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Completing Visual Objects via Bridging Generation and Segmentation
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Figure 1. Given an image with mutual-occluded objects, MaskComp effectively completes occluded objects achieving a layered image.

Abstract
This paper presents a novel approach to object
completion, with the primary goal of reconstruct-
ing a complete object from its partially visible
components. Our method, named MaskComp ,
delineates the completion process through itera-
tive stages of generation and segmentation. In
each iteration, the object mask is provided as an
additional condition to boost image generation,
and, in return, the generated images can lead to a
more accurate mask by fusing the segmentation
of images. We demonstrate that the combination
of one generation and one segmentation stage ef-
fectively functions as a mask denoiser. Through
alternation between the generation and segmen-
tation stages, the partial object mask is progres-
sively refined, providing precise shape guidance
and yielding superior object completion results.
Our experiments demonstrate the superiority of
MaskComp over existing approaches, e.g., Con-
trolNet and Stable Diffusion, establishing it as an
effective solution for object completion.

1. Introduction
In recent years, creative image editing has attracted substan-
tial attention and seen significant advancements. Recent
breakthroughs in image generation techniques have deliv-
ered impressive results across various image editing tasks,
including image inpainting (Xie et al., 2023), composition
(Yang et al., 2023a) and colorization (Chang et al., 2023).
However, another intriguing challenge lies in the domain of

object completion (Fig. 1). This task involves the restoration
of partially occluded objects within an image, representing
the image as a layered stack of objects and background,
which can potentially enable a number of more complicated
editing tasks such as object layer switching. Unlike other
conditional generation tasks, e.g., image inpainting, which
only generates and integrates complete objects into images,
object completion requires seamless alignment between the
generated content and the given partial object, which im-
poses more challenges to recover realistic and comprehen-
sive object shapes.

To guide the generative model in producing images accord-
ing to a specific shape, additional conditions can be incor-
porated (Koley et al., 2023; Yang et al., 2023b). Image
segmentation has been shown to be a critical technique for
enhancing the realism and stability of generative models by
providing pixel-level guidance during the synthesis process.
Recent research, as exemplified in the latest study by Zhang
et al. (Zhang et al., 2023), showcases that, by supplying
object segmentations as additional high-quality masks for
shaping the objects, it becomes possible to generate complex
images of remarkable fidelity.

In this paper, we present MaskComp, a novel approach that
bridges image generation and segmentation for effective
object completion. MaskComp is rooted in a fundamental
observation: the quality of the resulting image in the mask-
conditioned generation is directly influenced by the quality
of the conditioned mask (Zhang et al., 2023). That says
the more detailed the conditioned mask, the more realistic
the generated image. Based on this observation, unlike
prior object completion methods that solely rely on partially
visible objects for generating complete objects, MaskComp
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Complete MaskMask DenoisingOriginal Img.

Edited Img.

Figure 2. Illustration of iterative mask denoising (IMD). Starting from an initial partial object and its corresponding mask, IMD utilizes
alternating generation and segmentation stages to progressively refine the partial mask until it converges to the complete mask. With the
complete mask as the condition, the final complete object can be seamlessly generated.

introduces an additional mask condition combined with
an iterative mask denoising (IMD) process, progressively
refining the incomplete mask to provide comprehensive
shape guidance to object completion.

Our approach formulates the partial mask as a noisy form of
the complete mask and the IMD process is designed to itera-
tively denoise this noisy partial mask, eventually leading to
the attainment of the complete mask. As illustrated in Fig. 2,
each IMD step comprises two crucial stages: generation
and segmentation. The generation stage’s objective is to
produce complete object images conditioning on the visible
portion of the target object and an object mask. Meanwhile,
the segmentation stage is geared towards segmenting the
object mask within the generated images and aggregating
these segmented masks to obtain a superior mask that serves
as the condition for the subsequent IMD step. By seam-
lessly integrating the generation and segmentation stages,
we demonstrate that each IMD step effectively operates as
a mask-denoising mechanism, taking a partially observed
mask as input and yielding a progressively more complete
mask as output. Consequently, through this iterative mask
denoising process, the originally incomplete mask evolves
into a satisfactory complete object mask, enabling the gen-
eration of complete objects guided by this refined mask.

The effectiveness of MaskComp is demonstrated by its ca-
pacity to address scenarios involving heavily occluded ob-
jects and its ability to generate realistic object representa-
tions through the utilization of mask guidance. In contrast
to recent progress in the field of image generation research,
our contributions can be succinctly outlined as follows:

• We explore and unveil the benefits of incorporating ob-
ject masks into the object completion task. A novel ap-
proach, MaskComp, is proposed to seamlessly bridge
the generation and segmentation.

• We formulate the partial mask as a form of noisy com-

plete mask and introduce an iterative mask denoising
(IMD) process, consisting of alternating generation and
segmentation stages, to refine the object mask and thus
improve the object completion.

• We conduct extensive experiments for analysis and
comparison, the results of which indicate the strength
and robustness of MaskComp against previous meth-
ods, e.g., Stable Diffusion.

2. Related Works
Conditional image generation. Conditional image gener-
ation (Lee et al., 2022; Gafni et al., 2022; Li et al., 2023b)
involves the process of creating images based on specific
conditions. These conditions can take various forms, such
as layout (Li et al., 2020; Sun & Wu, 2019; Zhao et al.,
2019), sketch (Koley et al., 2023), or semantic masks (Gu
et al., 2019). For instance, Cascaded Diffusion Models
(Ho et al., 2022) utilize ImageNet class labels as condi-
tions, employing a two-stage pipeline of multiple diffusion
models to generate high-resolution images. Meanwhile, in
the work by (Sehwag et al., 2022), diffusion models are
guided to produce novel images from low-density regions
within the data manifold. Another noteworthy approach is
CLIP (Radford et al., 2021), which has gained widespread
adoption in guiding image generation in GANs using text
prompts (Galatolo et al., 2021; Gal et al., 2022; Zhou et al.,
2021b). In the realm of diffusion models, Semantic Diffu-
sion Guidance (Liu et al., 2023) explores a unified frame-
work for diffusion-based image generation with language,
image, or multi-modal conditions. Dhariwal et al. (Dhari-
wal & Nichol, 2021) employ an ablated diffusion model that
utilizes the gradients of a classifier to guide the diffusion
process, balancing diversity and fidelity. Furthermore, Ho
et al. (Ho & Salimans, 2022) introduce classifier-free guid-
ance in conditional diffusion models, incorporating score
estimates from both a conditional diffusion model and a
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jointly trained unconditional diffusion model.

Image segmentation. In the realm of image segmenta-
tion, traditional approaches have traditionally leaned on
domain-specific network architectures to tackle various seg-
mentation tasks, including semantic, instance, and panoptic
segmentation (Long et al., 2015; Chen et al., 2015; He et al.,
2017; Neven et al., 2019; Newell et al., 2017; Wang et al.,
2020b; Cheng et al., 2020; Wang et al., 2021; 2020a; Li
et al., 2023a). However, recent strides in transformer-based
methodologies, have highlighted the effectiveness of treat-
ing these tasks as mask classification challenges (Cheng
et al., 2021; Zhang et al., 2021; Cheng et al., 2022; Car-
ion et al., 2020). MaskFormer (Cheng et al., 2021) and
its enhanced variant (Cheng et al., 2022) have introduced
transformer-based architectures, coupling each mask pre-
diction with a learnable query. Unlike prior techniques that
learn semantic labels at the pixel level, they directly link
semantic labels with mask predictions through query-based
prediction. Notably, the Segment Anything Model (SAM)
(Kirillov et al., 2023) represents a cutting-edge segmentation
model that accommodates diverse visual and textual cues
for zero-shot object segmentation. Similarly, SEEM (Zou
et al., 2023) is another universal segmentation model that
extends its capabilities to include object referencing through
audio and scribble inputs. By leveraging those foundation
segmentation models, e.g., SAM and SEEM, a number of
downstream tasks can be boosted (Ma & Wang, 2023; Cen
et al., 2023; Yu et al., 2023).

3. MaskComp
3.1. Problem Definition and Key Insight

We address the object completion task, wherein the objective
is to predict the image of a complete object Ic ∈ R3×H×W ,
based on its visible (non-occluded) part Ip ∈ R3×H×W .

We first discuss the high-level idea of the proposed Iterative
Mask Denoising (IMD) and then illustrate the module de-
tails in Section 3.3 and Section 3.4. The core of IMD is
based on an essential observation: In the mask-conditioned
generation, the quality of the generated object is intricately
tied to the quality of the conditioned mask. As shown in
Fig. 3, we visualize the completion result of the same par-
tial object but with different conditioning masks. We no-
tice a more complete object mask condition will result in
a more complete and realistic object image. Based on this
observation, high-quality occluded object completion can
be achieved by providing a complete object mask as the
condition.

3.2. Iterative Mask Denoising

However, in real-world scenarios, the complete object mask
is not available. To address this problem, we propose the

Partial 
Object

Complete 
Object

Generated 
Image

Conditioned 
Mask

Partial Complete

Figure 3. Object completion with different mask conditions.

IMD process which leverages intertwined generation and
segmentation processes to approach the partial mask to the
complete mask gradually. Given a partially visible object
Ip and its corresponding partial mask Mp, the conventional
object completion task aims to find a generative model G
such that Ic ← G(Ip), where Ic is the complete object. Here,
we additionally add the partial mask Mp to the condition
Ic ← G(Ip,Mp), where Mp can be assumed as an addition
of the complete mask and a noise Mp = Mc + ∆. By
introducing a segmentation model S, we can find a mask
denoiser S ◦ G from the object completion model:

Mc ← S ◦ G(Ip,Mc +∆) (1)

where Mc = S(Ic). Starting from the visible mask M0 =
Mp, as shown in Fig. 2, we repeatedly apply the mask
denoiser S ◦ G to gradually approach the visible mask Mp

to complete mask Mc. In each step, the input mask is
denoised with a stack of generation and segmentation stages.
Specifically, as the S ◦ G(·) includes a generative process,
we can obtain a set of estimations of denoised mask {M (k)

t }.
Here, we utilize a function V(·) to find a more complete and
reasonable mask from the N sampled masks and leverage
it as the input mask for the next iteration to further denoise.
The updating rule can be written as:

M
(k)
t = S ◦ G(Ip, M̂t−1), M̂t = V(M (1)

t , · · · ,M (N)
t )

(2)
where N is the number of sampled images in each itera-
tion. With a satisfactory complete mask M̂T after T itera-
tions, the object completion can be achieved accordingly by
G(Ip, M̂T ). The mathematical explanation of the process
will be discussed in Section 3.5.

3.3. Generation Stage

We introduce CompNet as the generative model G which
aims to recover complete objects based on partial conditions.
We build CompNet based on popular ControlNet (Zhang
et al., 2023) while making fundamental modifications to
enable object completion. As shown in Table 1, the target
of ControlNet is to generate images strictly based on the
given conditions, i.e., Ip ← G(Ip,Mp), making it unable
to complete object. Differently, CompNet is designed to
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Figure 4. Illustration of CompNet (generation stage of MaskComp). The CompNet aims to recover the complete object Ic from the
partial object Ip and a mask M . An object encoder is utilized to extract partial token cp which is gated and fed to the ControlNet to form
the complete token cc. The complete token cc serves as the condition to the diffusion U-Net to guide the conditional denoising process. In
addition, a pre-diffusion mask is predicted from the partial token to encourage the object encoder to capture shape information.

Method Objective Objective with Segm. Object Comp.
ControlNet Ip ← G(Ip,Mp) Mp ← S ◦ G(Ip,Mp) %

CompNet Ic ← G(Ip,Mp) Mc ← S ◦ G(Ip,Mp) !

Table 1. Objective difference with ControlNet.

recover the object. With a segmentation network, it can
act as a mask denoiser to refine the conditioned mask, i.e.,
Mc ← S ◦ G(Ip,Mp).

Mask condition. As illustrated on the left side of Fig. 4,
we begin with a complete object Ic and its corresponding
mask Mc. Our approach commences by occluding the com-
plete object, retaining only the partially visible portion as
Ip. Recall that the mask-denoising procedure initiates with
the partial mask Mp and culminates with the complete mask
Mc. To facilitate this iterative denoising, the model must
effectively handle any mask that falls within the interpola-
tion between the initial partial mask and the target complete
mask. Consequently, we introduce a mask M with an occlu-
sion rate positioned between the partial and complete masks
as a conditioning factor for the generative model. During
training, we conduct the random occlusion process (detailed
in Appendix C) twice for each complete mask Mc. The
partial mask Mp is achieved by considering the occluded
areas in both occlusion processes. The interpolated mask
M is generated by using one of the occlusions.

Diffusion model. Diffusion models have achieved notable
progress in synthesizing unprecedented image quality and
have been successfully applied to many text-based image
generation works (Rombach et al., 2022; Zhang et al., 2023).
For our object completion task, the complete object can be
generated by leveraging the diffusion process.

Specifically, the diffusion model generates image latent
x by gradually reversing a Markov forward process. As
shown in Figure 4, starting from x0 = E(Ic), the for-

ward process yields a sequence of increasing noisy tokens
{xτ |τ ∈ [1, TG ]}, where xτ =

√
ᾱτy0+

√
1− ᾱτ ϵ, ϵ is the

Gaussian noise, and ατ decreases with the timestep τ . For
the denoising process, the diffusion model progressively de-
noises a noisy token from the last step given the conditions
c = (Ip,M,E) by minimizing the following loss function:
L = Eτ,x0,ϵ∥ϵθ(xτ , c, τ) − ϵ∥22. Ip, M , and E are the par-
tial object, conditioned mask, and text prompt respectively.

CompNet architecture. Previous work (Zhang et al., 2023)
has demonstrated an effective way to add additional control
to generative diffusion models. We follow this architecture
and make necessary modifications to adapt the architecture
to object completion. As shown in Fig. 4, given the visible
object Ip and the conditioning mask M , we first concatenate
them and extract the partial token cp with an object encoder.
Different from ControlNet (Zhang et al., 2023) assuming
the condition is accurate, the object completion task relies
on incomplete conditions. Specifically, in the early diffusion
steps, the condition information is vital to complete the ob-
ject. Nevertheless, in the later steps, inaccurate information
in the condition can degrade the generated object. To tackle
this problem, we introduce a time-variant gating operation
to adjust the importance of conditions in the diffusion steps.
We learn a linear transform f : RC → R1 upon the time
embedding et ∈ RC and then apply it to the partial token
as f(et) · cp before feeding it to the ControlNet. In this
way, the importance of visible features can be adjusted as
the diffusion steps forward. The time embedding used for
the gating operation is shared with the time embedding for
encoding the diffusion step in the stable diffusion.

To encourage the object encoder to capture shape informa-
tion, we introduce an auxiliary path to predict the complete
object mask from the partial token cp. Specifically, a feature
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(a) Illustration of the segmentation stage

Left leg Right leg

(b) Visualization of the mask probability map

Figure 5. We calculate the mask probability map by averaging and normalizing the masks of sampled images. We show a cross-section of
the lower leg to better visualize (shown as yellow).

pyramid network (Lin et al., 2017) is leveraged as the mask
decoder which takes cp and the multi-scale features from
the object encoder as input and outputs a pre-diffusion mask
Mpre. We encourage mask completion with supervision as

Lmask = Ldice(Mc,Mpre) + λceLce(Mc,Mpre) (3)

where Ldice and Lce are Dice loss (Li et al., 2019) and BCE
loss respectively. λce is a constant.

3.4. Segmentation Stage

In the segmentation stage, illustrated in Fig. 5 (a), our
approach initiates by sampling N images denoted as
{I(k)t }Nk=1 from the generative model, where t is the IMD
step. Subsequently, we employ an off-the-shelf object seg-
mentation model denoted as S(·) to obtain the shapes (object
masks) {M (k)

t } from these sampled images.

To derive an improved mask for the subsequent IMD step,
we seek a function V(·) that can produce a high-quality mask
prediction from the set of N generated masks. Interestingly,
though the distribution of sampled images is complex, we
notice the distribution of masks has good properties. In
Fig. 5 (b), we provide a visualization of the probability map
associated with a set of object masks with the same condi-
tions, which is computed by taking the normalized average
of the masks. To enhance the visualization of this proba-
bility distribution, we focus on a specific cross-section of
the fully occluded portion in image Ip (the lower leg, repre-
sented as a yellow section) and visualize the probability as a
function of the horizontal coordinate which demonstrates an
obvious unimodal and symmetric property. Leveraging this
observation, we can find an improved mask by taking the
high-probability region. The updating can be achieved by
conducting a voting process across the N estimated masks,
as defined by the following equation:

M̂t[i, j] =

{
1, if

∑N
k=1 M

(k)
t [i,j]

N ≥ τ

0, otherwise
(4)

where [i, j] denotes the coordinate, and τ is the threshold
employed for the mask voting process.

Complete MaskPartial Mask

Complete 
Object

Partial 
Object

𝑀

𝐼

Segmentation Stage
Generation Stage

Figure 6. Mutual-benificial sampling.

3.5. Discussion

In this section, we will omit the conditioned partial image
Ip for simplicity.

Joint modeling of mask and object. In practical sce-
narios where the complete object mask Mc is unavailable,
modeling object completion through a marginal probability
p(Ic|Mc) becomes infeasible. Instead, it necessitates the
more challenging joint modeling of objects and masks, de-
noted as p(I,M), where the images and masks can range
from partial to complete. Let us understand the joint distribu-
tion by exploring its marginals. Since the relation between
mask and image is one-to-many (each object image only
has one mask while the same mask can be segmented from
multiple images), the p(M |I) is actually a Dirac delta dis-
tribution δ and only the p(I|M) is a real distribution. This
way, the joint distribution of mask and image is discrete
and complex, making the modeling difficult. To address
this issue, we introduce a slack condition to the joint dis-
tribution p(I,M) that the mask and image can follow a
many-to-many relation, which makes its marginal p(M |I) a
real distribution and permits p(I|M) to predict image I that
has a different shape as the conditioned M and vice versa.

Mutual-beneficial sampling. After discussing the joint dis-
tribution that we are targeting, we introduce the mathemati-
cal explanation of MaskComp. MaskComp introduces the
alternating modeling of two marginal distributions p(I|M)
(generation stage) and p(M |I) (segmentation stage), which
is actually a Markov Chain Monte Carlo-like (MCMC-like)
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Method AHP (Zhou et al., 2021a) DYCE (Ehsani et al., 2018)
FID-G ↓ FID-S ↓ Rank ↓ Best ↑ FID-G ↓ FID-S ↓ Rank ↓ Best ↑

ControlNet 40.2 45.4 3.4 0.10 42.4 49.4 3.4 0.08
Kandinsky 2.1 43.9 39.2 3.2 0.11 44.3 47.7 3.4 0.06
Stable Diffusion 1.5 35.7 41.4 3.2 0.12 31.2 43.4 3.4 0.11
Stable Diffusion 2.1 30.8 39.9 3.1 0.14 30.0 41.1 3.0 0.12
MaskComp (Ours) 16.9 21.3 2.1 0.53 20.0 25.4 1.9 0.63

Table 2. Quantitative evaluation on object completion task. The computing of FID-G and FID-S only considers the object areas within
ground truth and foreground regions segmented by SAM, respectively, to eliminate the influence of the generated background. The Rank
denotes the average ranking in the user study. The Best denotes the percentage of samples that are ranked as the best. ↓ and ↑ denote the
smaller the better and the larger the better respectively.

MaskComp (Ours)SD 2.1SD 1.5Partial ObjectGT Object ControlNet Kandinsky

Figure 7. Qualitative comparison against ControlNet, Kandinsky and Stable Diffusion. The background is filtered out for better
visualization. More results are available in the Appendix.

process and more specifically Gibbs sampling-like. It sam-
ples the joint distribution p(I,M) by iterative sampling
from the marginal distributions. Two core insights are incor-
porated in MaskComp: (1) providing a mask as a condition
can effectively enhance object generation and (2) fusing
the mask of generated object images can result in a more
accurate and complete object mask. Based on these in-
sights, we train CompNet to maximize p(I|M) and leverage
mask voting to maximize the p(M |I). As shown in Fig. 6,
MaskComp develops a mutual-beneficial sampling process
from the joint distribution p(I,M), where the object mask
is provided to boost the image generation and, in return,
the generated images can lead to a more accurate mask by
fusing the segmentation of images. Through alternating
sampling from the marginal distributions, we can effectively
address the object completion task.

4. Experiment
4.1. Experimental Settings

Dataset. We evaluate MaskComp on two popular datasets:
AHP (Zhou et al., 2021a) and DYCE (Ehsani et al., 2018).
AHP is an amodal human perception dataset with 56,302
images with annotations of integrated humans. DYCE is a
synthetic dataset with photo-realistic images and the natural
configuration of objects in indoor scenes. For both datasets,
the non-occluded object and its corresponding mask for each
object are available. We train MaskComp on the AHP and a
filtered subset of OpenImage v6 (Kuznetsova et al., 2020).

OpenImage is a large-scale dataset offering heterogeneous
annotations. We select a subset of OpenImage that contains
429,358 objects as a training set of MaskComp.

Evaluation metrics. In accordance with previous methods
(Zhou et al., 2021a), we evaluate image generation qual-
ity Fréchet Inception Distance (FID). The background is
removed with object masks before evaluation. As the FID
score cannot reflect the object completeness, we further con-
duct a user study, leveraging human assessment to compare
the quality and completeness of images. During the assess-
ment, given a partial object, the participants are required to
rank the generated object from different methods based on
their completeness and quality. We calculate the averaged
ranking and the percentage of the image being ranked as the
first place as the metrics (details available in the Appendix).

Implementation details. For the generation stage, we train
the CompNet with frozen Stable Diffusion (Rombach et al.,
2022) on the AHP dataset for 50 epochs. The learning rate
is set for 1e-5. We adopt batchsize = 8 and an Adam
(Loshchilov & Hutter, 2017) optimizer. The image is re-
sized to 512 × 512 for both training and inference. The
object is cropped and resized to have the longest side 360
before sticking on the image. For a more generalized set-
ting, we train the CompNet on a subset of the OpenImage
(Kuznetsova et al., 2020) dataset for 36 epochs. We generate
text prompts using BLIP (Li et al., 2022) for all experiments
(prompts are necessary to train ControlNet). For the seg-
mentation stage, we leverage SAM (Kirillov et al., 2023) as
S(·). We vote mask with a threshold of τ = 0.5. During
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Mask Partial Intermed. Complete

FID 16.9 15.3 12.7

(a) Conditioned mask.

Occ. 20% 40 % 60 % 80%

FID 13.4 15.7 17.2 29.9

(b) Occlusion rate.

Comp. Gen. Segm. Total

Second 14.3 1.2 15.5

(c) Inference time.

Model Baseline MaskComp

FID 29.4 16.9

(d) Amodal baseline.

Table 3. Ablation of MaskComp on AHP dataset. We ablate (a) the different conditioning masks during inference, (b) the occlusion rate
during inference, (c) the inference time of each component in an IMD step, and (d) the performance compared with the amodal baseline.

Model CLIPSeg SEEM SAM

FID 19.9 18.1 16.9

(a) Segmentation model.

T 1 3 5 7

FID 24.7 19.4 16.9 16.1

(b) IMD step number.

N 4 5 6

FID 17.4 16.9 16.8

(c) # of sampled images.

Gating ! %

FID 16.9 18.2

(d) Condition gating.

Table 4. Design choices for IMD on AHP dataset. We ablate (a) the impact of different segmentation networks, (b) IMD step number,
(c) the number of sampled images in the segmentation stage, and (d) the gating operation in the CompNet.

inference, if no other specification, we conduct the IMD
process for 5 steps with N = 5 images for each step. We
give the class label as the text prompt to facilitate the Comp-
Net to effectively generate objects. All baseline methods are
given the same text prompts during the experiments. More
implementation details are available in the appendix. The
code will be made publicly available.

4.2. Main Results

Quantitative results. We compare the MaskComp with
state-of-the-art methods, ControlNet (Zhang et al., 2023),
Kandinsky 2.1 (Shakhmatov et al., 2023), Stable Diffusion
1.5 (Rombach et al., 2022) and Stable Diffusion 2.1 (Rom-
bach et al., 2022) on AHP (Zhou et al., 2021a) and DYCE
(Ehsani et al., 2018) dataset. The results in Table 2 indicate
that MaskComp consistently outperforms other methods, as
evidenced by its notably lower FID scores, signifying the
superior quality of its generated content. We conducted a
user study to evaluate object completeness in which par-
ticipants ranked images generated by different approaches.
MaskComp achieved an impressive average ranking of 2.1
and 1.9 on the AHP and DYCE datasets respectively. Fur-
thermore, MaskComp also generates the highest number of
images ranked as the most complete and realistic compared
to previous methods. We consider the introduced mask
condition and the proposed IMD process benefits the per-
formance of MaskComp, where the additional conditioned
mask provides robust shape guidance to the generation pro-
cess and the proposed iterative mask denoising process re-
fines the initial conditioned mask to a more complete shape,
further enhancing the generated image quality.

Qualitative results. We present visual comparisons among
ControlNet, Kandinsky 2.1, Stable Diffusion 1.5, and Sta-
ble Diffusion 2.1, illustrated in Fig. 7. Our visualizations
showcase MaskComp’s ability to produce realistic and com-
plete object images given partial images as the condition,
whereas previous approaches exhibit noticeable artifacts and
struggle to achieve realistic object completion. In addition,
without mask guidance, it is common for previous methods

to generate images that fail to align with the partial object.

4.3. Analysis

In this section, we provide an experimental analysis of
MaskComp. All the results are evaluated with GT masks to
filter out the background, i.e., FID-G.

Performance with different mask conditions. We evalu-
ated the quality of generated images when conditioned on
the same partial images along with three distinct types of
masks: (1) partial mask (mask of the partial image), (2) inter-
mediate mask (less occlusion than partial), and (3) complete
mask. As shown in Table 3a, the model achieves its highest
performance when it is conditioned with complete object
masks, whereas relying solely on partial masks yields less
optimal results. These results provide strong evidence that
the quality of the conditioned mask significantly influences
the quality of the generated images.

Performance with different occlusion rates. We perform
ablation studies to assess the resilience of MaskComp under
varying occlusion levels. As presented in Table 3b, we eval-
uate MaskComp at different occlusion levels (proportion of
the obscured area relative to the complete object) ranging
from 20% to 80%, and the results indicate that its perfor-
mance does not degrade significantly up to 60% occlusion.

Inference time. Table 3c reports the inference time of each
component in IMD (with a single NVIDIA V100 GPU).
Although MaskComp’s throughput is reduced due to the
inclusion of multiple diffusion processes in each IMD step,
it is capable of attaining a higher degree of accuracy in
visual object completion. Based on our empirical experi-
ments, reducing the number of diffusion steps during the
first few IMD steps can increase model speed without sacri-
ficing much performance. With this idea incorporated into
MaskComp, the average running time could be reduced to
2/3 of the original time with FID slightly increasing by 0.50.
While beyond the scope of this study, we expect more ad-
vanced techniques could be explored to optimize the tradeoff
between model speed and performance.
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Occluded 
Obj

GT Obj.

Pred. 
Obj.

Pred. 
Mask

Step 1 Step 2 Step 3 Step 4 Step 5

Figure 8. Visualization of the IMD process. For each step, we randomly demonstrate one generated image and the averaged mask for all
generated images. We omit the input mask which has the same shape as the input occluded object.

Noise degree Iter. 1 Iter. 3 Iter. 5 Iter. 7 Iter. 9

15% area 28.4 22.7 18.9 17.2 16.5
10% area 26.4 21.4 18.1 17.0 16.4
5% area 24.9 19.6 17.0 16.2 16.0
No noise 24.7 19.4 16.9 16.1 15.9

Table 5. Performance against segmentation errors on AHP dataset.

Comparison to amodal segmentation baseline. Amodal
segmentation has a similar objective to the proposed IMD
process. To demonstrate the effectiveness of MaskComp, we
construct an amodal baseline that generates amodal masks
from the SOTA amodal segmentation method (Tran et al.,
2022) and then utilize ControlNet to generate images based
on the amodal masks. s shown in Table 3d, we notice that
our method outperforms the amodal baseline by a consider-
able margin, which could be attributed to the strong mask
completion capability of the proposed IMD process.

Impact of different segmentation networks. We adopt
SAM to obtain object masks at the segmentation stage.
To study the impacts of different segmenters, we replace
SAM with two smaller segmentation networks, CLIPSeg
(Lüddecke & Ecker, 2022) and SEEM (Zou et al., 2023).
Table 4a shows that the FID score with CLIPSeg (19.9) is
slightly higher than with SAM (16.9), but remains com-
petitive against other state-of-the-art methods, e.g., Stable
Diffusion 2.1 (30.8 reported in Table 2). MaskComp is an
iterative mask denoising (IMD) process that progressively
refines a partial object mask to boost image generation. The
results support our hypothesis that the impact of the seg-
menter is modest.

Design choices in IMD. We conduct experiments to ablate
the design choices in IMD and their impacts on the com-
pletion performance. We first study the effect of IMD step
number. With a larger step number, IMD can better advance
the partial mask to the complete mask. As shown in Table 4b,
we notice that the image quality keeps increasing and slows
down at a step number of 5. In this way, we choose 5 as
our IMD step number. After that, we ablate the number of
sampled images in the segmentation stage in Table 4c. We

notice more sampled images generally leading to a better
performance. We leverage an image number of 5 with the
efficiency consideration. As we leverage the diffusion-based
method for image generation, we ablate the iterations for
the diffusion process. As shown in Table 4d, we notice the
gating operation improves the generation quality by 1.3 FID,
indicating the necessity of conditional gating.

Robustness to segmentation errors. We conduct experi-
ments to manually add random errors to masks. As shown
in Table 5, we ablate on the number of iterations and the
degree of segmentation error. We observe that segmentation
errors will increase the convergence iteration number while
not affecting the final performance significantly. As IMD
is a reciprocal process intended to provide effective control
for later-generated masks to be refined based on adaptive
feedback, mask errors are mitigated and not propagated.

Visualization of iterative mask denoising. To provide a
clearer depiction of the IMD process, as depicted in Fig. 8,
we present visualizations of the generated image and the
averaged mask for each step. In the initial step, we observe
the emergence of artifacts alongside the object. As we
progress through the steps, both the image and mask quality
exhibit continuous improvement.

5. Conclusion
In this paper, we introduce MaskComp, a novel approach for
object completion. MaskComp addresses the object comple-
tion task by seamlessly integrating conditional generation
and segmentation, capitalizing on the crucial observation
that the quality of generated objects is intricately tied to the
quality of the conditioned masks. We augment the object
completion process with an additional mask condition and
propose an iterative mask denoising (IMD) process. This
iterative approach gradually refines the partial object mask,
ultimately leading to the generation of satisfactory objects
by leveraging the complete mask as a guiding condition.
Our extensive experiments demonstrate the robustness and
effectiveness of MaskComp, particularly in challenging sce-
narios involving heavily occluded objects.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. More Experiments
In this section, we provide more ablation experiments and analysis of MaskComp. We conducted ablation experiments to
determine the design choice in the segmentation stage.

Iter 20 40 50

FID 16.9 15.7 15.1

(a) Iteration for diffusion.

Occ. Rectangle Oval Object

FID 15.3 15.1 16.9

(b) Occlusion type.

Comp. ! %

FID 16.9 19.4

(c) Availablility of complete object.

Strategy Logits (V) Logits (M) Mask (V) Mask (M)

FID 16.9 17.2 17.6 17.0

(d) Voting strategies.

Lmask ! %

FID 16.9 17.7

(e) Mask loss.

Table 6. More ablation of MaskComp. We report the performance with the AHP dataset. (a) We ablate the iteration number of the
diffusion model. (b) We report the performance with different types of occlusion. (c) We report the performance of MaskComp trained
with or without the complete objects. (d) We ablate voting strategies. V: voting. M: Mean. (e) We ablate the effectiveness of adding
intermediate supervision to predict the complete mask.

Iteration for diffusion model. Since the number of diffusion steps has a large impact on the inference speed, we conduct
the ablation studies about iteration steps for the diffusion process in Table 6a. We notice a larger diffusion step will lead to a
better performance. After the number of diffusion steps is larger than 40, the performance improvement becomes slow.

Occlusion type To understand the influence of occlusion type, we conduct an ablation study as shown in Table 6b. Three
types of occlusion types are employed. Specifically, the occlusions are randomly generated by controlling the size and
location. For object occlusion, we occlude the object by the mask of itself. We notice that the occlusion with a more
complicated object shape will impose more challenges on the proposed model.

Availability of complete objects during training Occlusion is a prevalent occurrence in images, posing a significant
challenge for object completion, primarily due to the unavailability of ground-truth complete objects. This motivates us to
investigate the performance of MaskComp without ground-truth complete objects during training. As MaskComp relies
on a mask denoising process that does not necessarily request the complete objects during training, it is possible to adapt
MaskComp to the scenarios without complete objects available during training. As shown in Table 6c, we report the
performance on AHP dataset with the models trained on AHP (with complete objects) and OpenImage (without complete
objects) respectively. We notice that the performance of MaskComp trained on OpenImage is just slightly lower than that
trained with AHP dataset, indicating that MaskComp has the potential to be adapted to the scenarios without ground-truth
complete objects. More qualitative comparisons are available in the Section B.

Voting strategies. To investigate the impact of different voting strategies in the segmentation stage, we conduct experiments
to evaluate different voting approaches as shown in Table 6d. We notice voting with logits achieves the best performance.
The current design choice of using SAM and voting with logits is based on the ablation results.

Mask loss. We leverage auxiliary mask prediction from the partial token cp to encourage the object encoder to capture
object shape information. As shown in Table 6e, we ablate the effectiveness of adding additional mask supervision. The
results indicate that the incorporation of mask prediction can benefit the final object completion performance.

B. More Discussion
Image diffusion v.s. Mask denoising. During the training of the image diffusion model, Gaussian noise is introduced to
the original image. A denoising U-Net is then trained to predict this noise and subsequently recover the image to its clean
state during inference.
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Type Noise Network Target
Image diffusion Gaussion UNet Predict added noise
Mask denoising Occlusion Mask denoiser S ◦ G(·) Predict denoised mask

Table 7. Analogy between image diffusion and mask denoising.

Similarly, in the context of the proposed iterative mask denoising (IMD) process, we manually occlude the complete object
(which can be assumed as adding noise) and train a generative model to recover the complete object. During inference,
as shown in Eq. (1), we employ an iterative approach that combines the segmentation and generation model S ◦ G(·)
functioning as a denoiser. This denoiser progressively denoises the partial mask to achieve a complete mask, following a
similar principle to the denoising diffusion process. By drawing parallels between image diffusion and mask denoising, we
establish an analogy, as depicted in Table 7. We can notice that the mask-denoising process shares the spirits of the image
diffusion process and the only difference is that mask denoising does not explicitly calculate the added noise but directly
predicts the denoised mask. In this way, MaskComp can be assumed as a double-loop denoising process with an inner loop
for image denoising and an outer loop for mask denoising.

Im
ag

e
M

as
k

Input Step 1 Step 2 Step 3 Step 4 Step 5

Figure 9. Visualization of IMD process with model trained without complete objects. To better visualize the iterative mask denoising
process, we denote the overlapping masked area from the last iteration as orange. We can notice that the object shape is gradually refined
and converged to a complete shape.

Training without complete object. In the context of image diffusion, though multiple forward steps are involved to
add noise to the image, the network only learns to predict the noise added in a single step during training. Therefore, if
we possess a set of noisy images generated through forward steps, the original image is not required during the training.
This motivates us to explore the feasibility of training MaskComp without relying on the complete mask. Similar to image
diffusion, given a partial mask, we can further occlude it and learn to predict the partial mask before further occlusion.
In this way, MaskComp can be leveraged in a more generic scenario without the strict demand for complete objects. We
have discussed the quantitative results in Section 4.3. Here, we visualize the IMD process with a model trained without
complete objects (on OpenImage). To better visualize the object shape updating, we denote the overlapping masked area
from the last step as orange. We can notice that the object shape gradually refines and converges to the complete shape as
the IMD process forwards. Interestingly, the IMD process can learn to complete the object even if only a small portion of
the complete object was available in the dataset during the training. We consider this property to make it possible to further
generalize MaskComp to the scenarios in which a complete object is not available.

What will the marginal distribution p(I|M) and p(M |I) be like without the slack condition? The relation between
mask and object image is one-to-many. The p(I|M) models a filling color operation that paints the color within the given
mask area. And as each object image only corresponds to one mask, the p(M |I) is a deterministic process that can be
modeled by a delta function δ. Previous methods generally leverage the unslacked setting. For example, the ControlNet
assumes the given mask condition can accurately reflect the object shape and therefore, it can learn to fill colors to the
masked regions.
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Figure 12. Illustation of potential application.
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Figure 10. Distribution of image and mask.

Analysis of the aggregation among masks. Given a
partial object Ip, the generation model samples from a
distribution that contains both realistic and unrealistic
images. As shown in Fig. 10, the image distribution is
typically complex and the expectation cannot represent
a realistic image. However, when we consider the
shape of the generated images, we are excited to find
that the expectation leads to a more realistic shape. We
consider this observation interesting as, for most of the
other generation tasks (non-conditioned), averaging the object shape will just yield an unrealistic random shape. This
observation serves as one of our core observations to build the IMD process. Here, SAM serves as the tool to extract the
object shape and voting is a way to binarize the expectation of object shapes to a binary mask.

Potential applications. Object completion is a fundamental technique that can boost a number of applications. For
example, a straightforward application is the image editing. With the object completion, we can modify the layer of the
objects in an image as we modify the components in the PowerPoint. It is possible to bring forward and edit objects as
shown in Fig. 12. In addition, object completion is also an important technique for data augmentation. We hope MaskComp
can shed light on more applications leveraging object completion.

Figure 11. BG objects.

Background objects in the generated images. The training of CompNet aims to learn
an intra-object correlation. We leverage a black background to eliminate the influence of
background objects. However, we notice that even if we train the network with the black
background as ground truth, it is still possible to generate irrelevant objects in the background.
As shown in Fig. 11, we visualize an image that generates a leather bag near the women. We
consider the generated background object can result from the learned inter-object correlation
from the frozen Stable Diffusion model (Rombach et al., 2022). As the generated background
object typically will not be segmented in the segmentation stage, it will not influence the
performance of MaskComp.

C. More Experiments

Complete Object Partial Object MaskComp
Figure 14. Failure case.

Failure case analysis. We present a failure case in Fig. 14,
where MaskComp exhibits a misunderstanding of the pose
of a person bending over, resulting in the generation of a hat
at the waist. We attribute this generation of an unrealistic
image to the uncommon pose of the partial human. Given that
the majority of individuals in the AHP training set have their
heads up and feet down, MaskComp may have a tendency
to generate images in this typical position. We consider that
with a more diverse dataset, including images of individuals in unusual poses, MaskComp could potentially yield superior
results in handling similar cases.
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Condition Generated Image SAM Mask
Figure 15. Visualization of the intermediate stage in IMD.

Impact of segmentation errors in intermediate stages.
Despite the robust capabilities of the CompNet and SAM
models, they can still generate low-quality images and in-
accurate segmentation results. In Fig. 15, we show a case
where the intermediate stage of IMD produces a human with
an extra right arm. To address this, we implement three key
strategies: (1) Error Mitigation during Segmentation with
SAM: As shown in Fig. 15, SAM effectively filters out in-
correctly predicted components, such as a misidentified right
arm, resulting in a more coherent shape for subsequent iterations. SAM’s robust instance understanding capability extends to
not only accurately segmenting objects with regular shapes but also filtering out irrelevant parts when additional objects/parts
are generated. (2) Error Suppression through Mask Voting: In cases where only a few generated images exhibit errors,
the impact of these errors can be mitigated through mask voting. The generated images are converted to masks, and if only a
minority displays errors, their influence is diminished through the voting operation. (3) Error Tolerance in IMD Iteration:
We train the CompNet to handle a wide range of occluded masks. Consequently, if the conditioned mask undergoes minimal
improvement or degradation due to the noises in a given iteration, it can still be improved in the subsequent iteration. While
this may slightly extend the convergence time, it is not anticipated to have a significant impact on the ultimate image quality.

More implementation details. We leverage two types of occlusion strategies during the training of CompNet. First, we
randomly sample a point on the object region, and then randomly occlude a rectangle area with the sampled point as the
centroid. The width and height of the rectangle are determined by the width and height of the bounding box of the ground
truth object. We uniformly sample a ratio within [0.2, 0.9] and apply it to the ground truth width and height to occlude the
object. Second, we randomly occlude the object by shifting its mask. Specifically, we randomly shift its mask by a range of
[0.17, 0.25] and occluded the region within the shifted mask. We equally leverage these two occlusion strategies during
training. For the object encoder to extract partial token cp in the CompNet, we utilize a Swin-Transformer (Liu et al., 2021)
pre-trained on ImageNet (Deng et al., 2009) with an additional convolution layer to accept the concatenation of mask and
image as input. We initialize the CompNet with the pre-trained weight of ControlNet with additional mask conditions. To
segment objects in the segmentation stage, we give a mix of box and point prompts to the Segment Anything Model (SAM).
Specifically, we uniformly sample three points from the partial object as the point prompts and we leverage an extended
bounding box of the partial object as the box prompts. We also add negative point prompts at the corners of the box to
further improve the segmentation quality.

More visualization. As shown in Fig. 13, we provide more qualitative comparisons with Stable Diffusion (Rombach
et al., 2022). We notice that Stable Diffusion tends to complete irrelevant objects to the complete parts and thus leads to an
unrealism of objects. Instead, MaskComp is guided by a mask shape and successfully captures the correct object shape thus
achieving superior results.

Details of user study. There are 16 participants in the user study. All participants have relevant knowledge to understand
the task. During the assessment, each participant is provided with instructions and an example to understand the task. We
show an example of the images presented during the user study as Fig. 16 and Fig. 17. We list the instructions as follows.

Task: Given the partial object (lower left), generate the complete object (upper left).

Instruction:

• Ranking images 1-5, put the best on the left and the worst on the right.

• Please focus on the foreground object and ignore the difference presented in the background.

• Original image is provided as a good example.

• The criteria for ranking are founded on object quality, encompassing aspects such as completeness, realism, sharpness,
and more.

• It must be strictly ordered (no tie).

• Please rank the image in the following form: 1;2;3;4;5 or 5;4;3;2;1 (Use a colon to separate, no space at the beginning)

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Completing Visual Objects via Bridging Generation and Segmentation

MaskComp (Ours)Stable Diffusion 2.1Stable Diffusion 1.5Partial ObjectComplete Object (GT)

Figure 13. More qualitative comparison with Stable Diffusion (Rombach et al., 2022).
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Figure 16. Examples presented during the user study.
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Figure 17. Examples presented during the user study.

18


