 74.67±0.56 81.52±0.94 79.67±1.22

GLWS 99.25±0.01 99.28±0.05 99.12±0.02 99.14±0.04 91.42±0.22 91.28±0.09 90.85±0.10 90.35±0.15 95.61±0.03 95.23±0.11 94.31±0.09 92.06±0.14 80.06±0.17 79.47±0.09 78.35±0.11 75.82±0.25 78.56±0.27 74.79±0.21 82.66±0.54 81.09±0.50

For optimizer, we use SGD (Loshchilov & Hutter, 2016) for MNIST, F-MNIST, CIFAR-10, CIFAR-100, and AdamW
(Kingma & Ba, 2014) for STL-10 and ImageNet-100.

C.2.2. RESULTS

We present more results on partial label learning in Table 8, where our method in general achieves the best performance.

C.3. Aggregate Observations

More details about experiments of aggregate observations are shown here.

C.3.1. SETUP

For aggregate observation, the largest dataset previously experimented is MNIST, which is unpractical. Here we present the
training hyper-parameters we used for MultiIns and LProp in Table 9.

Table 9. Hyper-parameters for multiple instance (MultiIns) and label proportion (LProp) learning used in experiments.
Hyper-parameter MNIST & F-MNIST CIFAR-10 CIFAR-100 STL-10 ImageNet-100

Image Size 28 32 32 96 224
Model LeNet-5 WRN-28-2 ResNet-18 ResNet-18 ResNet-34

Batch Size 4 4 4 4 8
Optimizer AdamW AdamW AdamW AdamW AdamW

Learning Rate 5e-4 1e-3 1e-3 1e-3 1e-3
Weight Decay 1e-4 5e-4 5e-4 5e-4 1e-4
LR Scheduler Cosine Cosine Cosine Cosine Cosine

Training Epochs 100 100 100 100 100

We train all methods in both settings for 100 epochs and AdamW optimizer. We set the learning rate to 1e-4 for MNIST and
F-MNIST, and 1e-3 for others. WideResNet-28-2 is utlized for CIFAR-10, while ResNet-18 is used for CIFAR-100 and
STL-10. Since each training instance for aggregate observations is a group of examples of variable length, we set batch size
to 4 universally or 8 for ImageNet-100.

To create aggregate observations, we sample instances from the dataset to form groups/bags according to the specified
Gaussian distribution. Then we summarize the weak supervision as counts of the labels in the group. which eventually
convert to flags of existence of positive samples for multiple instance learning. For binary classification, we ensure that the
number of negative bags and positive bags are balanced.

C.3.2. RESULTS

We present more results of the binary classification of aggregate observations on MNIST, F-MNIST, CIFAR-10 and STL-10
in Table 10. The multi-class classification results of MNIST and F-MNIST are also shown here. One can observe that,
for both settings, our method is on par with Count Loss on MNIST and F-MNIST, and in general performs the best on
multi-class classification settings of these two datasets. Moreover, on binary classification of CIFAR-10 and STL-10, our
method also outperforms the baselines.

C.4. Pairwise Observations

We provide more training details and results of pairwise observations here.
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Table 10. Accuracy on both binary and multi-class multi-label aggregate observations of multiple instance (MI) learning and label
proportion (LP) learning. All results are averaged over three runs. This table is complementary to Table 2.

Dataset MNIST F-MNIST CIFAR-10 STL-10

# Classes 2 10 2 10 2 2

Dist N (10, 2) N (50, 10) N (10, 2) N (20, 5) N (10, 2) N (50, 10) N (10, 2) N (20, 5) N (10, 2) N (20, 5) N (5, 1) N (10, 2)
# Bags 1,000 250 1,000 500 1,000 250 1,000 500 5,000 2,500 2,000 1,000

Multiple Instance Learning

Count Loss 97.05±0.45 91.21±0.46 97.61±0.20 94.90±0.24 97.64±0.10 91.62±1.96 86.24±0.33 82.02±0.06 63.07±1.63 56.71±2.23 57.90±6.11 51.50±1.65

UUM 81.08±0.11 74.00±0.53 63.96±5.39 23.43±4.01 91.40±1.00 87.38±1.32 64.24±2.28 28.57±5.90 58.25±1.59 57.67±0.61 57.05±4.94 57.60±0.64

GLWS 97.04±0.38 91.54±0.54 97.57±0.06 94.80±0.27 97.59±0.16 93.21±1.74 86.22±0.18 82.05±0.20 62.63±1.73 57.94±2.11 58.40±3.11 58.03±0.73

Label Proportion Learning

LLP-VAT 98.18±0.19 92.37±2.15 98.21±0.07 98.41±0.10 98.13±0.10 96.83±0.11 86.99±0.45 83.65±0.94 85.33±0.44 54.20±2.72 50.51±0.36 50.15±0.21

Count Loss 98.89±0.21 96.46±0.19 97.95±0.02 98.29±0.11 98.27±0.12 97.44±0.16 87.50±0.05 85.70±0.54 89.46±0.24 67.58±2.03 65.93±0.91 56.23±1.15

UUM - - - - - - - - - - 61.54±2.16 -
GLWS 98.62±0.18 97.05±0.13 98.42±0.11 98.39±0.08 98.18±0.02 97.40±0.12 88.02±0.23 86.20±0.66 89.77±0.45 68.03±2.41 66.04±0.64 58.20±1.03

Table 11. Hyper-parameters for pairwise comparison (PComp), pairwise similarity (PSim), similarity confidence (SimConf), and confi-
dence difference (ConfDiff) learning used in experiments.

Hyper-parameter MNIST & F-MNIST CIFAR-10 CIFAR-100 STL-10

Image Size 28 32 32 96
Model LeNet-5 WRN-28-2 ResNet-18 ResNet-18

Batch Size 64 64 64 32
Optimizer AdamW AdamW AdamW AdamW

Learning Rate 5e-4 1e-3 1e-3 1e-3
Weight Decay 1e-4 1e-3 1e-3 1e-3
LR Scheduler Cosine Cosine Cosine Cosine

Training Epochs 100 100 100 100

Table 12. Accuracy on pairwise comparison (PComp) learning for binary classification. All results are averaged over three runs.
Dataset F-MNIST MNIST CIFAR-10 CIFAR-100 STL-10

#Pairs 25,000 25,000 20,000 20.000 5,000

Prior 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

PComp ABS 92.82±0.89 99.73±0.04 90.96±0.74 91.54±0.86 96.86±0.30 91.09±1.08 88.75±0.60 91.78±0.10 87.37±1.89 73.10±0.15 81.67±0.24 66.06±1.19 78.38±0.50 79.07±0.40 56.45±1.86

PComp ReLU 99.65±0.07 99.73±0.08 98.41±0.41 90.30±0.28 96.71±0.10 92.87±0.22 90.47±0.94 92.18±0.22 90.57±0.21 73.10±0.77 81.77±0.59 66.57±1.27 79.30±0.85 79.68±0.75 67.01±1.71

PComp Teacher 92.41±0.38 93.92±0.81 92.54±0.15 92.79±0.45 93.03±0.93 91.46±1.31 92.29±0.19 93.33±0.38 91.35±0.27 72.72±0.33 78.59±0.60 67.43±3.09 78.09±0.68 77.33±0.14 72.88±0.15

PComp Unbiased 87.64±0.28 89.30±0.35 81.16±1.20 76.23±1.56 84.35±0.74 78.81±2.32 88.13±0.29 91.71±0.48 88.22±0.58 66.02±0.97 67.80±0.07 60.86±2.19 76.85±0.57 77.46±0.19 71.60±0.95

Rank Pruning 90.32±1.10 91.93±0.41 89.99±0.98 90.56±0.27 91.59±1.31 90.44±0.69 92.98±0.30 93.98±0.40 91.97±0.27 73.81±1.21 78.90±0.48 71.51±0.73 78.39±0.33 77.89±0.42 73.62±1.38

GLWS 99.59±0.01 99.85±0.02 99.82±0.03 95.95±0.15 97.70±0.11 96.03±0.39 93.46±0.32 94.15±0.10 93.28±0.38 80.33±0.07 83.15±0.16 80.50±0.20 79.15±0.78 81.26±0.54 79.24±0.87

C.4.1. SETUP

For pairwise observations (x1),x2), we adopt the same training parameters for the four settings we evaluated, as shown in
Table 11.

For PComp, PSim, and SimConf of class prior p, we form the pair observations by sampling from all positive pairs following
p2, all negative pairs following (1− p)2, and positive and negative pairs following 2p(1− p), as in Feng et al. (2021); Wei
et al. (2023); Cao et al. (2021b). For ConfDiff, we sample each instance in the pair independently according to the class
prior p, as in Wang et al. (2023a). For PComp, the weak supervision is that x1 is more positive than x2. For PSim, the weak
supervision is that the pairs are either similar or dissimilar. For SimConf and ConfDiff, we need pre-trained models to
compute the similarity score as in (Cao et al., 2021b) and Wang et al. (2023a) respectively. We set two pre-trained models.
The first one is the same architecture shown in Table 11, trained on a separate set of instances in each dataset and used to
compute the score for the sampled pairs. The second one is CLIP models (Radford et al., 2021), where we compute the
scores in a zero-shot manner.

C.4.2. RESULTS

We present more results of PComp in Table 12, PSim in Table 13, SimConf in Table 14, and ConfDiff in Table 15. Our
method consistently and universally achieves the best performance on these settings in general.
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Table 13. Accuracy on pairwise similarity (PSim) learning for binary classification. All results are averaged over three runs.
Dataset F-MNIST MNIST CIFAR-10 CIFAR-100 STL-10

#Pairs 30,000 30,000 25,000 25.000 5,000

Prior 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

RiskSD 99.34±0.17 98.11±0.11 98.44±0.45 94.00±0.61 89.31±0.65 89.41±0.58 89.68±0.67 85.78±1.70 85.61±1.34 69.56±3.00 70.41±0.21 64.26±3.81 77.42±0.94 74.15±3.27 69.35±0.32

UUM 99.94±0.01 99.93±0.01 99.93±0.01 99.04±0.08 99.12±0.05 99.04±0.13 96.96±0.20 97.24±0.23 97.16±0.24 86.95±0.08 87.13±0.40 85.19±2.45 85.23±1.06 83.55±0.80 83.64±0.25

GLWS 99.94±0.01 99.93±0.01 99.93±0.01 98.96±0.01 99.07±0.01 99.05±0.10 97.09±0.04 97.44±0.07 97.18±0.22 86.89±0.42 87.25±0.16 86.96±0.33 86.36±1.60 84.81±0.60 85.19±0.26

Table 14. Accuracy on similarity confidence (SimConf) learning for binary classification. All results are averaged over three runs.
Dataset F-MNIST MNIST CIFAR-10 CIFAR-100 STL-10

#Pairs 30,000 30,000 25,000 25.000 5,000

Conf Model LeNet-5 CLIP ViT-B-16 LeNet-5 CLIP ViT-B-16 WRN-28-2 CLIP ViT-B-16 ResNet-18 CLIP ViT-B-16 ResNet-18 CLIP ViT-B-16

Prior 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6

Sconf Abs 99.03±0.01 99.63±0.09 98.16±0.11 99.11±0.29 98.39±0.24 96.47±0.11 75.28±0.91 76.91±1.04 87.36±1.22 89.36±0.82 90.16±1.32 88.97±0.12 75.79±0.27 76.79±0.21 69.51±0.44 63.39±0.30 76.84±0.75 76.50±0.68 74.44±0.78 66.33±1.87

Sconf ReLU 99.45±0.04 99.65±0.08 98.02±0.09 99.11±0.30 98.23±0.15 96.40±0.16 76.14±0.11 76.91±1.05 88.56±0.57 89.66±0.36 90.50±0.44 88.79±0.41 74.95±0.55 76.83±0.62 69.67±1.51 63.77±2.05 77.40±0.31 76.51±0.71 75.26±0.66 67.12±2.08

Sconf NN Abs 99.63±0.10 99.48±0.10 98.51±0.03 99.19±0.25 98.41±0.06 96.32±0.10 76.42±0.45 77.57±0.73 89.04±0.88 88.97±0.29 89.05±2.11 87.76±0.82 74.55±0.23 75.82±0.44 68.93±2.00 63.79±1.43 77.55±0.31 75.97±0.66 75.66±0.51 65.80±0.45

Sconf Unbiased 99.15±0.07 99.64±0.06 98.44±0.03 99.16±0.33 98.05±0.05 95.98±0.45 76.38±0.13 77.37±0.90 88.72±0.52 87.90±0.47 88.71±0.59 88.86±0.25 72.87±1.30 73.23±1.23 69.55±0.31 64.51±2.88 77.76±0.40 76.74±0.63 74.36±0.60 67.42±2.06

GLWS 99.90±0.00 99.89±0.01 98.67±0.30 98.55±0.08 98.58±0.03 98.48±0.03 76.78±0.21 78.47±0.18 95.97±0.11 95.93±0.02 97.88±0.11 97.60±0.13 85.58±0.88 87.85±0.49 87.94±0.34 86.56±0.94 78.64±0.16 78.33±0.07 79.06±0.05 78.69±0.08

Table 15. Accuracy on confidence difference (ConfDiff) learning for binary classification. All results are averaged over three runs.
Dataset F-MNIST MNIST CIFAR-10 CIFAR-100 STL-10

#Pairs 30,000 30,000 25,000 25.000 5,000

Conf Model LeNet-5 CLIP ViT-B-16 LeNet-5 CLIP ViT-B-16 WRN-28-2 CLIP ViT-B-16 ResNet-18 CLIP ViT-B-16 ResNet-18 CLIP ViT-B-16

Prior 0.5 0.7 0.5 0.7 0.5 0.7 0.5 0.7 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.6

ConfDiff Abs 99.82±0.03 99.36±0.14 98.90±0.36 93.80±1.16 97.31±0.08 92.11±3.31 91.67±0.91 89.19±2.26 90.12±4.19 93.18±0.42 88.61±7.50 94.11±0.29 82.89±0.32 81.80±1.95 81.45±0.26 80.64±1.33 73.17±2.06 73.53±3.19 77.33±0.74 76.72±0.57

ConfDiff ReLU 99.83±0.03 99.31±0.18 99.29±0.11 95.54±1.07 97.42±0.11 93.28±2.35 90.26±0.76 88.97±1.43 90.36±3.07 93.05±0.31 88.78±2.91 93.86±0.48 83.13±0.27 82.64±1.05 81.68±0.46 80.75±1.03 72.39±3.06 73.41±1.83 77.59±0.17 76.11±1.54

ConfDiff Unbiased 99.83±0.04 99.31±0.21 99.43±0.10 97.59±0.27 97.34±0.09 94.46±1.86 89.22±1.39 88.05±0.68 90.05±5.23 93.23±0.33 87.91±9.03 93.87±0.38 83.65±0.11 82.69±1.08 81.94±0.43 80.89±0.88 72.13±2.70 73.53±3.19 77.98±0.08 77.81±0.40

GLWS 99.88±0.01 98.43±0.33 99.86±0.01 99.42±0.09 98.30±0.05 97.74±0.07 93.41±0.12 91.88±0.08 95.36±0.19 94.81±0.03 96.14±0.67 96.23±0.11 86.12±0.76 84.95±1.20 83.42±1.12 82.53±0.27 77.99±0.75 76.24±0.42 78.49±0.31 78.57±0.28

C.5. Unlabeled Data

C.5.1. SETUP

Table 16. Hyper-parameters for positive unlabeled (PosUlb), unlabeled unlabeled (UlbUlb), and similarity dsimilarity unlabeled (SimD-
simUlb) learning used in experiments.

Hyper-parameter MNIST & F-MNIST CIFAR-10 CIFAR-100 STL-10

Image Size 28 32 32 96
Model LeNet-5 WRN-28-2 ResNet-18 ResNet-18

Batch Size 64 64 64 32
Optimizer AdamW AdamW AdamW AdamW

Learning Rate 5e-4 1e-3 1e-3 1e-3
Weight Decay 1e-4 1e-3 1e-3 1e-3
LR Scheduler Cosine Cosine Cosine Cosine

Training Epochs 50 50 50 50

For unlabeled data, we evaluate on PosUlb, UlbUlb, and SDUlb settings with class priors. The hyper-parameters are shown
in Table 16. For PosUlb, we sample labeled set from only positive samples, and form the unlabeled set with both positive
and negative samples whose distribution follows the class prior. For UlbUlb, we form both unlabeled set similarly as in
PosUlb. For SDUlb, the labeled pairwise observation is formed similarly as in PSim.

C.5.2. RESULTS

We present more results of PosUlb in Table 17, and evaluation on UlbUlb and SDUlb in Table 18 and ?? respectively. Our
approach achieves the best results across different settings except on F-MNIST of UlbUlb evaluation.

C.6. Other Settings

Here we present the evaluation of other weak supervision settings.

C.6.1. POSITIVE CONFIDENCE LEARNING

We evaluation on positive confidence (PosConf) learning (Ishida et al., 2018), where the weak supervision is given as the
confidence score of a sample being positive, from the pre-trained models. The NFA of PosConf consists of L states for
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Table 17. Accuracy on positive unlabeled (PU) learning for binary classification. All results are averaged over three runs.
FMNIST MNIST CIFAR-10 CIFAR-100 STL-10

Prior 0.3 0.5 0.4 0.4 0.4

# Pos 100 500 1000 100 500 1000 500 1000 2000 1000 2000 4000 500 1000 2000

Count Loss 99.48±0.25 99.72±0.01 99.77±0.02 85.25±0.53 93.27±0.65 95.14±0.49 87.76±0.59 88.61±0.68 87.96±0.42 70.57±1.50 78.13±0.19 78.17±2.49 77.11±0.60 78.79±0.96 79.77±1.40

CVIR 97.77±0.98 99.24±0.22 99.31±0.37 74.67±1.83 93.61±1.08 95.95±0.26 88.65±2.59 93.37±0.24 94.69±0.24 78.56±0.22 82.94±0.37 85.22±1.07 77.67±1.11 81.84±1.10 85.38±0.83

Dist PU 96.87±0.24 97.23±0.31 97.44±0.15 85.60±1.69 90.94±1.87 95.36±0.38 83.61±4.52 82.60±2.48 85.38±1.13 69.12±1.39 69.83±1.43 70.82±1.12 71.07±1.12 70.89±0.63 69.86±1.07

NN PU 95.27±1.40 98.63±0.54 99.18±0.10 67.99±0.80 77.84±0.35 78.77±1.50 87.45±0.66 90.32±0.50 86.60±1.26 75.49±0.88 77.26±0.47 78.53±0.95 74.57±0.54 77.32±0.95 77.68±2.07

U PU 85.09±0.53 84.90±0.26 84.85±0.43 74.56±0.79 79.58±1.27 79.41±0.16 81.38±2.17 87.51±0.24 90.54±0.11 68.70±0.79 70.08±0.98 74.07±1.51 73.37±0.57 75.31±0.74 79.08±0.76

Var PU 95.02±0.02 97.52±1.48 99.22±0.26 48.61±0.64 48.61±0.01 51.22±2.88 77.00±2.82 84.45±2.58 87.34±1.80 61.02±0.22 66.02±0.29 70.57±1.94 60.98±0.78 62.37±1.44 62.18±1.02

GLWS 99.55±0.21 99.84±0.03 99.87±0.01 87.57±0.21 95.04±0.74 96.85±0.17 91.67±0.19 93.69±0.28 94.80±0.12 80.30±0.12 83.32±0.23 85.98±0.29 79.60±0.95 82.87±0.83 87.51±0.60

Table 18. Accuracy on unlabeled unlabeled (UU) learning for binary classification. All results are averaged over three runs.
FMNIST MNIST CIFAR-10 CIFAR-100 STL-10

# Ulb 10,000 30,000 30,000 10,000 30,000 30,000 10,000 25,000 25,000 10,000 25,000 25,000 2,500 5,000 5,000
(Prior1, Prior2) (0.4, 0.6) (0.4, 0.6) (0.8, 0.2) (0.4, 0.6) (0.4, 0.6) (0.8, 0.2) (0.4, 0.6) (0.4, 0.6) (0.8, 0.2) (0.4, 0.6) (0.4, 0.6) (0.8, 0.2) (0.4, 0.6) (0.4, 0.6) (0.8, 0.2)

UU Learn 99.08±0.21 99.54±0.05 99.89±0.02 89.75±0.41 93.24±1.02 98.19±0.10 88.32±1.64 89.42±0.11 94.46±0.05 66.23±1.59 66.37±3.05 71.23±0.54 78.59±1.97 72.55±1.27 81.42±1.31

GLWS 97.65±0.75 96.10±0.75 99.87±0.01 97.27±0.24 96.87±0.80 98.91±0.04 94.45±0.45 95.01±0.44 98.07±0.07 74.66±1.29 76.75±3.05 89.83±0.44 82.09±2.33 84.78±1.19 88.27±0.96

Table 19. Accuracy on similarity dissimilarity unlabeled (SDUlb) learning for binary classification. All results are averaged over three
runs.

FMNIST MNIST CIFAR-10 CIFAR-100 STL-10

# Sim Pair 0 5,000 10,000 0 5,000 10,000 0 5,000 10,000 0 5,000 10,000 0 1,000 2,000
# Dsim Pair 10,000 5,000 0 10,000 5,000 0 10,000 5,000 0 10,000 5,000 0 2,000 1,000 0
# Ulb 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 4,000 4,000 4,000

RiskSD 87.61±0.48 89.32±0.15 87.06±0.97 87.18±0.10 89.09±1.89 83.02±1.24 78.69±3.56 84.61±0.50 79.09±2.36 65.36±0.28 65.87±1.23 63.43±1.45 66.94±1.42 66.92±2.86 65.02±1.59

GLWS 92.81±0.08 92.57±0.24 92.24±1.20 97.27±0.11 96.54±0.36 96.41±0.95 93.12±0.28 92.76±0.82 84.24±1.20 78.59±1.32 73.02±1.54 70.24±1.16 79.28±0.98 75.93±1.69 75.67±1.26

each instances in the training batch, and allows transition via both 0 and 1. Each positive transition path is weighted by
the positive confidence score c, and each negative transition path is weighted by 1− c. This modeling can also be easily
extended to subset confidence learning (Cao et al., 2021a) and soft label learning (Ishida et al., 2022).

The training parameters follow Table 11 and the results are shown in Table 20. Our method outperforms the baseline PConf
(Ishida et al., 2018) except on MNIST.

Table 20. Accuracy on positive confidence (PosConf) learning for binary classification. All results are averaged over three runs.
Dataset MNIST F-MNIST CIFAR-10 CIFAR-100

# Data 15,000 30,000 30,000 15,000 30,000 30,000 10,000 25,000 25,000 10,000 25,000 25,000

Conf Model LeNet-5 LeNet-5 CLIP ViT-B-16 LeNet-5 LeNet-5 CLIP ViT-B-16 WRN-28-2 WRN-28-2 CLIP ViT-B-16 ResNet-18 ResNet-18 CLIP ViT-B-16

PConf 79.61±0.65 80.55±0.84 80.23±0.84 91.25±0.23 90.67±0.13 91.10±0.13 90.71±1.86 92.74±0.26 92.70±0.22 74.09±1.61 79.39±0.50 79.49±0.62

GLWS 79.52±0.56 80.09±0.36 79.89±0.56 92.22±0.06 91.95±0.16 92.05±0.09 95.31±0.13 96.84±0.12 96.93±0.14 83.70±0.13 86.62±0.18 87.24±0.13
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