
Carnegie Mellon University

Computational Audition
with Imprecise Labels

Ankit Parag Shah
CMU-LTI-24-018

October, 2024

Language Technologies Institute
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis committee:
Prof. Bhiksha Raj (Chair)

Prof. Rita Singh (Co-Chair)
Prof. Shinji Watanabe

Dr. Anurag Kumar, Meta
Dr. Jonathan Le Roux, MERL

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in Language and Information Technology.

Copyright ©2024 Ankit Parag Shah

Keywords: Audio Understanding, Computational Audition, Machine Listening,
Imprecise Label learning, Weak Label learning, Artificial Intelligence

i

Acknowledgement

First and foremost, I would like to express my deepest gratitude to my advisors,
Professor Bhiksha Raj and Professor Rita Singh, for their invaluable guidance, support,
and encouragement throughout the course of my doctoral journey. Their expertise,
patience, and insightful feedback have been instrumental in shaping this work and my
academic growth. Professor Bhiksha Raj’s mentorship has been a steadfast source of
inspiration for over a decade—starting from the early days at the NITK CMU Winter-
school to guiding me through every step of the Ph.D. program. His unwavering belief
in my abilities, generous sharing of knowledge, and consistent mentorship transformed
countless challenges into opportunities for personal growth. He provided not only
technical expertise but also the confidence and perspective needed to keep pushing
boundaries. Professor Rita Singh’s incisive and constructive feedback challenged me
to refine my ideas, improve my rigor, and never settle for less than my best. Her high
standards and insightful perspectives have made me a more thorough researcher, while
her motivational support helped me maintain resilience during the most demanding
phases of the project.

I would also like to express my sincere gratitude to my thesis committee members,
Anurag Kumar, Prof. Shinji Watanabe and Dr. Jonathan LeRoux. I am indebted
for their valuable feedback, comments, and technical discussions on my dissertation.
Professor Shinji Watanabe’s feedback on my presentations, as well as the resources
and guidance he provided, significantly helped me hone my communication skills. His
influence extended beyond the research itself, playing a key role in shaping my ability
to effectively convey complex ideas and become a more confident and articulate commu-
nicator. Dr. Jonathan LeRoux’s critical insights and thorough questions prompted me
to delve deeper, ensuring a more robust and substantial body of work. Anurag Kumar’s
timely inputs and constructive suggestions enriched both the content and the scope
of my research. Their collective wisdom has not only improved this dissertation but
will continue to guide my future research endeavors. I extend my heartfelt thanks to
Professor Alexander Hauptmann, whose mentorship and support during my Master’s
degree enabled me to pursue research in Language Technologies and multimedia analysis.
His advice and feedback have had a lasting impact on my research journey.

I am blessed to have my family’s unwavering support. To my parents, Parag and
Ragini Shah: you have been my backbone throughout this journey, making incredible
sacrifices to ensure my success. Your unwavering love and confidence in my abilities
have sustained me during challenging times. I am forever indebted to you.

I am grateful to the Language Technologies Institute (LTI) at Carnegie Mellon
University for providing a vibrant and intellectually stimulating environment to conduct
my research. Special thanks are due to Stacey Young, Kate Schaich, and Nick Hernandez
for their unwavering support with administrative tasks, paperwork, and visa-related
matters. Their efficient handling of logistics allowed me to focus on my research,
reducing stress and making my doctoral experience much smoother.

A big thank you goes to my colleagues and collaborators, including the members
of the Robust Audio and Speech Processing Lab, for their camaraderie, insightful
discussions, and unwavering support. Working alongside such talented individuals has

i

ii

been a privilege and a source of inspiration. Many thanks to Anurag Kumar, Benjamin
Elizalde, Chirag Nagpal, Hao Chen, Roshan Sharma, Hira Dhamyal, Muhammad Ahmed
Shah, Yang Gao, Yandong Wen, Raphael Oliver, Rohan Badlani, Mahmoud Alismail,
Soham Deshmukh, Oscar Chang, Justin Salamon, Romain Serizel, Nicolas Turpault,
Olivier Siohan, Chiori Hori, Taakaki Hori, Dmitriy Serdyuk, Avner May, and many
others for their invaluable collaborations, feedback, and encouragement over the years.

Reflecting on this journey, it feels apt to remember that, “Success is not final, failure
is not fatal: it is the courage to continue that counts.” The Ph.D. path is filled with
moments when the work seems impossible. Yet, as Nelson Mandela said, “It always
seems impossible until it’s done.” What once felt out of reach eventually became a
reality, thanks to the guidance, patience, and encouragement of those who supported
me. Over the years, I have grown from a curious student into a confident researcher
who is ready to embrace the next challenge. I have learned that perseverance, resilience,
and the willingness to learn from one’s mentors and peers are what truly define success
in the realm of research.

ii

iii

Abstract

Sounds are essential to our physical environment and play a critical role in allowing
us to interact with it effectively. Throughout our lives, we develop the ability to
interpret and understand the myriad sounds surrounding us, allowing us to navigate
and function seamlessly within our environments. The goal of computational audio
processing or computational audition is to accurately emulate this ability of the human
brain (and even that of animals). At the broadest level, this thesis explores the challenge
of teaching machines to interpret and understand the acoustic landscape.

For machines to accurately interpret the acoustic environment, they must be able
to distinguish all types of sounds. However, the range of possible sounds in this world
is vast and their complete variety is unknown. Current audio understanding and
interpretation approaches are constrained to recognizing a limited subset of “known”
sounds (or sound events) in digital audio recordings. Even within the subset of known
sounds, current modeling approaches for detecting and interpreting them require large
labeled datasets to achieve good performance. In real-world scenarios, the scarcity of
labeled data often hampers the effectiveness of supervised learning algorithms, limiting
their scalability and applicability.

A central contribution of this thesis is the development of methods for detecting
known sound events without the need for extensive and accurately labeled data. Models
trained in the absence of accurately labeled data often perform suboptimally, regardless
of the size of the dataset used. This work addresses the problem of formulating effective
strategies for modeling sound with imprecisely labeled training data. In other words,
we address the problem of building accurate models from weakly labeled data. The
term weak labels also refers to labels that only indicate the presence or absence of an
event without specifying the exact temporal boundaries of an event.

Accurate labeling of large datasets is both time-consuming and costly and is sen-
sitive to human judgment, thus requiring trained annotators with domain knowledge.
Unfortunately, large training datasets almost always contain examples with inaccurate
or imprecise labels. Inaccurate labels are also called “noisy” labels. Algorithms trained
using noisy labels typically underperform in detection tasks. In addition to label noise,
which comprises inaccuracies in label identity and quality, there are often also additional
sources of noise that result in the degradation of model performance. These stem from
poor signal quality, which can result from many factors (e.g., coding, channel, and
transmission errors). In the presence of weak labels and signal noise, we encounter a
paradoxical situation where providing more data to deep networks or other data-driven
learning frameworks actually degrades performance and introduces biases that are
essentially tantamount to memorizing training label noise patterns.

One of the solutions explored in this thesis is to strengthen the available annotations.
However, it is also equally, if not more important to develop techniques that impose
less stringent labeling requirements on training data, while allowing the models to learn
better. For the large part, we focus on these in our work. Our specific strategies include
the following:

iii

iv

1. Studying the effects of label noise, label corruption, and label density in the
process of learning with weak labels.

2. Building a novel co-training approach to learn sound events from the web (internet)
data without any human labeling (we show that our solution results in significant
improvement over models that are trained directly with weakly labeled data).

3. Developing strategies to exploit additional cues that add negligible annotation
or computational overhead. Examples of such cues are counts of sound events,
proportions of the sound events (in terms of occurrence), duration of sound events,
etc. We refer to such cue-strengthened labels as semi-weak labels.

4. Developing strategies based on the notion of negatives for sound labels (weak
or strong), including exploiting all available information in the recording to
complement or contrast the target label.

5. Improving audio segmentation using imprecise labels.

6. Examining the importance of the proximity of counts in a bag for semi-weak label
learning by controlled factoring of the distribution of the count of weak labels, we
examine how such factoring of the recordings influences learning.

As a final major advancement in this thesis, we also address the problem of learning
without labels. We devise a novel method to perform unsupervised adaptation on
multimedia datasets as a partial solution to this problem. The strategy we propose also
generates new labels for the data, using which we are in the process of creating what
we believe is currently the largest dataset of sound events with labels that have been
computed in a completely unsupervised fashion.

Furthermore, we explore the feasibility of devising a unified framework to encapsulate
all aforementioned approaches, namely learning with weak labels, learning without labels,
combining weak and strong labels, using weak labels with additional cues (semi-weak),
learning in the presence of noise, etc. In this unified framework, all these strategies will
become special cases that can be invoked as necessary during the modeling.

This thesis establishes a robust and coherent foundation for future research in
computational audition, offering innovative approaches for modeling and understanding
the world of sounds under varying degrees of label precision, label quantity, and data
quality.

iv

Contents

Acknowledgement i

Abstract iii

1 Introduction 1
1.1 Organization of the Thesis . 4

Section II: NELS and DCASE 8

2 Never Ending Learner of Sound 9
2.1 Prior work on sound recognition and understanding 10
2.2 Learning associations between sounds and language 10

2.2.1 Relation between sounds and language 11
2.3 Continuously growing acoustic vocabularies 12
2.4 Improving the robustness of sound recognizers 12

2.4.1 Continuous semi-supervised learning of sounds. 13
2.5 NELS Framework . 14

2.5.1 Crawl . 14
2.5.2 Hear & Learn . 15

2.6 Evaluation in the absence of prior knowledge 16
2.6.1 Search . 17
2.6.2 Evaluation of the learning quality 17

2.7 Discussion . 18
2.8 Key Discoveries during building NELS 19

3 DCASE: Detecting Scenes and Events 20
3.1 Tasks in DCASE Challenge . 21

3.1.1 Task 1: Acoustic Scene Classification 21

v

vi CONTENTS

3.1.2 Task 2: Unsupervised Anomalous Sound Detection for Machine
Condition Monitoring Applying Domain Generalization Techniques 23

3.1.3 Task 3: Sound Event Localization and Detection Evaluated in
Real Spatial Sound Scenes . 24

3.1.4 Task 4: Sound Event Detection in Domestic Environments . . . 25
3.1.5 Task 5: Few-shot Bioacoustic Event Detection 27
3.1.6 Task 6: Automated Audio Captioning and Language-Based Audio

Retrieval . 28
3.1.6.1 Automated Audio Captioning 28
3.1.6.2 Language Based Audio Retrieval 28

3.2 Contribution to DCASE Challenge: Task 1 – Acoustic Scene Classification 28
3.2.1 Feature Representations . 28
3.2.2 Classification . 30
3.2.3 Results . 30

3.3 Contribution to DCASE Challenge: Task 3 – Sound Event Detection in
Real-Life Recordings . 30
3.3.1 Features and Classifiers Optimization 31
3.3.2 Inclusion of Generic Sound Event Class 32
3.3.3 Generation of data through perturbation 33
3.3.4 Sound event detection and submission systems 34
3.3.5 Conclusion from Acoustic scene classification 34

3.4 Contribution to DCASE Task 4: Sound event detection using weak labels 35
3.4.1 Task description . 37
3.4.2 DESED development dataset 37

3.4.2.1 Synthetic soundscape generation procedure 38
3.4.3 DESED evaluation dataset . 38

3.4.3.1 Real recordings . 38
3.4.3.2 Synthetic soundscapes 39
3.4.3.3 Varying foreground-to-background SNR 40
3.4.3.4 Audio degradation . 40
3.4.3.5 Varying onset time . 40
3.4.3.6 Long sound events vs. short sound events 40

3.4.4 Baseline . 41
3.4.5 Submission evaluation . 41

3.4.5.1 Evaluation metrics . 42
3.4.5.2 System performance 42
3.4.5.3 Conclusion from DCASE Task 4 Analysis 43

vi

vii CONTENTS

3.4.6 Data augmentation: Additional experiments 43
3.4.6.1 Varying foreground-to-background SNR 44
3.4.6.2 Audio degradation . 45
3.4.6.3 Varying onset time . 45
3.4.6.4 Long sound events vs. short sound events 45

3.4.7 Evaluation metrics . 46
3.4.8 Robustness to noise and degradations 46
3.4.9 Simulated degradations . 46

3.4.9.1 Foreground-to-background Signal-to-noise ratio 47
3.5 Segmentation . 48
3.6 Key insights . 50

Section III: Training models with weak labels 52

4 Learning from weak labels 54
4.1 Background - Importance of Weak labels 54
4.2 CNN for Weakly labeled audio . 56

4.2.1 Characteristics of WalNet . 57
4.3 Label Noise, Label Density, and Corresponding Experimental Designs . 57

4.3.1 Labels Density . 57
4.3.2 Corrupted Labels and Noise . 59
4.3.3 Weakly Labeled Audio In the Wild 59

4.4 Experiments and Results . 60
4.4.1 Dataset . 60
4.4.2 Acoustic Features, Implementation and Evaluation Metrics . . . 60
4.4.3 Audioset Performance . 61
4.4.4 Analysis of Label Density . 61
4.4.5 Analysis of Labels Corruption 62
4.4.6 Weakly Labeled Audio in the Wild 63

4.5 Conclusion . 64
4.6 Appendix . 64

4.6.1 CNN Architecture . 64
4.6.2 Multi-Label Training for WAL-Net 66

4.7 Datasets . 68
4.7.1 Audioset . 68
4.7.2 YouTube-Wild . 69

vii

viii CONTENTS

5 Learning from noisy and web data 71
5.1 Motivation: Why deal with noisy and web data 71

5.1.1 Challenges in Webly Labeled Learning 72
5.2 Webly Labeled Learning of Sounds . 73

5.2.1 Webly Labeled Training Data 73
5.2.1.1 Obtaining Webly Labeled Data 74
5.2.1.2 Analysis of the Dataset 74

5.2.2 Our Approach: WeblyNet . 75
5.2.2.1 Two Views of the Data 77
5.2.2.2 Network Architectures: N1 and N2 78
5.2.2.3 Training WeblyNet . 78

5.3 Experiments and Results . 79
5.3.1 Full AudioSet performance . 80
5.3.2 Evaluation of Webly Supervised Learning 81

5.3.2.1 Comparison with manual labeling. 82
5.3.2.2 Class specific results. 82
5.3.2.3 Effect of divergence measure. 83

5.4 Conclusions . 83

6 Semi weak label learning 84
6.1 Exploiting Additional Cues with weak labels 84
6.2 Related Work . 86

6.2.1 Multiple Instance Learning . 86
6.2.2 Learning from Proportions . 87

6.3 Problem Statement . 88
6.3.1 A General Loss Function . 88

6.4 Preliminary: DLLP Approach . 89
6.5 Proposed Methods: Two-Stage Framework 90

6.5.1 Stage-1: Estimating Class Count 90
6.5.1.1 Poisson Loss and Expected Count 90
6.5.1.2 Estimating Class Count 91

6.5.2 Stage-2: Estimation of the Instance Label (Decoder) 91
6.5.3 Algorithm: Greedy algorithm to obtain exact count and Semi-

Weak Label Classification System 92
6.6 Experiments and Results . 93

6.6.1 Datasets . 93
6.6.2 Architecture . 94
6.6.3 Baselines . 95

viii

ix CONTENTS

6.6.4 Evaluation . 95
6.6.5 Baseline Results . 96
6.6.6 Ablation Study for the Decoder 97
6.6.7 Variation with the Number of Training Samples 98
6.6.8 Variation with the Batch Sizes and Architectures 98
6.6.9 Effectiveness of Different Regression Losses 99
6.6.10 Effect of Regularizer with Sparse Bags 99
6.6.11 Performances over Different Bag Sizes 99
6.6.12 Comparison with Different Distribution 100
6.6.13 Example of Count assignment optimization 100

6.7 Using Semi Weak labels for Sound event detection 100
6.7.1 Thresholding the Event Presence Map 101
6.7.2 Median Filtering . 101
6.7.3 Counting Event Occurrences . 102
6.7.4 Incorporating the Count Loss 102
6.7.5 Results . 102

6.8 Conclusion . 102

Section IV: Enriching Weakly Supervised Learning 104

7 Importance of sampling negative in weak labels 105
7.1 Problem: Sampling of negatives in weak labels 105
7.2 Related work on Negative Sampling . 107

7.2.1 Active Learning . 107
7.2.2 Weak Label Learning . 107
7.2.3 Negative Sampling . 108

7.3 Baseline Selection . 108
7.3.1 Image Bag Classification . 108
7.3.2 Audio Classification . 109

7.4 Experiments Results . 111
7.4.1 Image Bag Classification . 111
7.4.2 Audio Classification . 114

7.5 Conclusion . 114

8 Learning with Ontologies 117
8.1 Importance of Utilizing Ontologies . 118
8.2 Methods . 119

8.2.1 Dataset and Ontology . 119

ix

x CONTENTS

8.2.2 Framework . 120
8.2.3 MLP Network without Ontology Information 120
8.2.4 Twin Neural Network Model with Ontology-based embeddings

and Ontological layer . 121
8.2.5 Graph Convolutional Network 122

8.2.5.1 Correlation Matrix . 123
8.2.6 Siamese Network with Graph Convolutional Network 123

8.3 Experiments . 124
8.3.1 Evaluation Metrics . 124
8.3.2 Performance of MLP Model with no Ontology Information . . . 125
8.3.3 Performance of Siamese Network with Ontological Layer 125
8.3.4 Performance of Siamese-GCN Model 125
8.3.5 Performance of MLP-GCN Model 126

8.4 Hyperparameters . 128
8.4.1 MLP Model with no Ontology Information 128
8.4.2 Siamese with Ontology Layer 128
8.4.3 Siamese-GCN . 128
8.4.4 MLP-GCN . 129
8.4.5 Overall Observations . 129

8.5 Conclusions . 129

Section V: Unified Formalism 131

9 Imprecise Label Learning 132
9.1 Introduction . 133
9.2 Labeling scenarios and their distribution 135

9.2.1 Illustrative Example . 136
9.2.1.1 Positive Bag (Weak Label) 136
9.2.1.2 Bag with a Given Positive Instance Count 136
9.2.1.3 Key Insight . 137

9.2.2 Labels With Uncertainty (Probabilistic Confidence Scores) . . . 137
9.2.2.1 Scenario . 137
9.2.2.2 Distribution Over Label Configurations 138
9.2.2.3 Benefits . 138

9.2.3 Labels With Noise . 139
9.2.3.1 Scenario . 139
9.2.3.2 Modeling Noise . 139
9.2.3.3 Inference With a Noise Model 140

x

xi CONTENTS

9.2.4 Strong Labels (Perfect Information) 140
9.2.4.1 Scenario . 140

9.3 Basic EM formulation . 141
9.4 IID observations . 142
9.5 Generalizing . 145
9.6 Baselines solutions from different imprecise label settings 146
9.7 Imprecise Label Learning . 148

9.7.1 A Unified Framework for Learning with Imprecise Labels 148
9.7.2 Instantiating the Unified EM Formulation 150

9.8 Experiments . 153
9.8.1 Partial Label Learning . 153
9.8.2 Semi-Supervised Learning . 154
9.8.3 Noisy Label Learning . 155
9.8.4 Mixed Imprecise Label Learning 155

9.9 Results for Imprecise Label Learning on Audio Analysis 156
9.10 Conclusion . 158

Section VI: Future directions in Computational Audition 158

10 Future work and Discussion 159
10.1 Enhancing Learning from Weak and Imprecise Labels 159

10.1.1 Refining Weak Label Learning Strategies 159
10.1.2 Integrating Additional Cues and Semi-Weak Labels 160

10.2 Leveraging Unlabeled Data . 160
10.2.1 Advancing Unsupervised and Semi-Supervised Learning 160

10.3 Integration of Ontologies and Hierarchical Information 160
10.4 Advanced Deep Learning Architectures 161

10.4.1 Exploring Transformer-Based Models and alternate architectures 161
10.4.2 Adapting Models for Real-Time Processing 162

10.5 Multimodal and Cross-Modal Learning 162
10.5.1 Integrating Multimodal Data 162

10.6 Real-World Applications and Ethical Considerations 162
10.6.1 Deployment in Diverse Environments 162
10.6.2 Ethical and Privacy Concerns 163

10.7 Conclusion . 163

Appendix 164

xi

xii CONTENTS

A Unsupervised Test Set Adaptation 165
A.1 Using Affine Transformation for Test time adaptation 166
A.2 Literature Review . 167

A.2.1 Test-time Unsupervised Domain Adaptation 167
A.2.2 Test Entropy Minimization: Tent 167
A.2.3 Blackbox Shift Estimation (BBSE) 168

A.3 Dataset . 168
A.4 Baseline Model . 169
A.5 Experiments . 170

A.5.1 Learning Strategies . 170
A.6 Results . 170

B Learning without labels 176
B.1 Significance of the work . 176
B.2 Overall Approach . 177
B.3 Overall Objective . 178
B.4 Approach . 178
B.5 Notation and Setup . 179
B.6 Hierarchical and Multi-Model Constraints 179

B.6.1 Hierarchical Consistency . 179
B.6.2 Multi-View Consistency . 179

B.7 Overall Objective . 180
B.8 Iterative Refinement Procedure . 180

B.8.1 Initialization . 180
B.8.2 Refinement Steps . 180
B.8.3 Stopping Criterion . 180
B.8.4 Intuition and Outcome . 181

B.9 Results . 181

C Strengthening the labels: Semi-weak label learning 182
C.1 Strengthening of Labels . 182

C.1.1 Speech Recognition as a weak label learning problem 183
C.2 Use of additional cues - Label Strengthening 183

C.2.1 Counts: Semi-weak Label learning 184
C.2.2 Learning using Proportions . 184
C.2.3 Comparison between different types of count of events in recording184

xii

xiii CONTENTS

D Appendix: Unified Formalism 186
D.1 Notation . 186
D.2 Related Work . 186
D.3 Methods . 190

D.3.1 Derivation of Variational Lower Bound 190
D.3.2 Instantiations to Partial Label Learning 190
D.3.3 Instantiations to Semi-Supervised Learning 191
D.3.4 Instantiations to Noisy Label Learning 191
D.3.5 Instantiations to Mixed Imprecise Label Learning 191

D.4 Experiments . 192
D.4.1 Additional Training Details . 192
D.4.2 Partial Label Learning . 192

D.4.2.1 Setup . 192
D.4.2.2 Discussion . 192

D.4.3 Semi-Supervised Learning . 194
D.4.3.1 Setup . 194
D.4.3.2 Results . 194

D.4.4 Noisy Label Learning . 196
D.4.4.1 Setup . 196
D.4.4.2 Results . 197

D.4.5 Mixed Imprecise Label Learning 198
D.4.5.1 Setup . 198
D.4.5.2 Results . 198

D.4.6 Ablation on Strong-Augmentation and Entropy Loss 199
D.4.7 Runtime Analysis . 200

xiii

List of Figures

1.1 Overall Thesis Outline . 6

2.1 The framework serves as a continuous audio content indexer, a sound
recognition evaluation, and a search engine for the indexed audio. . . . 14

2.2 NELS user interface Interface: The user interface takes a text query and
recovers audio recordings that best match the text in the indexed database. 16

2.3 Examples of indexed video segments using NELS. One shows an example
where the title and images are related for a can-opening sound. Two
shows an example where a siren wailing sound and title are related, but
not the visual sound source, which is a child rather than an electronic
device. Three shows an example of pig-oink sound, which matches
the visuals but not with the title and text metadata. Four shows the
thumbnail of a video that was indexed but eventually deleted by the user. 17

3.1 Overview of the Acoustic Scene Classification System [1] 22
3.2 Progress in Acoustic Scene Classification at DCASE Challenge between

2017 to 2022 . 23
3.3 Overview of the Anomaly detection system 24
3.4 Overview of sound event localization and Detection system 25
3.5 Overview of Sound event detection system 26
3.6 Progress in Weak Labels using DCASE Challenge 26
3.7 [H]ome and [R]esidential without the generic class. Object impact and

bird singing capture most of ambiguities. 33
3.8 [H]ome and [R]esidential with the generic class. Although this class

shared the background acoustics with the 18 sounds, it didn’t cause
major confusion. 34

3.9 Mean-teacher model. η and η′ represent noise applied to the different
models (in this case dropout). 39

3.10 SED performance depending on the FBSNR. 47

xiv

xv LIST OF FIGURES

3.11 SED performance and FBSNR for soundscape composed of a long event
and multiple short events. 48

3.12 Segmentation (event localization) performance for long sound event classes. 48
3.13 Long sound event classes: Time distribution of the onsets and the offsets

in the synthetic soundscapes subset of the DESED training set. 49
3.14 Time distribution of the offsets for long event classes in the subsets

500ms (left) and 5500ms (right) of DESED Evaluation set. 50

4.1 WalNet CNNs for Audio Events. The upper network is the CNN for
logMel features. The network shown in the lower portion is for Google
embedding features. The network provides an output at two levels of
granularity - segment level output and recording level output 57

4.2 Effect of corruption of labels on performance. The X-axis represents
corruption level r in %. The Y-axis shows MAP (Mean Average Precision)
and % reduction in MAP compared to no corruption. 63

4.3 General Schema of Weak Label Training. The network is designed to
produce segment level outputs first and these segment level outputs
are then mapped by the mapping function g() to obtain recording level
output. The loss computation and updates can then be done using these
segment level outputs. 65

4.4 WALNet for Audio Events. The upper network is CNN for logmel features.
The network shown in the lower portion is for Google embedding features. 66

4.5 WALNet CNN architecture block level details for log mel features. . . . 67

5.1 Top 5 sound classes False positive rate False positive False Positive for
the 5 sound classes with the highest FP. 74

5.2 WeblyNet System: Network 1 (N1) is a deep CNN with first view of
data as input. Network 2 (N2) takes in the second view of data obtained
through transfer learning. The networks are trained together to co-teach
each other. 77

5.3 (Average Precision) AP for sound events on Webly-4k training. Compari-
son of baseline (N1-Self) and WeblyNet System 81

6.1 An example of semi-weak labels for audio event detection. Semi-weak
labels give count information, while weak labels only provide information
about the presence or absence of classes. 85

xv

xvi LIST OF FIGURES

6.2 Left: We illustrate scenario which is natural for human to annotate
between counts and proportions. Right: The relation between learning
from proportion (LLP), learning from count (LLC) and Learning from
Weak labels (MIL). The intersection part assumes that the bag size is
known, and the count is exact. MIL problem is a special case of LLC
where the count is equal to 1. 88

6.3 An example of assignment problem. The nodes on the left represent
the unsigned instance and on the right represent the label. There are 4
instances in a bag and with 2 class-0 instances, 1 class-1 instance and
1 class-2 instance. Each edge has an associated reward pij, which is
probability of instance i belonging to class j. Each instance must have
one assignment and the goal is to maximize the reward. 101

7.1 Learning Decision boundary showcasing importance of negative sampling 109
7.2 Figure showing the negative bags with minimal contribution towards

learning the decision boundary . 110
7.3 The left column shows the curve of AP, the right column shows the curve

of ROC-AUC; Two rows from top to bottom represent class 0 and class
1 with seed 0, respectively. 113

8.1 Architecture of Twin Neural Network + Ontological Layer with modifi-
cation to fit the multi-label task . 121

8.2 The framework of Siamese Network + GCN 124
8.3 mAP across different low-level labels 126
8.4 AUC across different low-level labels 127
8.5 AP (left) and AUC (right) across different superclass labels 128

9.1 Illustration of the full label and imprecise label configurations. We use
an example dataset of 4 training instances and 3 classes. (a) Full label,
the annotation is a single true label; (b) Partial label, the annotation
is a label candidate set containing true label; (c) Semi-supervised, only
part of the dataset is labeled, and the others are unlabeled; (d) Noisy
label, the annotation is mislabeled. 134

9.2 Example showing multiple labeling possibilities (L1–L7) when only the
given information that bag is positive. 136

9.3 Example showing bag with given positive instance count 137
9.4 Example showing Uncertain label configuration 138
9.5 Noisy model required for labels with noise 139

xvi

xvii LIST OF FIGURES

9.6 Strong labels . 140
9.7 Finite state graph representing all ways of aligning a sequences of in-

stances such that at least one instance is from the positive class. Green
dots represent the “positive” state (positive instances) and red dots repre-
sent the “negative” state. The four branches from the top to the bottom
represent the cases where (a) the sequence both begins and ends with a
positive label, (b) the sequence begins and ends with a negative label,
buth as at least one positive instance, (c) the sequence begins with a
negative instance and ends with a positive instance, and (d) the sequence
begins with a positive instance and ends with a negative instance. All
edges have weight 1. 144

9.8 “Trellis” representing all possible ways of labelling a sequence of six
instances such that at least one instance is positive. This is composed
from the graph of Figure 9.7. 144

9.9 The entire CTC model for the trellis of Figure 9.8. At each instance, the
probabilities assigned to the “positive” (green) nodes and “negative” (red)
nodes is computed by the neural network. 145

9.10 An FSA for the strong label sequence “1, 0, 1, 0”. 146
9.11 FSA for unlabelled data. 146
9.12 FSA for weak labelling: “at least one positive instance”. 146
9.13 FSA representing the event that the collection has exactly two positive

instances. 146
9.14 FSA for labellings with at least two positive instances. 146
9.15 Finite-state automata (nondeterministic) representing different kinds of

label information I for a binary classification task. 146
9.16 Baseline model pipelines for various imprecise label configurations. (a)

PiCO [2] for partial label learning. (b) FixMatch [3] for semi-supervised
learning. (c) SOP [4] for noisy label learning. (d) The proposed unified
framework. It accommodates any imprecise label configurations and also
mixed imprecise labels with an EM formulation. 147

A.1 AST Baseline Model . 169
A.2 AST Adaptation on R . 169
A.3 AST Adaptation on Z . 169

C.1 a) Figure depicting whether it is natural for humans to describe with
proportions or counts and b) Figure providing the comparison between
learning with proportions and learning with counts. 184

xvii

xviii LIST OF FIGURES

C.2 Comparison between the different types of counts of events in the recording185
C.3 Figure depicting the following a) Approximate counts, b) Upper and

Lower bounds on counts and c) Comparative counts 185
C.4 Combining strongly and weakly labeled data 185

xviii

List of Tables

3.1 Task 1 Accuracy for different cases (Single Classifier) 31
3.2 Overall Task 1 Accuracy (Fused Classifier) 31
3.3 Sound-event classification accuracy using the DCASE set up with four-

folds partitions. The inclusion of the [G]eneric class improved perfor-
mance for both scenes, whereas the inclusion of the [P]erturbed audio
improved only the Home performance. 32

3.4 Our Segment-based Error Rate, using [G]eneric and [P]erturbation, out-
performed the baseline. 35

3.5 Class-wise statistics for the synthetic development subset. 37
3.6 Class-wise statistics for the synthetic evaluation subsets 39
3.7 F1-score performance on the evaluation sets 42
3.8 F1-score performance on the degraded synthetic soundscapes 46

4.1 Mean Average Precision on Audioset - 10-second recordings 61
4.2 Effect of label density on performance using AudioSet 62
4.3 Weakly Labeled Audio in the Wild. Comparison with manually labeled

Audioset . 63
4.4 10 Events with highest relative drop in performance 69

5.1 MAP of N1 compared with state-of-the-art on whole AudioSet (527
Sound Events, Training: Balanced Set, Test: Eval Set) 80

5.2 Upper Tables: Comparison of systems on Webly-4k (L) and Webly-
2k (R). Lower: N1 and N2 co-teach each other in WeblyNet, leading
to improvement in their individual performances over training them
separately. Results are shown on Webly-4k. See Sec. 5.3.2 80

5.3 Webly labeled training vs. manual labeling (AudioSet-40) 82
5.4 APs for five classes with high label noise in webly sets. 82

6.1 Generated Data Summaries . 95

xix

xx LIST OF TABLES

6.2 Benchmarking Results on Different Datasets using Semi-weak label . . 96
6.3 Fully supervised upper-bound results with classifier configuration . . . 96
6.4 Effect of the Choices of Lreg on two standard dataset setting with NB ∈

{8, 16} . 97
6.5 Ablation Study of Removing Regression Loss and Classification Loss.

(β ∈ {0, 1.0}) . 97
6.6 Ablation Study for the Decoder . 98
6.7 Scale Testing Results on two standard dataset setting with NB ∈ {8, 16}. 98
6.8 Ablation Study of Using different backbones and different batch sizes on

dataset p2 BN = 8. 99
6.9 Effect of the Regularizer on Sparse Bags (Dataset ID=p7) 100

7.1 Top 5 classes in AudioSet40 . 111
7.2 Comparison between different models using sampling strategies 113
7.3 Baseline model scores for Top 5 classes in AudioSet40 115

8.1 mAP and AUC Results of different models. Siam. = Siamese, Ont. =
Ontology. 126

8.2 mAP and AUC Results of MLP-GCN with different p parameters when
t = 0.168 . 128

8.3 mAP and AUC results of Siamese GCN with different λ and learning
rate (lr) . 128

8.4 mAP and AUC Results of MLP-GCN with different p parameters when
t = 0.168 . 129

8.5 mAP and AUC Results of MLP-GCN with different t parameters when
p = 0.2 . 129

9.1 Accuracy of different partial ratio q on CIFAR-10, CIFAR-100, and CUB-
200 for partial label learning. The best and the second best results
are indicated in bold and underline respectively. 153

9.2 Error rate of different number of labels l on CIFAR-100, STL-10, IMDB,
and Amazon Review datasets for semi-supervised learning. 154

9.3 Accuracy of synthetic noise on CIFAR-10 and CIFAR-100 and instance
noise on Clothing1M and WebVision for noisy label learning. We use
noise ratio of {0.2, 0.5, 0.8} for synthetic symmetric noise and 0.4 for
asymmetric label noise. The instance noise ratio is unknown. 155

xx

xxi LIST OF TABLES

9.4 Accuracy comparison of mixture of different imprecise labels. We
report results of full labels, partial ratio q of 0.1 (0.01) and 0.3 (0.05)
for CIFAR-10 (CIFAR-100), and noise ratio η of 0.1, 0.2, and 0.3 for
CIFAR-10 and CIFAR-100. 156

9.5 Robust test accuracy results of our method on more mixture of im-
precise label configurations. l, q and η are the number of labels,
partial, and noise ratio. 157

9.6 Summary of results on various audio tasks under imprecise labeling
conditions. 158

D.1 Notation Table . 187
D.2 Hyper-parameters for partial label learning used in experiments. . . 193
D.3 Comparison with R-CR in partial label learning 193
D.4 Comparison on instance-dependent partial label learning 193
D.5 Hyper-parameters of semi-supervised learning used in vision experi-

ments of USB. 195
D.6 Hyper-parameters of semi-supervised learning NLP experiments in

USB. 195
D.7 Error rate comparison of different number of labels on CIFAR-100,

STL-10, EuroSAT, TissueMNIST, and SemiAves for semi-supervised
learning. We use USB [5] image classification task results. The best
results are indicated in bold. Our results are averaged over 3 independent
runs. 196

D.8 Error rate comparison of different number of labels on IMDB, AG News,
Amazon Review, Yahoo Answers, and Yelp Review for semi-supervised
learning. We use USB [5] text classification task results. Best results
are indicated in bold. Our results are averaged over 3 independent runs. 196

D.9 Hyper-parameters for noisy label learning used in experiments. . . . 197
D.10 Test accuracy comparison of instance independent label noise on CIFAR-

10N and CIFAR-100N for noisy label learning. The best results are
indicated in bold, and the second best results are indicated in underline.
Our results are averaged over three independent runs with ResNet34 as
the backbone. 197

xxi

xxii LIST OF TABLES

D.11 Test accuracy comparison of realistic noisy labels on Clothing1M and
WebVision for noisy label learning. The best results are indicated
in bold and the second best results are indicated in underline. Our
results are averaged over 3 independent runs. For Clothing1M, we use
ImageNet-1K pre trained ResNet50 as the backbone. For WebVision,
InceptionResNetv2 is used as the backbone. 198

D.12 Test accuracy comparison of mixture of different imprecise labels.
We report results of full labels, partial ratio q of {0.1, 0.3, 0.5} for CIFAR-
10 and {0.01, 0.05, 0.1} for CIFAR-100, and noise ratio η of {0.1, 0.2, 0.3}
for CIFAR-10 and CIFAR-100. 199

D.13 SSL ablation . 200
D.14 PLL ablation . 200
D.15 NLL ablation . 200
D.16 Runtime Analysis on CIFAR-100 . 200

xxii

1
Introduction

Imagine standing on a street corner in the city. With your eyes closed, you can hear
and recognize a succession of sounds: cars passing by, people speaking, their footsteps
when they walk by, and the continuously falling rain. Recognition of all these sounds
and interpretation of the perceived scene as a city street soundscape come naturally
to humans. However, it is the result of years of “training”: encountering and learning
associations between the wide variety of sounds in everyday life, the sources that produce
these sounds, and the names given to them.

Our everyday environment consists of many sound sources that create a complex
mixture of audio signals. Human auditory perception is highly specialized in the
segregation of sound sources and the direction of attention to the source of the sound
of interest. The goal of automatic sound event detection (SED) methods is to recognize
what is happening in an audio signal and when it is happening in a similar manner.

Sounds are an essential component of our physical environment. They convey
important information about our surroundings and enable us to perceive and interpret
events that occur around us. Our perceptions of sound are multi-tiered – we perceive
entire sound scenes (i.e. overall soundscapes such as the acoustic environment of an
airport or inside a house) as well as individual sound events (e.g. car honks, footsteps,
speech, etc.). Interpreting the acoustic environment around us requires us to be able to
distinguish, or discriminate between, all types of sound.

1

2 CHAPTER 1. INTRODUCTION

The term “sound event detection” refers to the detection of sound events within an
audio recording, or the task of identifying and temporally locating the occurrences of
different types of sounds, and recognizing the categories they belong to. Some common
examples of sound events include speech, music, laughter, or the sound of a door closing.
Sound event detection is an important area of research and is used in many applications
such as noise monitoring in smart cities [6, 7], surveillance [8], urban planning [6],
multimedia information retrieval [9, 10], in domestic applications such as smart homes,
in health monitoring systems and home security solutions [11, 12, 13] etc., to name a
few. In recent years, this area has gained increasing focus from the broader machine
learning, artificial intelligence, and audio processing research communities.

Machine learning models typically need large, labeled datasets to achieve state-of-
the-art performance. This presents a bottleneck: supervised learning approaches do
not scale well to real-world scenarios due to a lack of labeled data. Labeling large
datasets accurately requires a significant investment of time and money. Furthermore,
skilled annotators with domain expertise are required for the task, and the accuracy
and completeness with which they can label data is limited by their judgment and
biases. Hand-labeled data also pose challenges in building applications in a systematic,
privacy-preserving, or compliant manner [14, 15].

For audio and video data, in addition to the class label, it is also necessary to
identify the time intervals within which the sound occurs; i.e. accurate temporal labels
are required during the model learning processes. This is true even for the most current
machine learning and deep learning-based models: their success largely depends on
the quality of labeled training data used to train them. The presence of label errors
(label noise) in the training data can greatly reduce the accuracy of even the best of
these models. Unfortunately, large training datasets almost always contain inaccurate
or incorrect labels [16, 17]. These tend to be memorized by most models, resulting in
relatively poor model performance in practice [18].

In light of the considerations above, it is useful to develop techniques that impose
less stringent labeling requirements on the data while still achieving good performance.
Labels that are not required to be very specific, or temporally precise are generally
much easier to generate (automatically or by humans).

A popular approach for this is the use of “weak” labels. The term “weak labels”
generally refers to labels that are assigned to “bags” (i.e., sets or collections) of instances.
A bag is labeled positive for a class if at least one instance in the bag is positive for the
class and is labeled negative otherwise.

In the context of audio analysis (originally proposed in [19]), weak labels are defined
as those that provide information about the presence or absence of a sound event or

2

3 CHAPTER 1. INTRODUCTION

class in a recording but do not provide finer granularity of information, such as where
these events occur in the recording, or even how many times they occur. Such labels
are considerably less expensive to collect, and it has been shown in prior studies that
such labels are sufficient to learn effective classifiers [20, 21].

However, classifiers that are trained with weakly-labeled data perform significantly
more poorly than those that are trained using strongly (or precisely) labeled data. This
is true despite recent advances, and even when the weak labels are accurate. Additional
suboptimalities arise when the weak labels themselves are imprecise (i.e. of uncertain
quality). This happens generally in scenarios where they are too easily, or automatically
obtained, e.g. by harvesting labels from metadata or comments associated with videos
uploaded to services on the internet. Weak labels from such sources are likely to be
noisy in many ways, e.g. indicating the presence of a sound when there is none, or
missing the occurrences of sounds in a recording.

In addressing these challenges, there is great potential for improvement in
techniques for training audio classifiers using imprecisely (or non-strongly)
labeled data. This is the focus of this thesis.

Our work focuses on devising techniques to improve audio classification using weak
labels. Within this framework, we address a variety of problems such as devising basic
formalisms for training sound event detectors from weak labels, determining the relative
importance of class-positive and class-negative audio for the classifier, and dealing with
labeling ambiguities that arise when labels are collected from noisy sources such as the
internet, etc.

The research presented here can be viewed as part of a broader effort to minimize
annotation costs while still achieving strong empirical results. As mentioned above,
a strong advantage of weak labels is that they impose a much lower labeling burden.
However, it is worth investigating how their quality can be improved with minimal effort.
To this end, we also investigate approaches that can refine weak labels with additional
information, such as counts and ontologies, with minimal additional computational
effort. As an extreme case, we also investigate approaches where no labels are available
for the data used for training. Finally, we aim to formulate a common formal framework
that encompasses all of these solutions. Ultimately, the goal is to bridge the gap
between the remarkable abilities of human auditory perception and the current state of
computational audition.

In this section, we detail the structure of this thesis and highlight significant
contributions made to its various components.

3

4 CHAPTER 1. INTRODUCTION

1.1 Organization of the Thesis

The chapters of this thesis are organized into seven sections:

• Section 1 - Introduction: This section provides a broad overview of the field,
highlighting the importance of sound event detection, the challenges of relying on
strong annotations, and the opportunities and obstacles presented by weak labels.

• Section 2: NELS and DCASE Discusses issues related to learning models
from data at scale, using practical systems as experimental settings. It comprises
the following chapters:

1. NELS : Techniques developed to enable continuous learning of sound events.
These are described in the context of a large-scale sound event classification
system called the Never Ending Learner of Sound, or “NELS.” The goal of
NELS is to be able to assign audio annotations to audio recordings on the
internet, continuously update itself from data, and infer sound classes from
natural language.

2. DCASE : Challenges unraveled and addressed in a large-scale competitive
evaluation called Detection and Classification of Acoustic Scenes and Events,
or “DCASE,” on learning audio classifiers from weak labels and enhancing
audio understanding systems.

• Section 3: Addresses the generic problem of learning with weak labels, and the
specific problem of weak-label-based learning for sound event detection. It includes
solutions for dealing with noise and uncertainty in weak labels, and extending weak
labels with easily obtainable information. It comprises the following chapters:

1. Learning from weak labels: Describes the formalisms we have developed
for learning acoustic event detectors from weak labels, and presents empirical
results showing that it is possible to achieve good acoustic event detection
performance with models learned from weakly-labeled data.

2. Webly labeled data: Describes our solution to learning from weak labels
culled from sources such as the Internet. Such labels tend to be noisy and
uncertain and pose many challenges during learning.

3. Semi-weak labels: Describes our work on extending or augmenting weak
labels with additional easily obtained information. We especially focus on
the counts of events, i.e. the number of times an event has occurred in a
recording. We refer to such labels as “semi-weak” labels and a solution for
learning audio classifiers with semi-weakly labeled data.

4

5 CHAPTER 1. INTRODUCTION

• Section 4: Discusses ways of identifying and exploiting structure in the data.
It comprises the following chapters:

1. The usefulness of samples: It is known that not all training samples are
equally important in learning a classifier. This is particularly true when
training with weak labels. This chapter describes ways to identify the relative
importance of samples, based on which we propose some effective sampling
strategies.

2. Using Ontologies: Ontologies provide useful information about how sound
events are related to each other. In this chapter, we investigate ways of
building ontological hierarchies of sounds using weakly labeled data and
building classifiers based on those.

• Section 5: This section comprises a single chapter that describes our proposed
unified formalism that incorporates solutions to the various problems we address
in the context of training classifiers with imprecisely labeled data.

• Section 6 - Conclusion and Future work: This section contains a chapter
that presents our conclusions – mainly insights drawn from our work so far. It
also presents future directions.

• Appendix: Discusses the following topics 1) Unsupervised adaptation at test
time - an approach critical for any learning task, 2) Learning without labels - An
extreme case of weakly labeled data is unlabeled data and we present an approach
to exploit the large corpora of this data with empirical evidence of improvements,
3) Strengthening of labels and open research problems, 4) Appendix for unified
formalism with additional results.

Conclusion

In this thesis, a comprehensive exploration of the synergies between audio signal
processing and machine learning has been undertaken, with a specific focus on the
integration of advanced machine learning techniques, particularly deep learning, into
the realm of audio analysis. The research presented here has traversed foundational
concepts to sophisticated methodologies, culminating in a discussion of potential future
directions that could shape the field.

The foundational aspects of audio signal processing and machine learning were first
delineated, establishing the necessary context and framework for subsequent, more
specialized discussions. This foundational knowledge is vital for understanding the

5

6 CHAPTER 1. INTRODUCTION

Figure 1.1: Overall Thesis Outline

complexities inherent in the analysis and interpretation of audio signals. The exploration
of signal processing techniques and machine learning fundamentals lays the groundwork
for the advanced concepts that follow.

In the realm of Sound Event Detection (SED), this thesis has provided an in-depth
analysis of current methodologies, highlighting the challenges and innovations in this
field. The discussion encompassed both traditional signal processing techniques and
modern machine learning approaches, emphasizing the increasing importance of the
latter in extracting nuanced patterns from complex audio data. The exploration of
SED served as a precursor to the examination of weak label learning, a critical aspect
of contemporary machine learning in audio signal processing.

The role of weak labels in machine learning was scrutinized, addressing both the
opportunities and challenges they present. This discussion was extended to include
specific algorithmic approaches for learning from weakly labeled data, with a particular
emphasis on Convolutional Neural Network (CNN) architectures. The insights gained
from these discussions underscore the importance of precise data annotation in the
training of effective machine learning models and highlight ongoing efforts to optimize
algorithms for weak label learning.

The thesis further delved into the practical applications and implications of these
concepts through the analysis of two major projects in the field, NELS and DCASE.
These case studies not only provided empirical evidence of the capabilities and limitations
of existing techniques but also offered a perspective on the practical challenges faced in
real-world implementations of audio signal processing systems.

Addressing the challenges of learning from noisy and web-sourced data, the thesis

6

7 CHAPTER 1. INTRODUCTION

explored contemporary strategies and methodologies, reflecting the increasing relevance
of these data sources in the era of big data. This discussion highlighted the need for
innovative approaches to handle the unique characteristics of such data.

Looking towards the future, the thesis proposed new directions for research and
development in the field. The exploration of semi-weak label learning, ontology inte-
gration in audio analysis, and emerging trends in sound localization and unsupervised
learning point toward a landscape ripe for innovation. These future directions not only
address current limitations but also open new avenues for research, promising significant
advancements in the efficiency and efficacy of audio signal processing systems.

In conclusion, this thesis contributes to the academic discourse in audio signal pro-
cessing and machine learning by providing a nuanced understanding of the current state
of the field and its potential trajectory. The research presented herein is characterized
by its academic rigor, technical depth, and practical relevance, offering valuable insights
and frameworks for both theoretical exploration and practical application. The findings
and discussions pave the way for future innovations, encouraging continued research
and development in this dynamic and evolving field. The hope is that this work will
serve as a foundation for future studies and innovations, driving the field forward in
the years to come. 1

1Code for thesis available at https://github.com/cmu-mlsp/ankit-phd-thesis

7

https://github.com/cmu-mlsp/ankit-phd-thesis

Section II : NELS and DCASE

During the early stages of this dissertation, large-scale audio analysis systems were still
relatively rare, so we set about creating two platforms to aid in our work:

1. NELS, a large-scale indexing platform that was intended to index audio on the
web by content. Possibly the earliest of its type of platforms, NELS enabled a
continuously expanding vocabulary of sound classes, as well as content-based
retrieval of audio through natural-language text queries.

2. To deal with the paucity of data of the form we deal with, and to popularize the
general area of research of dealing with such data, we designed and conducted
DCASE challenges.

Both NELS and DCASE not only contributed significantly to the work in this thesis,
but have also helped advance the field in general. Since its inception in 2016, NELS was
reported in several research publications discussed in Section 2.7, and has won multiple
awards. The DCASE challenges (and their offshoots) and the data remain popular. In
the two chapters of this section, we describe NELS and our DCASE challenges.

8

2
Never Ending Learner of Sound

Videos and sounds available on the internet constitute the largest archive of sounds
that we know of. They are continuously updated, and their volume on the internet
increases by the minute, if not by the second. It is estimated that more than a million
minutes of videos are being uploaded to the Internet each minute. This constitutes the
vast majority of all consumer traffic [22]. The ability to recognize sounds in all these
recordings is key to organizing, understanding, and exploiting rapidly growing audio
and multimedia data.

However, most Internet recordings have unlabeled content, making it difficult to use
them for automatic sound analysis, indexing, and retrieval. To enable these applications,
it is important to develop methods that address the challenges involved in learning
from such data, such as those that leverage the relation between sounds and language
to assign labels, those that recognize and differentiate between diverse sound classes,
and also methods of continuous, large-scale evaluation of the implemented techniques
for sound analysis.

To work on these challenges and to consolidate the solutions on one platform, we
developed a system that continuously learns from the data on the internet. It attempts
to learn relations between sounds and language and improves sound recognition models
over time.

We call this system the Never-Ending Learner of Sounds (NELS). It is available

9

10 CHAPTER 2. NEVER ENDING LEARNER OF SOUND

online at nels.cs.cmu.edu.

2.1 Prior work on sound recognition and understanding

At the time of this work research on sound recognition, such as [23, 24, 25, 26], largely
focused on curated data, with carefully collected and recorded audio. These generally
used well-defined, task-oriented sets of sound classes. In addition, they include a limited
set of classes and samples and have have rich descriptions of their content.

In contrast, the challenges of learning from weakly curated or uncurated web audio
were, and indeed remain relatively under-explored. Similar challenges that use data
collected in an unstructured manner, with an unbounded number of sound classes
covering a wide range of topics, include an ever-growing number of classes and samples,
and have insufficient, unavailable, or wrong descriptions, etc. are necessary to develop
good solutions for learning from imprecisely labeled data. These requirements strongly
motivate a system like NELS.

Never-ending learning architectures that learn many types of knowledge from years
of diverse sources, using previously learned knowledge to improve subsequent learning
with sufficient self-reflection to avoid learning stagnation, have been explored previously
in the literature in other contexts, e.g. Never-Ending Language Learner [27] for text
and Never-Ending Image Learner [28] for images.

In contrast, NELS represents the first such system for learning sounds. To enable a
system such as NELS, we need (in the least) strategies that learn associations between
sounds and language (metadata, ontologies, descriptive terms), continuously grow
acoustic vocabularies, improve the robustness of sound recognizers, and evaluate the
performance of sound recognizers in the absence of prior knowledge of the source or
generation process.

The following sections address our work towards developing each of these strategies
under NELS.

2.2 Learning associations between sounds and language

In the context of NELS, examples of associated knowledge are semantics related to
objects, events, actions, places [29], cities [30, 31] or qualities [32, 33].

The following paragraphs describe the indexing and search (using indexed sounds)
within the NELS framework. These use elements of associated knowledge such as those
in the examples mentioned above.

The NELS framework includes data acquisition through a crawler that runs con-
tinuously (24/7), collecting audio and metadata from YouTube videos. From these, it

10

nels.cs.cmu.edu

11 CHAPTER 2. NEVER ENDING LEARNER OF SOUND

creates a content-based index based on a vocabulary of 605 sounds.
To initialize the process, NELS uses search queries corresponding to 605 sound event

labels from four different datasets. The queries are used to collect the corresponding
audio and metadata from YouTube videos. The video metadata is extracted using the
Pafy API [34] and corresponds to 12 attributes, such as title, URL, and description.
The crawled metadata are used to index the audio content. Although NELS can feed
from different sound web archives, we selected YouTube as our first source due to its
diversity of sounds and the available metadata associated with them.

The procedure for indexing further involves sound recognizers and their evalua-
tions, combined with meta-data gathered from the automatic downloads. The sound
recognizers are initially trained using data from various sources, including web audio.
Their performance is evaluated using standard evaluation metrics such as the F1 score
and precision for classifier detections, as well as evaluation of the segmented data was
performed using human feedback. Combining crawled metadata, sound recognition
predictions, and human feedback is done as follows:

We crawled over 2300 hours of audio corresponding to 4 million video segments of
2.3 seconds. The indexed audio content is available for search and retrieval using our
engine on the user interface.

2.2.1 Relation between sounds and language

Language can describe audio content, be used to search for sounds, and help to define
sound vocabularies [35]. However, the relationship between sounds and language is
still an inchoate topic. To better understand the language usage for our indexing, we
performed two studies.

First, sound recognition results [23, 36] evidenced how although two sound events:
quiet street and busy street defined audio from streets, the qualifier implied differences
in the acoustic content. These kinds of nuances can be described with Adjective-Noun
Pairs (ANPs) and Verb-Noun Pairs (VNPS) [32]. Our team collected one thousand pair
labels derived from different audio ontologies. The audio recordings containing the sound
events and their pair labels were crawled from the collective archive freesounds.org. It
was concluded that despite the subjectivity of the labels, there is a degree of consistency
between sound events and both types of pairs.

Second, in [33], we wanted to identify text phrases that contain a notion of audibility
and can be termed as a sound event. We noted that sound-descriptor phrases can
often be disambiguated based on whether they can be prefixed by the words “sound
of” without changing their meaning. Hence, by matching the combination “sound(s) of
<Y>” where Y is any phrase of up to four words to identify candidate phrases, followed

11

12 CHAPTER 2. NEVER ENDING LEARNER OF SOUND

by applying a rule-based classifier to eliminate noisy candidates, we obtained a list
of over 100,000 sound labels. Further, we could also discover ontological relations by
applying a classifier to features extracted from a dependency path between a manually
listed set of acoustic scenes and the discovered sound labels. For example, forests may
be associated with the sounds of birds singing, breaking twigs, cooing, and falling water.

2.3 Continuously growing acoustic vocabularies

An essential component of continuously growing sound vocabularies is to continuously
acquire new data. We do this through continuous crawling based on newer queries
generated by NELS by analyzing data obtained in response to the initial 605 classes.

In contrast to audio-only recordings in archives such as freesounds.org, collecting
audio from videos poses several problems. YouTube contains a vast variety of videos,
and a proper formulation of the search query is necessary to filter videos with higher
chances of containing the desired sound event. Typing a query composed by a noun
such as air conditioner will not necessarily fetch a video containing the corresponding
sound event because the associated metadata often corresponds to the visual content.
For example, it may contain visuals and descriptions of air conditioner inventory in an
electronics shop.

As a solution, we modify the query to be a combination of keywords, for example,
“air conditioner sound.” Although the results were empirically improved in response to
this, there is still no guarantee that the sound event will occur in the recording. On the
other hand it may be present, but of very short duration, overlap with other sounds, or
have a low relative volume.

We use the heuristic of discarding videos longer than ten minutes and shorter than
two seconds because they are either likely to contain unrelated sounds or be too short
to be useful.

2.4 Improving the robustness of sound recognizers

Extending the training dataset and improving the classifiers improves the robustness
of sound recognizers. We initialize by using the data obtained from the initial 605
sound events (obtained from four annotated datasets) to train classifiers. We then use
the trained classifiers to recognize newly crawled YouTube video segments that are
unlabeled. These pseudo-labeled data are then used to improve the classifiers. The
class predictions are also used to index the audio content.

Initially, we used the Convolutional Neural Networks (CNNs) classifier described
in [37], trained on the following datasets. Using curated annotations in these datasets

12

13 CHAPTER 2. NEVER ENDING LEARNER OF SOUND

for initialization helps us deal with mismatch conditions and improves robustness.

1. ESC-50: The ESC-50 database [37] has 50 classes from five broad categories:
animals, natural soundscapes and water sounds, human non-speech sounds, inte-
rior/domestic sounds, and exterior sounds. The dataset consists of 2,000 audio
segments with an average duration of 5 seconds each.

2. US8k: The US8K or UrbanSounds8K [26] database has 10 classes (such as
gunshot, jackhammer, children playing). The dataset consists of 8,732 audio
segments with an average duration of 3.5 seconds each.

3. TUT16 (Task-3): The TUT 2016 (Task-3) [36] has 18 classes (such as car
passing by, bird singing, door banging) from two major sound contexts, namely
home context and residential area. The dataset comprises 954 audio segments
with an average duration of 5 seconds each.

4. AudioSet: The AudioSet dataset [38] has 527 classes and 2.1 million audio
segments with an average duration of 10 seconds each.

The recordings in the data sets above are segmented into 2.3 seconds and converted
into 16-bit encoding, mono-channel, and 44.1 kHz sampling rate WAV files as in [37].
Then, we extract features comprising log Mel-spectrogram with 60 mel-bands with a
window size of 1024 (23 ms) and a hop size is 512. These features are used to train
multi-class classifiers using CNNs for each dataset.

Subsequently, audio from both the datasets and crawled video segments are prepro-
cessed and classified. Ultimately, NELS is meant to be classifier agnostic and the bank
of classifiers used will include multiple types of classifiers.

2.4.1 Continuous semi-supervised learning of sounds.

NELS should use existing curated sound datasets and non-curated web audio to improve
its learning. Previously, semi-supervised self-training approaches have been used to
improve sound event recognizers [39, 40]. In [40], we used an earlier version of NELS.
Its classifiers were trained and tested using the US8K dataset consisting of about 8,000
labeled samples for 10 sounds. For re-training, we used 200,000 unlabeled YouTube
video segments. Similar to the earlier work of [40], but with mismatched data, we
achieved about 1.4% overall precision improvement. Regardless of the improvement,
we reached a learning plateau. This could be due to mismatched conditions between
training and self-training audio. The initial class bias is introduced by the hand-crafted
dataset, and the use of ambiguous YouTube audio to self-train sound classes. Therefore,

13

14 CHAPTER 2. NEVER ENDING LEARNER OF SOUND

additional investigation is required to glean insights from the continually expanding
repository of web audio.

2.5 NELS Framework

In its current form, NELS is a framework that continuously (24/7) crawls audio
and metadata from YouTube videos and creates a content-based index based on a
vocabulary of 605 sounds. The sound recognizers were trained from a variety of sources,
including web audio itself. NELS also evaluates the quality of the recognition through
human feedback. The audio content is indexed combining the crawled metadata, sound
recognition predictions and human feedback. The indexed audio content is available for
search and retrieval using our engine on the website.

Figure 2.1: The framework serves as a continuous audio content indexer, a sound
recognition evaluation, and a search engine for the indexed audio.

2.5.1 Crawl
In this module, a search query is used to crawl audio and metadata from YouTube
videos. The query corresponds to 605 sound event labels from four different datasets.

14

15 CHAPTER 2. NEVER ENDING LEARNER OF SOUND

The video metadata is extracted using the Pafy API1 and corresponds to 12 attributes,
such as title, URL, and description. The crawled metadata is used to index the audio
content.

Although NELS can feed from different sound web archives, we selected YouTube as
our first source due to its diversity of sounds and the available metadata associated with
them. In contrast to audio-only recordings, collecting audio from videos poses several
challenges. YouTube contains a massive amount of videos and a proper formulation
of the search query is necessary to filter videos with higher chances of containing the
desired sound event. Typing a query composed by a noun such as air conditioner
will not necessarily fetch a video containing such sound event because the associated
metadata often corresponds to the visual content; contrary to audio-only archives such
as freesounds.org. Therefore, we modified the query to be a combination of keywords:
“<sound event label> sound”, for example, “air conditioner sound”. Although the results
empirically improved, the sound event was not always found to be occurring and even if
it was, sometimes it was present within a short duration, overlapping with other sounds
and with low volume. We discarded videos longer than ten minutes and shorter than
two seconds because they were either likely to contain unrelated sounds or were too
short to be processed.

2.5.2 Hear & Learn
In this module, we used 605 sound events from four annotated datasets to train classifiers
and run them on the crawled YouTube video segments, which are unlabeled. The class
predictions are also used to index the audio content.

The framework is being developed so that given a set of guidelines, new datasets
could be added seamlessly. NELS should be able to take advantage of existing curated
annotations, however dealing with mismatch conditions. The current four datasets
are: ESC50, US8k, TUT16 (Task-3), and AudioSet. ESC-50 [37] has 50 classes from
five broad categories: animals, natural soundscapes and water sounds, human non-
speech sounds, interior/domestic sounds, and exterior sounds. The dataset consists
of 2,000 audio segments with an average duration of 5 seconds each. The US8K or
UrbanSounds8K [26] has 10 classes like gun shot, jackhammer, children playing. The
dataset consists of 8,732 audio segments with an average duration of 3.5 seconds each.
TUT 2016 (Task-3) [36] has 18 classes like car passing by, bird singing, door banging
from two major sound contexts namely home context and residential area. The dataset
consists of 954 audio segments with an average duration of 5 seconds each. AudioSet [38]
has 527 classes and 2.1 million audio segments with an average duration of 10 seconds

1https://pypi.python.org/pypi/pafy

15

16 CHAPTER 2. NEVER ENDING LEARNER OF SOUND

each.
The audio from both the datasets and crawled video segments are preprocessed

and classified. NELS is meant to be classifier agnostic. At the time of the original
work, we followed a Convolutional Neural Networks (CNNs) classifier setup described
in [37]. Recordings are segmented into 2.3 seconds and converted into 16-bit encoding,
mono-channel, and 44.1 kHz sampling rate WAV files as in [37]. Then, we extracted
features comprising log-scaled mel-spectrograms with 60 mel-bands with a window size
of 1024 (23 ms) and a hop size is 512. Lastly, the features are used to train multi-class
classifiers using CNNs for each of the datasets. The system has since been updated to
use a more contemporary architecture [41].

2.6 Evaluation in the absence of prior knowledge

The evaluation of NELS is included in its user interface. This is shown in Fig. C.4.

Figure 2.2: NELS user interface Interface: The user interface takes a text query and
recovers audio recordings that best match the text in the indexed database.

The user interface for NELS nels.cs.cmu.edu and currently serves two purposes:
1) to evaluate sound recognition using human feedback, which is also part of the audio
indexing, and 2) to provide a search engine for indexed audio content.

16

nels.cs.cmu.edu

17 CHAPTER 2. NEVER ENDING LEARNER OF SOUND

In NELS, search is an integral part of the evaluation, and we describe this first.

2.6.1 Search

The user interface provides a search field to capture a term (text-query) for searching
for sounds. The term is mapped to the closest of available sound classes. Our initial
implementation performed the mapping using the tool word2vec [42] and a precomputed
vocabulary of 400,000 words called Glove [43]. Word2Vec computes vector represen-
tations of vocabulary words and the text query. It then computes cosine similarity
between the text query, the precomputed vocabulary, and our list of sounds. More
recently we have switched to more contemporary encoders such as [41]. Since our list of
sound classes does not necessarily match all the words of the precomputed vocabulary,
we only consider words within a similarity threshold of 0.15 (otherwise no results may
be retrieved). This is used to provide an additional functionality to the NELS interface –
that of matching sounds. This allows the user to paste a YouTube video link on a second
text field, inresponse to which NELS yields the dominant sound in the corresponding
video.

As part of the human evaluation strategy, each displayed video segment resulting
from the text-based search can be evaluated by the user with a two -button option:
Correct or Incorrect (i.e., whether the human claims that the system’s predicted class
was present within the given segment or not). Figure 2.3 shows some examples.

Figure 2.3: Examples of indexed video segments using NELS. One shows an example
where the title and images are related for a can-opening sound. Two shows an example
where a siren wailing sound and title are related, but not the visual sound source, which
is a child rather than an electronic device. Three shows an example of pig-oink sound,
which matches the visuals but not with the title and text metadata. Four shows the
thumbnail of a video that was indexed but eventually deleted by the user.

2.6.2 Evaluation of the learning quality

NELS indexes audio content 24/7, but these segments are unlabeled or have weak or
wrong labels. Therefore, finding methods to evaluate quality automatically at a large
scale is essential. A solution is to include human intervention [44]. Hence, our user
interface allows human feedback collection to assess the correctness of sound event

17

18 CHAPTER 2. NEVER ENDING LEARNER OF SOUND

indexing. Nevertheless, human feedback may be slow or costly. Hence, combining it
with other methods that estimate performance at a large scale is important.

In [45], we used an earlier version of NELS with a recognizer trained on 78 sound
events from three different datasets. After, we crawled audio from YouTube videos
using the sound event labels from the datasets as the search query. The query was a
combination of keywords: “<sound event label> sound", for example, “air conditioner
sound". Then, we evaluated the highest-40 recognized segments per sound class based
on both types of reference (ground truth), human feedback, and search query. The
search query is a summary of the video’s metadata that describes the whole video,
but it was interesting to know to what extent it holds at the video’s segment level.
The results showed how the performance trends for using both types of references are
similar and relatively close with less than an absolute 10% difference in precision. This
trend suggests that the query could be used as a lower bound of human inspection. In
other words, it could serve as a preliminary reference for evaluating sound recognition.
Further exploration of this and other associated metadata and multimedia cues could
be used as alternative measurements.

2.7 Discussion

In summary, acoustic intelligence in machines requires at least three essential components
(a) extracting sound-related knowledge from text (b) recognizing and detecting a large
number of sound events, and (c) a learning system that links these two systems. A
system like NELS is expected to do all of these same 24/7, continuously trying to
discover new sound concepts, attempting to build a computational model for it by
mining audio on the web, and then finally trying to infer some higher-level semantic
knowledge and commonsense relations about sounds. We have addressed the individual
components in this dissertation, and the next steps would be to tie the components
together. Moreover, we will also have to incorporate the never-ending part where the
processes are continuously running and updating the knowledge base.

The system consists primarily of a front end (nels.cs.cmu.edu), which shows infor-
mation about the current state of the system. It shows the vocabulary of sound events
that the system can currently detect and examples of YouTube videos where the system
has detected the sound events. We also provide users with several ways to query the
system. Users can search for a sound through a text query, and the system returns a
set of YouTube videos where it has detected the presence of the queried sound event.
Users can also directly upload an audio recording and the system can annotate the
recording with sound events. The same can also be done for any YouTube video as well
by providing the URL link of that video to the system. The system’s back end primarily

18

http://nels.cs.cmu.edu

19 CHAPTER 2. NEVER ENDING LEARNER OF SOUND

consists of crawling YouTube for sounds and then learning from the crawled videos.
The recognition system has been seeded by detectors built using various datasets such
as Audioset, Urbansounds, and ESC-50. In the next phase of NELS, the goal would
be to add semi-supervised approaches, allowing the system to learn from unlabeled
audio data on the Web. Moreover, the system also needs to continuously improve itself
as far as detecting sound events is concerned. To this end, human feedback might be
important to ascertain that the system is actually improving its performance [45]. The
next phase would also involve linking the natural language understanding from text
with the detection process in audio/multimedia recordings. The two processes can help
each other and be useful in establishing commonsense relationships for sounds.

2.8 Key Discoveries during building NELS

The territory of web audio during the building phase of NELS was relatively unexplored
and had several challenges and opportunities. For instance, traditionally, sound recog-
nition research has focused on curated datasets with meticulously recorded and labeled
audio, carefully chosen sound classes, and limited sample sizes [23, 24, 25, 26]. However,
the vast and ever-growing world of web audio presents a unique set of challenges. Unlike
the structured datasets of the past, web audio is often:

• Unlabeled: Lack of consistent labels makes it difficult to train supervised learning
algorithms.

• Unstructured: Audio content varies greatly in quality, duration, and complexity,
with overlapping sounds and background noise.

• Unbounded: The number of sound classes is virtually infinite and new sounds are
constantly emerging.

These challenges make it difficult to apply traditional sound recognition techniques to
web audio. However, the sheer volume and diversity of web audio also present a unique
opportunity. By tapping into this rich source of data, we can potentially build sound
recognition systems with unprecedented capabilities, able to recognize and understand
a vast and ever-evolving vocabulary of sounds.

19

3
Techniques for Detection of Acoustic Scenes

and Events

Over the past decade, work toward developing better techniques for acoustic scene and
event detection has been done under a community-wide computer audition challenge
called the Detection and Classification of Acoustic Scenes and Events (DCASE) challenge.
As part of this thesis, we participated in the definition and setup of this task. We also
developed approaches in many subtasks.

DCASE is a research competition that is focused on developing algorithms for
automatic audio event and scene recognition. The challenge is organized annually
and typically related to a wide number of tasks for computational audition such as
classifying the different types of sound events or identifying the location or context for
the audio recording. The challenge is open to researchers from all over the world and is
an important event in the field of audio event and scene recognition.

Since the outset of this thesis, we have been involved with the DCASE challenges,
both as participants and as organizers. These contributions have shaped the course of
this dissertation. The following is our contribution to the DCASE challenge over the
years. We participated in the DCASE 2016 challenge for Acoustic Scene Classification
and Sound Event Detection from Real-Life Recording, as detailed in the paper [46],
and organized DCASE 2017 Task 4, titled “Large-scale weakly supervised sound event

20

21 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

detection for smart cars”, focused on detecting sound events using weakly labeled
training data [25]. We followed this up by co-organizing Task 4 in DCASE 2018 for
large-scale weakly supervised sound event detection, where the task aimed to develop
systems capable of detecting sound events using weakly labeled data, given only labels
at the clip level without time boundaries and unlabeled data [47]. In the following
year at DCASE 2019, Task 4 was focused on sound event detection (SED) in domestic
environments using weakly labeled data and soundscape synthesis where the primary
goal was to advance SED with limited annotations, utilize synthetic data for model
training and improve generalization in domestic settings using weak labels [48]. In the
next section, we briefly describe the DCASE task challenges over the years and then
dive into the individual contributions as described above.

3.1 Tasks in DCASE Challenge

There are a total of six different tasks carried out over the years in DCASE challenges
from 2016 to 2022. These tasks are as follows:-

• Task 1: Acoustic Scene Classification

• Task 2: Unsupervised Anomalous Sound Detection for Machine Condition Moni-
toring Applying Domain Generalization Techniques

• Task 3: Sound Event Localization and Detection Evaluated in Real Spatial Sound
Scenes

• Task 4: Sound Event Detection in Domestic Environments

• Task 5: Few-shot Bioacoustic Event Detection

• Task 6: Automated Audio Captioning and Language-Based Audio Retrieval

3.1.1 Task 1: Acoustic Scene Classification

The objective of acoustic scene classification is to classify a test audio recording into
one of the predefined classes, provided that it characterizes the environment in which it
was recorded. Examples of acoustic scenes might include a busy street, a quiet office,
or a crowded train station. [1]

The acoustic scene classification task comprises two different subtasks:

Subtask A: Acoustic Scene Classification with Multiple Devices: This subtask
requires the classification of data from real and simulated devices. The goal is to develop

21

22 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Figure 3.1: Overview of the Acoustic Scene Classification System [1]

techniques that generalize well across a large number of different devices. Data for this
task comprise real and simulated audio recordings for mobile devices.

Subtask B: Low-Complexity Acoustic Scene Classification: This subtask requires
the classification of data from a single device. The goal is to develop low-complexity
solutions for acoustic scene classification. Constraints are imposed on the model
size (number of parameters) complexity (multiply-accumulate operations count), and
memory allowance. In addition to low complexity, the aim is to generalize across several
different devices. For this purpose, the task uses audio data recorded or simulated on a
variety of devices.

The following figure shows a brief overview of the progress made in the field from the
year 2017 to 2022 in the DCASE challenge, where gradually over time the challenge data
have increased from smaller-scale datasets to larger-scale datasets, with the additional
task of low complexity acoustic scene classification being introduced in 2021 and 2022.

The key findings from this task during these years were that the best performing
systems used convolutional neural networks with attention mechanisms and data
augmentation to improve the classification score. Generalization across devices was
improved using device-invariant features and domain adaptation methods. For the low-
complexity acoustic scene classification, the participants achieved competitive results
using efficient architectures and quantization. For the low-complexity solution with the
post-training quantization of parameters, it was observed that the technique reduces the
number of bits used to represent each weight or activation in the neural network, which

22

23 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Figure 3.2: Progress in Acoustic Scene Classification at DCASE Challenge between
2017 to 2022

led to smaller models and faster inference. Separable depthwise convolutions, where
one factorizes the standard convolution into depth-wise and point-wise convolution, led
to an additional reduction of the parameters, and operations saw additional success on
this task of acoustic scene classification.

3.1.2 Task 2: Unsupervised Anomalous Sound Detection for
Machine Condition Monitoring Applying Domain Gener-
alization Techniques

Anomalous sound detection (ASD) is the task of identifying whether the sound emitted
from a source is normal or anomalous. This is useful in many situations, e.g. automatic
detection of mechanical failure or detection of mechanical anomalies for monitoring the
condition of machines. Figure 3.3 shows an overview of the anomaly detection system
for this task.

The evaluation metric for DCASE task 2 is based on the area under the curve (AUC)
and partial AUC (pAUC) scores. AUC score measures how well a system can distinguish
between normal and anomalous sounds across all possible thresholds. pAUC score
measures how well a system can distinguish between normal and anomalous sounds at
low false alarm rates. The final score is calculated by averaging the AUC and pAUC
scores on all types of machines and test sections.

For this task, around 1000 samples were provided as training data for each machine
type/ID (i.e., each class). These data were expected to be insufficient to train a
large-scale DNN.

The participant developed DNN-based strategies for outlier detection. These strate-

23

24 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Figure 3.3: Overview of the Anomaly detection system

gies are similar to using unsupervised approaches to learn accurate decision boundaries
between normal and anomaly classes. They designate the data for other classes as
anomalies for the target class for better classification. This achieves high AUC scores
for the different types of machines.

These approaches have the drawback that it is difficult to obtain good decision
boundaries when the samples of anomalies are similar to the target sample. This leads
to frequent false positives during classification. Also, there is a high variety of anomalies,
and these models are not very robust. Solving this is still an open problem for the
anomaly detection task.

3.1.3 Task 3: Sound Event Localization and Detection Evalu-
ated in Real Spatial Sound Scenes

The goal of the sound event localization and detection task is to detect occurrences
of sound events belonging to specific target classes, track their temporal activity, and
estimate their directions of arrival or positions during it.

Given multichannel audio input, a sound event detection and localization (SELD)
system outputs a temporal activation track for each of the target sound classes, along
with one or more corresponding spatial trajectories when the track indicates activity.
This results in a spatiotemporal characterization of the acoustic scene that can be used
in a wide range of machine cognition tasks, such as inference on the type of environment,
self-localization, navigation without visual input or with occluded targets, tracking of
specific types of sound sources, smart-home applications, scene visualization systems,
and acoustic monitoring, among others.

The best-performing systems for this task used convolutional recurrent neural
networks (CRNNs) with various input features such as log Mel spectrogram, intensity
vector, and generalized cross-correlation (GCC). The evaluation metrics for this task

24

25 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Figure 3.4: Overview of sound event localization and Detection system

were event-based F-score, polyphonic sound event detection score (PSDS), location-
aware detection score (LDS), and direction of arrival error (DOA).

3.1.4 Task 4: Sound Event Detection in Domestic Environments

The goal of the task is to develop techniques for detecting and localizing sound events in
audio recorded in domestic environments. The task uses heterogeneous data comprising
weakly labeled or unlabeled real data and simulated data that is strongly labeled (with
time stamps). The data provide information not only about the event class but also
about event time localizations in multi-event recordings. Figure 3.5 shows an overview
of the sound event detection system.

The participants were allowed the use of external data and pre-trained models in this
task. The main scientific question addressed here pertains to what strategies work well
when training a sound event detection system with a heterogeneous dataset, including
the following: 1) a large amount of unbalanced and unlabeled training data, 2) a small
weakly annotated set, and 3) a synthetic data set containing isolated sound events
and backgrounds. Additionally, the task investigates the impact of using embeddings
extracted from pre-trained models, and also whether there is any potential advantage
in using external data.

The evaluation metric for this tasks was sound event detection (SED) and sound
event separation (SES) performance. SED performance was measured by the segment-

25

26 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Figure 3.5: Overview of Sound event detection system

Figure 3.6: Progress in Weak Labels using DCASE Challenge

based F-1 score with a segment length of 1 second. SES performance was measured by
improving the scale-invariant signal-to-distortion ratio (SI-SDRi) between the estimated
source signals and the reference signals. The participants were evaluated on the final
score, which was calculated as the average of the SED F1 score and the SES SI-SDRi
score across all the test recordings.

SED F1-score =
2× precision× recall

precision + recall
(3.1)

SES SI-SDRi =
1

N

N∑
n=1

(SI-SDR(sn, ŝn)− SI-SDR(sn, xn)) (3.2)

Final score =
SED F1-score + SES SI-SDRi

2
(3.3)

26

27 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

where sn is the reference source signal, ŝn is the estimated source signal, xn is the
mixture signal, and N is the number of test clips.

The task shows that state-of-the-art systems are robust to noise and signal degrada-
tion, but still struggle with overlapping sound events.

3.1.5 Task 5: Few-shot Bioacoustic Event Detection

This task focuses on detecting sound events in a few-shot learning environment for
animal (mammal and bird) vocalizations. The goal is to detect a novel sound class,
given only a few examples, and the data comprise just five exemplar vocalizations
(shots) of mammals or birds in field recordings.

[49] provide an overview of the task objectives, dataset, and baselines, as well as
a comparison of 20 submitted systems based on different metrics. The best solutions
included using an ensemble of prototypical neural networks with adaptive embedding
functions to improve the F-score from 41.3% to 60.0% on the validation dataset [50],
and using segment-level metric learning with negative data and transductive inference
to achieve an F-score of 63.9% on the validation dataset [51].

The DCASE 2022 Challenge’s Task 5 addressed the challenge of detecting novel
animal vocalizations—specifically from mammals and birds—in field recordings, given
only five exemplar sounds per class. This few-shot learning scenario is particularly
relevant in bioacoustics, where annotated data is often scarce.

Nolasco et al. (2022) provided a comprehensive overview of this task, detailing its
objectives, the dataset utilized, baseline performances, and a comparative analysis of
20 submitted systems. The top-performing approaches employed advanced few-shot
learning techniques:

Prototypical Neural Networks with Adaptive Embedding Functions: Martinsson
et al. (2022) implemented an ensemble of prototypical networks, each with adaptive
embedding functions tailored to the specific characteristics of the target sound events.
This method improved the F-score from 41.3% to 60.0% on the validation dataset.

Segment-Level Metric Learning with Negative Data and Transductive Inference:
Liu et al. (2022) introduced a segment-level metric learning framework that incorpo-
rated both positive and negative examples during training. Additionally, they applied
transductive inference to better adapt to the evaluation set, achieving an F-score of
63.9ARXIV

These results underscore the potential of few-shot learning methodologies in bioa-
coustic event detection, especially when dealing with limited annotated data. The
significant improvements over baseline models highlight the effectiveness of these ad-
vanced techniques in capturing the nuances of animal vocalizations in complex acoustic

27

28 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

environments.

3.1.6 Task 6: Automated Audio Captioning and Language-
Based Audio Retrieval

3.1.6.1 Automated Audio Captioning

Automated Audio Captioning (AAC) is the task of general audio content description
using free text. It is an inter-modal translation task (not speech-to-text), where a
system accepts as an input an audio signal and outputs the textual description (i.e.
the caption) of that signal. AAC methods can model concepts (e.g. “muffled sound”),
physical properties of objects and environment (e.g. “the sound of a big car”, “people
talking in a small and empty room”), and high-level knowledge (“a clock rings three
times”). This modeling can be used in various applications, ranging from automatic
content description to intelligent and content-oriented machine-to-machine interaction.

3.1.6.2 Language Based Audio Retrieval

This subtask is concerned with retrieving audio signals using their textual descriptions
of the sound content (that is, audio captions). Human-written audio captions will be
used as text queries. For each text query, the goal of this task is to retrieve 10 audio
files from a given dataset and sort them based on their match with the query. Through
this subtask, we aim to inspire further research into language-based audio retrieval with
unconstrained textual descriptions.

3.2 Contribution to DCASE Challenge: Task 1 – Acoustic Scene
Classification

Our approach was to treat Task 1 as a multi-class classification problem. For this, an
effective method for characterizing acoustic scenes or events in audio segments is needed.
One approach is to use bag-of-audio-words-based feature representations [52], which are
usually built over low-level features such as MFCCs. Acoustic scenes, however, are more
complex mixtures of different audio events and a more robust representation is required.
To this end, we used Gaussian Mixture Models (GMMs) for feature representation. We
describe this in detail below.

On the classification front, we used support vector machines (SVMs) as our primary
classifier and in combination with other classifiers.

3.2.1 Feature Representations
Let D-dimensional MFCCs vectors for a recording be represented as x⃗t, where t = 1 to T ,
T is the total number of MFCCs vectors for the recording. The major idea behind both

28

29 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

high-level feature representations is to capture the distribution of MFCC vectors of a
recording. We will refer to these features as α⃗ and β⃗ features and the sub-types will be
represented using appropriate subscripts and superscripts.

The first step in obtaining high-level fixed dimensional feature representation for
audio segments is to train a GMM on MFCC vectors of the training data. Let us
represent this GMM by G = {wk, N(µ⃗k,Σk), k = 1 to M}, where wk, µ⃗k and Σk are
the mixture weight, mean and covariance parameters of the kth Gaussian in G. We
will assume diagonal covariance matrices for all Gaussians and σ⃗k will represent the
diagonal vector of Σk. Given the MFCCs vectors x⃗t of a recording, we computed the
probabilistic assignment of x⃗t to the kth Gaussian. These soft assignments are added
over all t to obtain the total mass of MFCCs vectors belonging to the kth Gaussian (Eq
3.4). Normalization by T is used to remove the effect of the duration of recordings.

Pr(k|x⃗t) =
wkN(x⃗t;µ⃗k,Σk)

M∑
j=1

wjN(x⃗t;µ⃗k,Σk)

, P (k) = 1
T

T∑
i=1

Pr(k|x⃗t) (3.4)

The soft count histogram features referred to as α⃗ is, α⃗M = [P (1), ..P (k)..P (M)]T .
α⃗M is an M -dimensional feature representation for a given recording. It captures how
the MFCC vectors of a recording are distributed across the Guassians in G. α⃗M is
normalized to sum to 1 before using it for classifier training. The next feature (β⃗), also
based on the GMM G, tries to capture the actual distribution of the MFCC vectors of
a recording. This is done by adapting the parameters of G to the MFCC vectors of the
recording. We employ maximum a posteriori (MAP) estimation for the adaptation [53].
Parameter adaptation for kth Gaussian follows the following steps. First, we compute,

nk =
T∑
t=1

Pr(k|x⃗t), Ek(x⃗) =
1
nk

T∑
t=1

Pr(k|x⃗t)x⃗t, Ek(x⃗
2) = 1

nk

T∑
t=1

Pr(k|x⃗t)x⃗
2
t (3.5)

Finally, the updated mean and variances are obtained as

ˆ⃗µk =
nk

nk + r
Ek(x⃗) +

r

nk + r
µ⃗k (3.6)

ˆ⃗σk =
nk

nk + r
Ek(x⃗

2) +
r

nk + r
(σ⃗2

k + µ⃗2
k)− ˆ⃗µ2

k (3.7)

The relevance factor r controls the effect of the original parameters on the new estimates.
We obtain 2 different feature representation using the adapted means (ˆ⃗µk) and variances
(ˆ⃗σk). The first one denoted by β⃗M is an M × D dimensional feature obtained by
concatenating the adapted means ˆ⃗µk for all k, that is β⃗M = [ˆ⃗µT

1 , ...
ˆ⃗µT
K]

T . In the second
β⃗ features adapted ˆ⃗σk are concatenated along with ˆ⃗µk to obtain a 2×M×D dimensional

29

30 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

features. This form of β⃗ features are denoted by β⃗M
σ .

3.2.2 Classification
Once the feature representation for audio segments has been obtained, Task 1 essentially
becomes a multi-class classification problem. Our primary classifiers are SVMs where
we explore a variety of kernels. For the β⃗ features, we use the Linear Kernel (LK)
and RBF Kernel (RK). Finally, we have a classifier fusion step in which we combine
the output of the different classifiers. We combined multiple classifiers by taking a
prediction vote from each classifier, and the final predicted class is the one that gets
the maximum vote. We call it Fused Classifier and observe that the fused classifier can
provide significant improvement for several acoustic scenes.

3.2.3 Results
Our experimental setup with the folds structure is the same as the one provided by
DCASE. We extracted 20-dimensional MFCC features using 30ms window and 50%

overlap. MFCCs are augmented with their delta and acceleration features. For our final
feature representation, we experimented with 4 different values of GMM component size
M , 64, 128, 256 and 512. The relevance factor r for β⃗ is set to 20. Table 3.1 shows the
overall accuracy results for different cases. The accuracy for the MFCC-GMM baseline
method provided in the challenge is 72.6%.

We can observe from Table 3.1 that α⃗ features in general do not perform better than
the baseline method for any SVM kernel. However, β⃗ features clearly outperformed the
baseline method. In the best case, with M = 128 and β⃗M

σ our method outperformed
the baseline by an absolute 5%.

Table 3.2 shows results for the fused classifiers. For the fusion step, we did not
consider classifiers built over α⃗ since these classifiers are inferior compared to those
using β⃗ features. We can observe that our proposed method beats the baseline method
by an absolute 6.3%. Moreover, for scenes such as Park, Train, Library where the
baseline method gives very poor results, we improved the accuracy by an absolute
16− 30%. We also obtained superior overall accuracy on all folds which suggests that
our proposed method is fairly robust. This is further supported by the fact that on the
DCASE evaluation set, we achieved an overall accuracy of 85.9%.

3.3 Contribution to DCASE Challenge: Task 3 – Sound Event
Detection in Real-Life Recordings

In earlier work by Elizalde et. al [54, 55], the detection of sound events in scenes
and long recordings has been treated as a multi-class classification problem. The
classifier is trained with the event sound segments. During testing, the classifier outputs
segment/frame-level predictions for all the classes.

30

31 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Table 3.1: Task 1 Accuracy for different cases (Single Classifier)

α⃗M β⃗M β⃗M
σ

M LK RK LK RK LK RK
64 62.8 60.6 76.8 76.6 75.5 76.7
128 63.6 62.3 76.5 75.3 77.5 77.5
256 63.9 63.9 76.5 71.9 76.6 75.9
512 65.0 62.9 76.4 72.2 76.2 75.9

Table 3.2: Overall Task 1 Accuracy (Fused Classifier)

Baseline Proposed
Scene Fold 1 Fold 2 Fold 3 Fold 4 Avg. Fold 1 Fold 2 Fold 3 Fold 4 Avg.
Beach 84.2 66.7 78.9 47.4 69.3 100 71.4 89.5 52.6 78.4
Bus 68.4 65.0 100 85.0 79.6 68.4 50.0 100 95.0 78.4

Cafe/Restaurant 66.7 94.7 71.4 100 83.2 88.9 63.2 76.2 95.0 80.8
Car 70.0 89.5 89.5 100 87.3 80.0 100 100 100 95.0

City Center 83.3 73.7 89.5 95.5 85.5 88.9 84.2 100 95.5 92.1
Forest Path 57.1 100 66.7 100 81.0 81.0 100 100 100 95.2

Grocery Store 52.6 81.0 89.5 36.8 65 89.5 81.0 94.7 84.2 87.3
Home 100 55.6 95.0 77.8 82.1 100 61.1 80.0 44.4 71.4

Library 47.6 38.9 15.0 100 50.4 47.6 33.3 85.0 100 66.5
Metro Station 84.2 94.4 100 100 94.7 94.7 94.4 100 100 97.3

Office 100 100 94.4 100 98.6 78.9 100 72.2 83.3 83.6
Park 10.0 5.6 0 40.0 13.9 65.0 33.3 50.0 30.0 44.6

Residential 78.9 47.6 100 84.2 77.7 84.2 42.9 94.7 57.9 69.9
Train 16.7 31.6 30.4 61.1 34.9 50.0 63.2 34.8 88.9 59.2
Tram 88.9 88.9 63.6 100 85.3 83.3 88.9 63.6 100 84.0

Overall 67.2 68.9 72.3 81.9 72.6 80.0 71.1 82.7 81.8 78.9

3.3.1 Features and Classifiers Optimization
We used a similar approach. As features, we first used conventional MFCCs with 13
coefficients, plus delta and double delta vectors computed from them, for a total of 39
dimensions.

For the classifiers, we considered Tpot [56], built on top of Scikit [57], which is a
Python tool that automatically creates and optimizes machine learning pipelines. This
toolbox (version 4) considers 12 classifiers such as Random Forest, SVMs, K-Neighbors,
and Logistic Regression. The main Tpot parameter is “number of generations”, which
corresponds to the number of iterations run to tune the classifier; we set it to 15.
Interestingly, Random Forest and Logistic Regression outperformed other models like
SVMs.

For our experiments, we extracted the 18 sound events from the two scenes using
the annotations, and then we extracted the features from these isolated sounds. For
each experiment, the sound events’ feature files were fed to Tpot in a randomly selected
ratio of 75% training and 25% testing, with no overlap between train and test sets. We

31

32 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Feature Type Accuracy%
Home 56.4
Home + G 55.2
Home + G + P 55.7
Residential 53.3
Residential + G 57.8
Residential + G + P 56.7

Table 3.3: Sound-event classification accuracy using the DCASE set up with four-folds
partitions. The inclusion of the [G]eneric class improved performance for both scenes,
whereas the inclusion of the [P]erturbed audio improved only the Home performance.

kept the same partitions across our experiments for consistency. The performance was
measured in terms of accuracy, and the performance of MFCCs was 67.7%.

3.3.2 Inclusion of Generic Sound Event Class
In the annotated data, not every segment of audio corresponds to a labeled sound. To
handle unlabeled or out-of-vocabulary segments, we proposed a generic sound event
class.

In the first experiment, we analyzed the impact of the generic class together with
the 18 sounds in the multi-class classification setup described in Section 3.3.1 using
MFCCs. The data for the generic class was chosen to be the unlabeled audio between
the labeled segments.

There were two event classes (or scenes) in this task. The average number of sound
events per scene was 60. We randomly selected 60 audio files from each scene for
analysis.

The normalized confusion matrices (CMs) in Figures 3.7 and 3.8 show the per-
formance. The performance with and without the generic class is 60.94% and 67.7%
respectively. However, although the generic class shared the background acoustics with
the other sound classes, it was not significantly confusible with them.

For the second set of experiments, the DCASE setup comprised separate audio
scenes, each with and without the generic class. Additionally, in each case where the
generic class was used, the generic class had events that were specific to the scene. A
four-fold cross-validation experiment was conducted on the given data.

The results are shown in Table 3.3. We see that performance improves with the
inclusion of the generic class, which reduces class ambiguity. In addition, the CMs
(which are not included due to space limitations), had cleaner diagonals. The use
of fewer sound classes reduces class ambiguity, and scene-specific optimization of the
classifier using Tpot also helps.

32

33 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Figure 3.7: [H]ome and [R]esidential without the generic class. Object impact and bird
singing capture most of ambiguities.
3.3.3 Generation of data through perturbation
The scarcity of labeled data for each event is a common issue. Annotations are costly,
all sound events don’t occur with the same frequency, and it is also hard to capture
enough variations of the same sound to train robust models.

To address the problem of data scarcity, many data augmentation techniques have
been proposed in the literature for different tasks. One example is [58] where the authors
augment data by perturbing the audio signal in multiple ways and achieve improved
speech separation performance. We empirically analyzed multiple combinations of
time-based perturbations, by speeding up and slowing down the sound event samples
to different levels. We found that speeding up the original signal by more than 30%
resulted in unintelligible audio. Also, slowing down the signal by more than 100% didn’t
make sense. The range of rate changes that we explored included 13 different speed
factors and the original signal at its normal rate.

As before, the experimental data included separate scenes from home (inside homes)
and residential areas (outside homes but within residential areas). Four-fold cross-
validation experiments were performed with that data, augmented with perturbed audio
that comprised the original data and 13 different rate-changed versions of it. The test
set was not augmented and remained intact. The results are shown in Table 3.3, where

33

34 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Figure 3.8: [H]ome and [R]esidential with the generic class. Although this class shared
the background acoustics with the 18 sounds, it didn’t cause major confusion.

the performance for Home improved, but not for Residential.

3.3.4 Sound event detection and submission systems
For Task 3 in DCASE we used the setup described above with data augmentation
using rate-perturbation. Sound events were extracted from each scene using the given
annotations. MFCC features were then extracted and a Tpot-optimized multi-class
classifier was trained. For testing, we segmented the scene recordings from the test
set into sequences of one-second-long segments. This duration was selected due to the
metric schema of the DCASE evaluation, which considers one-second segments.

Three experiments were performed: without the generic class or perturbation, with
generic class and perturbation (G+P), and with generic class but without perturbation
(G). The results of the development-test set are shown in Table 3.4. The inclusion of
the generic class and perturbation outperformed the baseline by a significant margin for
both Home and Residential scenes. G and G+P on the evaluation set achieved SBER
of 0.9613 for G and Fscore of 33.6% for G+P.

3.3.5 Conclusion from Acoustic scene classification
We used different approaches for both acoustic scene classification (Task 1) and sound
event detection (Task 3) of the 2016 DCASE challenge. On both tasks, we were able

34

35 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Acoustic Scene SBER F-score
Home 1.05 25.1
Home + G 0.91 23.7
Home + G + P 0.9 24.7
Residential 0.64 54.6
Residential + G 0.72 45.9
Residential + G + P 0.63 52.2

Table 3.4: Our Segment-based Error Rate, using [G]eneric and [P]erturbation, outper-
formed the baseline.

to obtain significant improvement over the baseline method. For Task 1 we observed
that the β⃗ features performed much better than α⃗ features. Although linear and
RBF kernels with β⃗ features can outperform the baseline by a considerable margin on
their own, we make note of the fact that a multiple classifier system can give further
improvements. For Task 3, we tested different classifiers and significantly improved the
baseline. Moreover, we explored a way of handling out-of-vocabulary sound segments
with the generic class and the inclusion of perturbed audio to add robustness.

3.4 Contribution to DCASE Task 4: Sound event detection
using weak labels

Task 4 evaluated systems for the large-scale detection of sound events using weakly
labeled audio recordings. The audio comes from YouTube video excerpts related to the
topic of transportation and warnings. The topic was chosen due to its industry relevance
and the underuse of audio in this context. The results will help define new grounds for
large-scale sound event detection and show the benefit of audio for self-driving cars,
smart cities, and related areas.

The task consisted of detecting sound events within 10-second clips and it was
divided into two subtasks:

• Subtask A: Without timestamps (same as audio tagging, Fig 4)

• Subtask B: With timestamps (similar to Task 3, Fig 3)

The task employed a subset of AudioSet[38]. AudioSet consists of an ontology of 632
sound event classes and a collection of 2 million human-labeled 10-second sound clips
drawn from YouTube videos. The ontology is specified as a hierarchical graph of event
categories, covering a wide range of human and animal sounds, musical instruments and
genres, and common everyday environmental sounds. To collect the dataset, Google
worked with human annotators who listened, analyzed, and verified the sounds they
heard within the YouTube 10-second clips. To facilitate faster accumulation of examples

35

36 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

for all classes, Google relied on available YouTube metadata and content-based search
to nominate candidate video segments that were likely to contain the target sound.
Note that AudioSet does not come with precise time boundaries for each sound class
within the 10-second clips and thus annotations are considered weak labels. Also, one
clip may correspond to more than one sound event class. Task 4 relied on a subset of
17 sound events divided into two categories: Warning and vehicle sounds.

• Warning sounds: Train horn, Air horn Truck horn, Car alarm, Reversing beeps,
Ambulance (siren), Police car (siren), Fire engine fire truck (siren), Civil defense
siren, Screaming.

• Vehicle sounds: Bicycle, Skateboard, Car, Car passing by, Bus, Truck, Motor-
cycle, Train.

For both subtasks, the data was divided into two main partitions: development and
evaluation. The development data was divided into training and testing. Training had
51,172 clips, which are class-unbalanced, and had at least 30 clips per sound event.
The test had 488 clips, with at least 30 clips per class. A 10-second clip may have
corresponded to more than one sound event class. The evaluation set had 1,103 clips,
with at least 60 clips per sound event. The sets had weak labels denoting the presence
of a given sound event within the audio but with no timestamp annotations. For
testing and evaluation, strong labels (timestamp annotations) were provided to evaluate
performance on Subtask B. The task rules did not allow the use of external data, such
as other datasets. Similarly, it was not allowed to use other elements.

We followed the success of our work in the subsequent DCASE challenges and the
following describes our work on DCASE Task 4 in 2019. Task 4 involves training systems
for large-scale detection of sound events using a combination of weakly labeled data,
i.e., training labels without time boundaries, and strongly-labeled synthesized data.
For this we introduced the Domestic Environment Sound Event Detection (DESED)
dataset, mixing a part of prior year’s dataset with an additional synthetic, strongly
labeled dataset.

The context for this section’s work is DCASE 2018 Task 4 [59], where we investigate
how large-scale SED systems can exploit a small set of weakly annotated data, a larger
set of unlabeled data and an additional training set of synthetic soundscapes with
strong labels.

Given these data, the goal of this task is to train SED models that output event
detections with time boundaries (i.e. strong predictions) in domestic environments.

36

37 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Class Unique Dev set
events Clips Events

Alarm/bell/ringing 190 392 755
Blender 98 436 540
Cat 88 274 547
Dishes 109 444 814
Dog 136 319 516
Electric shaver/toothbrush 56 221 230
Frying 64 130 137
Running water 68 143 157
Speech 128 1272 2132
Vacuum cleaner 74 196 204
Total 1011 2045 6032

Table 3.5: Class-wise statistics for the synthetic development subset.

3.4.1 Task description

This task is the follow-up to the DCASE 2018 Task 4 [59] and focuses on the same
10 classes of sound events. Systems are expected to produce strongly labeled output
(i.e. detect sound events with a start time, end time, and sound class label), but are
provided with weakly labeled data (i.e. sound recordings with only the presence/absence
of a sound included in the labels without any timing information) for training. Multiple
events can be present in each audio recording, including overlapping events. As in
the previous iteration of this task, the challenge entails exploiting a large amount of
unbalanced and unlabeled training data together with a small weakly annotated training
set to improve system performance.

The advantage of having an additional training set with strongly annotated synthetic
soundscapes in the 2019 challenge was that this allowed us to explore scientific questions
around the informativeness of real (but weakly labeled) data versus strongly labeled
synthetic data, to explore whether the two data sources are complementary or not, and
to find out how to best leverage these datasets to optimize system performance.

3.4.2 DESED development dataset

The DESED development dataset is composed of 10-sec audio clips recorded in a
domestic environment or synthesized to simulate a domestic environment. The real
recordings are taken from AudioSet [16]. The development data set is divided into two
subsets: (i) A training subset composed of real recordings similar to DCASE 2018 task
4 [60] and synthetic soundscapes generated using Scaper (see also Table 3.5). (ii) A
validation subset composed of real recordings with strongly labeled data, which is the

37

38 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

combination of the validation and evaluation sets from DCASE 2018 Task 4.

3.4.2.1 Synthetic soundscape generation procedure

The subset of synthetic soundscapes comprises 10-second audio clips generated with
Scaper [44], a Python library for soundscape synthesis and augmentation. Scaper
operates by taking a set of foreground sounds and a set of background sounds and
automatically sequencing them into random soundscapes sampled from a user-specified
distribution, controlling the number and type of sound events, their duration, signal-to-
noise ratio, and several other key characteristics. The foreground events are obtained
from the Freesound Dataset (FSD) [61, 62]. Each sound event clip was verified by a
human to ensure that the sound quality and event-to-background ratio were sufficient to
be used as an isolated sound event. We also controlled for whether the sound event onset
and offset were present in the clip. Each selected clip was then segmented when needed
to remove silences before and after the sound event and between sound events when
the file contained multiple occurrences of the sound event class. The number of unique
isolated sound events per class used to generate the subset of synthetic soundscapes is
presented in Table 3.5. We also list the number of clips containing each sound class
and the number of events per class.

The background textures are obtained from the SINS dataset (activity class “other”) [63].
This particular activity class was selected because it contains a low amount of sound
events from our 10 target foreground sound event classes. However, there is no guarantee
that these sound event classes are completely absent from the background clips. A total
of 2060 unique background clips are used to generate the synthetic subset.

Scaper scripts are designed such that the distribution of sound events per class,
the number of sound events per clip (depending on the class), and the sound event
class co-occurrence are similar to that of the validation set, which is composed of
real recordings. The synthetic soundscapes are annotated with strong labels that are
automatically generated by Scaper [44].

3.4.3 DESED evaluation dataset

The evaluation set is composed of two subsets: a subset with real recordings and a
subset with synthetic soundscapes.

3.4.3.1 Real recordings

The first subset contains 1,013 audio clips and is used for ranking purposes. It comprises
audio clips extracted from 692 YouTube and 321 Vimeo videos under creative commons

38

39 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Class Unique Synth set 1
events Clips Events

Alarm/bell/ringing 63 101 184
Blender 27 84 95
Cat 26 113 197
Dishes 34 161 293
Dog 43 124 217
Electric shaver/toothbrush 17 113 117
Frying 17 52 52
Running water 20 67 73
Speech 47 471 803
Vacuum cleaner 20 92 93
Total 314 1378 2124

Table 3.6: Class-wise statistics for the synthetic evaluation subsets

licenses. Each clip is annotated by a human and annotations are verified by a second
annotator.

Strong consistency cost

Weak consistency cost

Aggregation
(max, attention...)

Aggregation
(max, attention...)

Weak classification cost

Strong classification costCat
Speech

...

Exponential
moving average

� �
′

� + � with � ∼ (0, 0.5)�

� �′

Student Teacher

Weakly
labeled data

Strong
labeled data

Unlabeled
data

Figure 3.9: Mean-teacher model. η and η′ represent noise applied to the different models
(in this case dropout).

3.4.3.2 Synthetic soundscapes

The second subset is comprised of synthetic soundscapes generated with Scaper1. This
subset is used for analysis purposes and its design is motivated by the analysis of last
year’s results [60]. In particular, most submissions from the previous year performed
poorly in terms of event segmentation. One of the goals of this subset is to facilitate
studies on the extent to which including strongly labeled data in the training set helps

1The JAMS [64] annotation files corresponding to these soundscapes can be accessed from DCASE
website: http://dcase.community/.

39

http://dcase.community/

40 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

improve and refine the segmentation output. The foreground events are obtained from
the FSD [61, 62]. The selection process was the same as described for the development
dataset. Background sounds are extracted from YouTube videos under a Creative
Common license and from the Freesound subset of the MUSAN dataset [65]. The
synthetic subset is further divided into several subsets (described below) for a total of
12,139 audio clips synthesized from 314 isolated events. The distribution of isolated
sound events per class is presented in Table 3.6.

3.4.3.3 Varying foreground-to-background SNR

A subset (denoted Synthetic set 1) of 754 soundscapes is generated with a sound event
distribution similar to that of the training set. Four versions of this subset are generated
varying the value of the foreground events’ SNR with respect to the background: 0 dB,
6 dB, 15 dB, and 30 dB.

3.4.3.4 Audio degradation

Six alternative versions of the previous subset (with SNR = 0dB) are generated
introducing artificial degradation with the Audio Degradation Toolbox [66]. The
following degradations are used (with default parameters): “smartPhonePlayback,”
“smartPhoneRecording,” “unit_applyClippingAlternative,” “unit_applyLowpassFilter,”
“unit_applyHighpassFilter” and
“unit_applyDynamicRangeCompression”.

3.4.3.5 Varying onset time

A subset of 750 soundscapes is generated with uniform sound event onset distribution
and only one event per soundscape. The SNR parameter is set to 0 dB. Three variants
of this subset are generated with the same isolated events, only shifted in time. In the
first version, all sound events have an onset located between 250 ms and 750 ms, in the
second version the sound event onsets are located between 4.75 s and 5.25 s, and in the
last version the sound event onsets are located between 9.25 s and 9.75 s.

3.4.3.6 Long sound events vs. short sound events

A subset with 522 soundscapes is generated where the background is selected from
one of the five long sound event classes (Blender, Electric shaver/toothbrush, Frying,
Running water, and Vacuum cleaner). The foreground sound events are selected from
the five short sound event classes (Alarm/bell/ringing, Cat, Dishes, Dog, and Speech).

40

41 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Three variants of this subset are generated with similar sound event scripts and varying
values of the sound event SNR parameter (0 dB, 15 dB, and 30 dB).

3.4.4 Baseline

We designed the baseline system2 inspired by the winning system from the DCASE
2018 Task 4 by Lu [67]. It uses a mean-teacher model which is a combination of two
models: a student model and a teacher model (both have the same architecture). Our
implementation of the mean-teacher model is based on the work of Tarvainen and
Valpola [68]. The student model is the final model used at inference time, while the
teacher model is aimed at helping the student model during training and its weights
are an exponential moving average of the student model’s weights. A depiction of the
baseline model is provided in Figure 3.9.

The models are a combination of a convolutional neural network (CNN) and a
recurrent neural network (RNN) followed by an aggregation layer (in our case an
attention layer). The RNN output gives strong predictions (the weights of this model
are denoted θs) while the output of the aggregation layer gives weak predictions (the
weights of this model are denoted θ).

The student model is trained on synthetic and weakly labeled data. The loss (binary
cross-entropy) is computed at the frame level for the strongly labeled synthetic data and
at the clip level for the weakly labeled data. The teacher model is not trained, rather, its
weights are a moving average of the student model (at each epoch). During training, the
teacher model receives the same input as the student model but with added Gaussian
noise, and helps train the student model via a consistency loss (mean-squared error) for
both strong (frame-level) and weak predictions. Every batch contains a combination of
unlabeled, weakly and strongly labeled samples.

This results in four loss components: two for classification (weak and strong) and
two for consistency (weak and strong), which are combined as follows:

L(θ) =Lclassw(θ) + σ(λ)Lconsw(θ)

+ Lclasss(θs) + σ(λ)Lconss(θs)
(3.8)

3.4.5 Submission evaluation

DCASE 2019 Task 4 obtained 57 submissions from 18 different teams involving 60
researchers overall.

2Open source code available at: https://github.com/cmu-mlsp/ankit-phd-thesis/DCASE2019_
task4/tree/public/baseline

41

https://github.com/cmu-mlsp/ankit-phd-thesis/DCASE2019_task4/tree/public/baseline
https://github.com/cmu-mlsp/ankit-phd-thesis/DCASE2019_task4/tree/public/baseline

42 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Rank System Classifier
Real recordings Synthetic

Event-based Segment-based Event-based
Eval Youtube Vimeo Valid Eval Set 1

1 Lin, ICT CNN 42.7% 47.7% 29.4% 45.3% 64.8% 47.6%
2 Delphin-Poulat, OL CRNN 42.1% 45.8% 33.3% 43.6% 71.4% 59.8%
3 Shi, FRDC CRNN 42.0% 46.1% 31.5% 42.5% 69.8% 53.2%
4 Cances, IRIT CRNN 39.7% 43.0% 30.9% 39.9% 64.7% 50.8%
5 Yan, USTC CRNN 36.2% 38.8% 28.7% 42.6% 65.2% 41.8%
6 Lim, ETRI CRNN, Ensemble 34.4% 38.6% 23.7% 40.9% 66.4% 42.5%
7 Kiyokawa, NEC ResNet, SENet 32.4% 36.2% 23.8% 36.1% 65.3% 42.3%
8 Chan, NU NMF, CNN 31.0% 34.7% 21.6% 30.4% 58.2% 46.7%
9 Zhang, UESTC CNN,ResNet,RNN 30.8% 34.5% 21.1% 35.6% 60.9% 49.2%
10 Kothinti, JHU CRNN, RBM, CRBM, PCA 30.7% 33.2% 23.8% 34.6% 53.1% 35.6%
11 Wang B., NWPU CNN, RNN, ensemble 27.8% 30.1% 21.7% 31.9% 61.6% 32.9%
12 Lee, KNU CNN 26.7% 28.1% 22.9% 31.6% 50.2% 33.0%

Baseline 2019 CRNN 25.8% 29.0% 18.1% 23.7% 53.7% 40.6%
13 Agnone, PDL CRNN 25.0% 27.1% 20.0% 59.6% 60.4% 46.7%
14 Rakowski, SRPOL CNN 24.2% 26.2% 19.2% 24.3% 63.4% 29.7%
15 Kong, SURREY CNN 22.3% 24.1% 17.0% 21.3% 59.4% 23.6%
16 Mishima, NEC ResNet 19.8% 21.8% 15.0% 24.7% 58.7% 33.0%
17 Wang D., NUDT CRNN 17.5% 19.2% 13.3% 22.4% 63.0% 14.0%
18 Yang, YSU CMRANN-MT 6.7% 7.6% 4.6% 19.4% 26.3% 7.5%

Table 3.7: F1-score performance on the evaluation sets

3.4.5.1 Evaluation metrics

Submissions were evaluated according to an event-based F1-score with a 200 ms collar
on the onsets and a collar on the offsets that is greater of 200 ms and 20% of the sound
event’s length. The overall F1 score is the unweighted average of the class-wise F1 scores
(macro-average). In addition, we provide the segment-based F1-score on 1 s segments
as a secondary measure. The metrics are computed using the sed_eval library [69].

3.4.5.2 System performance

The official team ranking (best system from each team) along with some characteristics
of the submitted systems is presented in Table 3.7. Submissions are ranked according to
the event-based F1 score computed over the real recordings in the evaluation set. For a
more detailed comparison, we also provide the event-based F1-score on the YouTube
and Vimeo subsets and the segment-based F1-score over all real recordings. The event-
based F1-score on the validation set is reported for the sake of comparison with last
year’s results (75% of the 2019 validation set is comprised of the 2018 evaluation set).
Performance on synthetic recordings is not taken into account in the ranking, but the
event-based F1-score on Synthetic set 1 (0 dB) is presented here as well. The baseline
for DCASE 2018 would obtain 22.2% F1-score on the evaluation set.

Twelve teams outperform the baseline with the best systems [70, 71, 72] outper-
forming the baseline by 16% points and the best system from 2018 by over 10 % points.
While the ranking on the YouTube subset is similar to the official ranking, there rankings
based on the Vimeo and synthetic subsets are notably different. Performance on the

42

43 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Vimeo set is in general considerably lower than on the YouTube set and Synthethic
set 1. The fact that no data from Vimeo was used during training (unlike data from
YouTube and synthetic data) suggests that the submitted systems struggle to generalize
to an entirely unseen set of recording conditions.

All three top-performing teams used a semi-supervised mean-teacher model [68].
Lin et al. [70] focused on the importance of semi-supervised learning with a guided
learning setup [73] and on how synthetic data can help when used together with a
sufficient amount of real data. Delphin-Poulat et al. [71] focused on data augmentation
and Shi [72] focused on a specific type of data augmentation where both audio files and
their labels are mixed. Cances et al. [74] proposed a multi-task learning setup where
audio tagging (producing weak predictions) and the sound event localization in time
(strong predictions) are treated as two separate subtasks [75]. The latter was also the
least complex of the top-performing systems.

Most of the top-performing systems also demonstrate the importance of employing
class-dependent post-processing [70, 71, 74], which improves performance significantly
compared to e.g. using a fixed median filtering approach. This highlights the benefits
of applying dedicated segmentation post-processing [74, 76].

3.4.5.3 Conclusion from DCASE Task 4 Analysis

For Task 4, we observe that the best submissions outperform the prior winning submis-
sion by over 10 % points, representing a notable advancement. Performance tends to
show that the proposed systems in general did not overfit the soundscape data set and
still performed well on the real data set. However, the performance from all systems
degrades in the unseen Vimeo subset, which indicates a lack of ability to generalize.
The progress is encouraging, but the remaining limitations indicate possible directions
for follow-up to this task.

Despite this challenge, we studied the robustness of the systems to noise and signal
degradation, which is known to impact model generalization. Our analysis is based
on the results of task 4. A comparative analysis of the performance of state-of-the-art
sound event detection systems shows that while overall systems exhibit significant
improvements compared to previous work, they still suffer from biases that could
prevent them from generalizing to real-world scenarios.

3.4.6 Data augmentation: Additional experiments

In Task 4, the synthetic soundscapes evaluation dataset included multiple subsets
comprised of the same set of synthetic soundscapes, each with a different type of
data degradation applied via the audio degradation toolbox [66] or with for different

43

44 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

foreground-to-background signal-to-noise ratio (FBSNR), that is the ratio between the
loudness of the sound event (foreground) and the loudness of the background noise. We
also considered other subsets where the same sound event would be localized at different
time instants within a sound clip and subsets using the long sound event classes as
background noise. All these scenarios are realistic and represent conditions where the
submitted systems are likely to fail. However, gathering enough real data that would
cover each of these aspects is hardly feasible. Not to mention that in some cases (e.g.,
varying FBSNR) it would require recording new data to ensure that only the tested
parameter is changing between experiments. Synthetic soundscapes then offer a flexible
and realistic alternative to performance preliminary tests before considering further
investigation on real data if need be.

In the section below we present the results obtained by the participants of DCASE
2019 task 4 on the evaluation composed of synthetic soundscapes. This performance
was neither presented nor analyzed within the challenge. We propose an analysis of the
robustness of the ten top-performing approaches (on the evaluation set composed of
synthetic soundscapes) to degradation of the recording quality and to varying FBSNR
and a study of the robustness of the segmentation process implemented in the submitted
systems.

3.4.6.1 Varying foreground-to-background SNR

A subset of 754 soundscapes was generated with Scaper scripts. The scripts are designed
such that the distribution of sound events per class, the number of sound events per
clip (depending on the class), and the sound event class co-occurrence are similar to
that of the validation set which is composed of real recordings. The foreground event
signal-to-noise ratio (SNR) parameter was uniformly drawn between 6 dB and 30 dB.
Four versions of this subset were generated varying the value of the background SNR
parameter:

• 0 dB (the FBSNR is between 6 dB and 30 dB);

• 6 dB (the FBSNR is between 0 dB and 24 dB);

• 15 dB (the FBSNR is between -9 dB and 15 dB);

• 30 dB (the FBSNR is between -24 dB and 0 dB).

These subsets are referred to as fbsnr_30dB, fbsnr_24dB, fbsnr_15dB and
fbsnr_0dB, respectively. These subsets are designed to study the impact of the SNR
on the SED system’s performance. Related results are discussed in Section 3.4.9.1.

44

45 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

3.4.6.2 Audio degradation

To study the robustness of the SED to audio degradation, six alternative versions
of the subset fbsnr_30dB were generated introducing artificial degradation with
the Audio Degradation Toolbox [66]. The signal degradations are generated to
simulate degradation faced in real environments. The following degradations are
used (with default parameters) : “smartPhonePlayback,” “smartPhoneRecording,”
“unit_applyClippingAlternative,” “unit_applyDynamicRangeCompression,”
“unit_applyLowpassFilter” and “unit_applyHighpassFilter.” We refer to these versions
as phone_play, phone_record, clipping, compression, lowpass and highpass,
respectively. Performance results for these are discussed in Section 3.4.9.

3.4.6.3 Varying onset time

A subset of 750 soundscapes was generated with uniform sound event onset distribution
and only one event per soundscape. The parameters were set such the FBSNR was
between 6 dB and 24 dB. Three variants of this subset were generated with the same
isolated events, only shifted in time. In the first version, all sound events had an onset
located between 250 ms and 750 ms, in the second version the sound event onsets were
located between 4.75 s and 5.25 s, and in the last version the sound event onsets were
located between 9.25 s and 9.75 s. We will refer to these subsets as 500ms, 5500ms
and 9500ms, respectively. These are designed to study the sensitivity of the SED
segmentation to sound event location in time. In particular, we wanted to control if
SED systems were learning a bias in terms of time localization depending on the event
length (e.g., long sound events would most often start at the beginning of the sound
clip). Related results are discussed in Section 3.5.

3.4.6.4 Long sound events vs. short sound events

A subset with 522 soundscapes was generated where the background was selected from
one of the five long sound event classes (Blender, Electric shaver/toothbrush, Frying,
Running water, and Vacuum cleaner). The foreground sound events were selected from
the five short sound event classes (Alarm/bell/ringing, Cat, Dishes, Dog, and Speech).
Three variants of this subset were generated with the same sound event scripts, and
varying values of the background SNR parameter: 0, 15, and 30 dB in the first, second,
and third subsets respectively. These subsets are referred to as ls_0dB, ls_15dB and
ls_30_dB, respectively. This experiment is designed to study the impact of a sound
event being in the background or the foreground on SED performance [77]. Related
results are discussed in Section 3.4.9.1.

45

46 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

3.4.7 Evaluation metrics

Submissions were evaluated with event-based measures for which the system output
was compared to the reference labels event by event [69]. The correspondence between
sound event boundaries was estimated with a 200ms tolerance collar on onsets and a
tolerance collar on offsets that are a maximum of 200ms and 20% of the duration of
the sound event. When sound event classes are taken into account, the overall F1 score
is the unweighted average of the class-wise F1 scores (macro-average). The metrics are
computed using the sed_eval library [69].

3.4.8 Robustness to noise and degradations

In this section, we focus on the impact of signal degradation on the SED and the
FBSNR performance. Each participant was allowed to submit up to four different
systems. Only the F1-score for the top-performing system (on fbsnr_24dB) for each
participant is presented here. We limit the analysis to the 10 top-performing systems.
Of the top 10 performing systems, 9 were based on CNN and 7 included recurrent
layers, the most common input features were log-mel energies and the most common
post-processing approach was median filtering. For further details about each system
see the submission reports [78, 74, 79, 71, 80, 81, 70, 72, 82, 83].

3.4.9 Simulated degradations

System Event-based F1-score
fbsnr_24dB phone_play phone_record clipping compression highpass lowpass

Agnone, PDL [78] 39.1% 15.4% 9.2% 14.6% 29.6% 8.5% 0.9%
Cances, IRIT [74] 47.1% 25.7% 35.8% 42.6% 44.3% 19.2% 1.2%
Chan, NU [79] 41.2% 25.9% 17.5% 22.8% 33.4% 19.3% 1.2%
Delphin-Poulat, OL [71] 53.6% 32.9% 23.7% 29.5% 48.2% 23.3% 4.8%
Kiyokawa, NEC [80] 36.8% 33.9% 21.9% 35.6% 40.2% 22.1% 4.2%
Lim, ETRI [81] 38.9% 26.9% 30.3% 39.7% 48.1% 15.4% 0.7%
Lin, ICT [70] 43.7% 22.4% 9.3% 19.8% 35.3% 17.6% 0.5%
Shi, FRDC [72] 46.4% 35.0% 36.4% 48.3% 54.1% 17.4% 4.0%
Yan, USTC [82] 36.5% 22.1% 21.5% 18.3% 32.7% 16.6% 1.0%
Zhang, UESTC [83] 43.7% 21.8% 15.3% 24.6% 41.4% 14.1% 1.7%
Average score (all participants) 33.9% 22.0 % 16.4% 21.6% 31.4% 15.8% 1.7%

Table 3.8: F1-score performance on the degraded synthetic soundscapes

The F-1 score obtained on the degraded subsets is presented in Table 3.8. The
performance on fbsnr_24dB subset is presented here for comparison.

Some systems seemingly over-fitted the synthetic soundscapes subset of the training
set and as a result, their performance decreased for most of the degradations. Otherwise,
the trend was similar for most of the systems. The submitted systems were found to be
robust to smartphone-related degradations and compression. This can be related to
the fact that they had been trained on audio data extracted from YouTube, which had

46

47 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Figure 3.10: SED performance depending on the FBSNR.

probably been recorded using smartphones. On the other hand, all systems seem to be
very sensitive to low-pass and high-pass filtering which tends to indicate that systems
are not robust to changes in the frequency range of the input representation between
training and test.

3.4.9.1 Foreground-to-background Signal-to-noise ratio

In Figure 3.10, we present the F1-score performance for the 10 top-performing systems
mentioned above under varying FBSNR (see Section 3.4.6.1). The trend for all systems
is similar, so no submission stands out in terms of robustness to noise. Interestingly, on
fbsnr_15dB where FBSNR should be distributed almost evenly around 0 dB, F1-score
performance is still acceptable for most systems and remain in the range of what was
obtained on real recording clips [84]. Unsurprisingly, on fbsnr_0dB, the FBSNR is
always negative and the performance for all systems collapses.

We then propose to analyze the systems’ performance when the background is
actually one event from the long sound event classes and the foreground sound events
are selected from the short sound event classes (see Section 3.4.6.4). In Figure 3.11, we
present the F1-score performance for the 3 top performing systems (on this particular
task) together with the performance averaged over all systems.

In all cases, when the FBSNR is low, all systems consistently obtain better perfor-
mance on long sound event classes. On the other hand, when the FBSNR is high, all
systems obtain better performance on short sound event classes. When the FBSNR
is 0dB, most systems perform similarly on short sound event classes and long sound
event classes. This shows that the bias toward long event classes observed in DCASE
2018 [59, 60] is less important in this (2019) case. The trend is confirmed by the
performance on short or long sound event classes that are within the same range in
the most favorable cases (0 dB FBSNR for the long sound event classes, 30 dB for the

47

48 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Figure 3.11: SED performance and FBSNR for soundscape composed of a long event
and multiple short events.

Figure 3.12: Segmentation (event localization) performance for long sound event classes.

short sound event classes). However, the system submitted by Lin et al. [70] does not
follow this trend and mostly performs better on long events. This could be due to the
guided learning methods that biases the mean teacher model. The teacher labels are
converted to 0/1 predictions instead of probabilities which may increase the number of
with a positive label and introduce a bias towards long events.

3.5 Segmentation

We now focus on system performances for segmentation, i.e., sound event localization
time (regardless of the sound event class). Event segmentation refers to finding both
the onset and offset time for each sound event. We especially consider the scenario in

48

49 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Figure 3.13: Long sound event classes: Time distribution of the onsets and the offsets
in the synthetic soundscapes subset of the DESED training set.

Section 3.4.6.3, in which three versions of a sound clip are generated with the same
background and the same sound event starting either at the beginning, in the middle,
or at the end of the sound clip. The F1-score performance is presented for the 3
top-performing systems (on this particular task) together with the performance of the
baseline system [84].

For short sound event classes, the F1-score performance is similar wherever the
sound event is located within the segment.

For the long sound event classes, performances are shown in Figure 3.12. This shows
the F1-score for segmentation, onset, and offset detection for long sound event classes
(but regardless of the sound event class). We see that the position of the long sound
event in the clip affects the performance, which becomes worse when the sound event is
near the end of the clip.

One reason could be that in the training set, long sound events start and end largely
at the start of the clips. However, Figure 3.13 shows that long and short sound events
start at similar times. Long sound events also often end near the end of the clip. Thus,
if there was any bias from training, it should have helped to find better endings for
long sound events towards the end of the clips. This is true – all systems can find good
endings for long sound events that start in the middle of the clip. But in this case,
most of these sound events also end near the end of the clip (see Figure 3.14). An
alternative explanation is that the submitted systems are simply not able to detect a
long sound event class toward the end of the sound clip. For example, median filtering
with variable length, which is used in most of the submissions (more than 0.5 s for long
sound event classes in some cases [70, 71]), would make it unlikely to detect a long
sound event class at the end of the sound clip. This hypothesis is confirmed by the fact
that the baseline that uses fixed-length median filtering as post-processing performs
similarly regardless of where the sound event is located.

49

50 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

Figure 3.14: Time distribution of the offsets for long event classes in the subsets 500ms
(left) and 5500ms (right) of DESED Evaluation set.

In summary, we tested all DCASE 2019 task 4 submissions on synthetic sound-
scapes. The analysis revealed that using internet video sound clips to train SED makes
the systems handle smartphone sound quality better. But despite the improvement
relative to the DCASE 2018 task 4, SED systems still depend on biases (especially for
segmentation) that would limit their use in real situations. As a mitigation strategy,
in DCASE 2019 we added a real recording from an unknown source (Vimeo) to the
evaluation set.

A possible solution for the segmentation problem would be to make the evaluation
set include the extreme cases discussed above and use separate sound events (not
soundscapes) so that more diverse training examples could be created. This could
reduce some of the bias in system design and learning for this task.

3.6 Key insights

The above chapter outlines advancements in the Detection and Classification of Acoustic
Scenes and Events (DCASE) Challenge, focusing on various tasks related to automatic
audio event and scene recognition. The chapter provides a detailed exploration of six
primary tasks, including acoustic scene classification, sound event detection, anomalous
sound detection, and more.

Key tasks as part of DCASE include:

• Acoustic Scene Classification: Progress in this field has been made, with state-
of-the-art systems leveraging convolutional neural networks (CNNs), attention
mechanisms, and data augmentation to improve generalization across devices.
Low-complexity solutions were also explored, with techniques such as depth-wise
separable convolutions enabling more efficient models.

50

51 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

• Anomalous Sound Detection: This task highlighted the use of deep learning-
based outlier detection techniques, with impressive results in detecting machine
anomalies. However, challenges remain in dealing with false positives and highly
variable anomalies.

• Sound Event Localization and Detection (SELD): Here, top-performing models
employed convolutional recurrent neural networks (CRNNs) to achieve accurate
spatiotemporal characterization of sound events. The systems performed robustly
in real-world environments, but further work is needed on handling domain shifts
and overlapping events.

• Sound Event Detection in Domestic Environments: Combining weakly labeled,
unlabeled, and synthetic data, this task demonstrated how data fusion and domain
adaptation techniques can be used to detect sound events in noisy domestic
environments.

• Few-shot Bioacoustic Event Detection: This task showcased the effective use of
few-shot learning to detect novel animal vocalizations with only a handful of
examples.

• Automated Audio Captioning and Retrieval: Advances in generating free-text
descriptions for audio and retrieving relevant audio clips based on text queries were
explored, pointing to future applications in multimedia retrieval and intelligent
machine interaction.

The chapter effectively illustrates how cutting-edge machine learning techniques,
especially deep learning architectures like CNNs and CRNNs, have driven advances
in acoustic scene classification and event detection. It emphasizes the importance of
model generalization, domain adaptation, and handling real-world challenges such as
device variability and overlapping sound events. Despite the substantial progress, open
challenges like false positives, overlapping events, and segmentation accuracy indicate
that further research is needed.

3

3Code is available at https://github.com/ankitshah009/\/
Task-4-Large-scale-weakly-supervised-sound-event-detection-for-smart-cars

51

https://github.com/ankitshah009/\/Task-4-Large-scale-weakly-supervised-sound-event-detection-for-smart-cars
https://github.com/ankitshah009/\/Task-4-Large-scale-weakly-supervised-sound-event-detection-for-smart-cars

Section III: Training models with Weak
labels

Training models with weak labels is a crucial aspect of audio classification and sound
event detection, especially when access to precisely labeled data is limited. Chapters
4, 5, and 6 lay the foundation for understanding the methodologies and challenges
associated with learning from weakly labeled data.

Chapter 4 explores the foundational concepts of learning from weak labels, empha-
sizing the importance of weak labels in audio classification tasks. It introduces various
strategies to mitigate the challenges posed by weak labels, such as handling label noise,
label corruption, and label density. The chapter further discusses the effectiveness of
Convolutional Neural Networks (CNNs) designed specifically for weakly labeled audio
data, presenting experimental designs and results that highlight the impact of label
quality and density on model performance.

Chapter 5 addresses the complexities of learning from noisy and web-sourced data.
It presents the WeblyNet system, a novel approach for leveraging weak labels obtained
from the internet, which are inherently noisy and imprecise. The chapter details the
challenges of using such data and proposes a co-training method that significantly
improves model performance compared to directly using weak labels. This method relies
on using two complementary networks to refine the learning process, demonstrating the
potential of webly labeled data to supplement traditional training datasets.

Chapter 6 extends the discussion to semi-weak labels, which incorporate additional
cues such as event counts and proportions. The chapter introduces a two-stage framework
for semi-weak label learning, where the first stage estimates class counts, and the
second stage assigns instance labels based on these counts. This method improves the
granularity of weak labels with minimal additional annotation, leading to improved
classifier performance.

Together, these chapters provide a comprehensive view of the techniques and
strategies developed to train models effectively using weak, noisy, and semi-weak labels.

52

53 CHAPTER 3. DCASE: DETECTING SCENES AND EVENTS

They establish the theoretical and practical foundations for advancing sound event
detection in scenarios where precise labeling is not feasible, paving the way for more
robust and scalable audio classification systems.

53

4
Learning from weak labels

Traditional training methods for training sound-event classifiers require strongly labeled
data – audio recordings where each instance of the target sound event is marked, along
with its temporal boundaries. Such data being hard to obtain, we must weaken the
requirements of labeling. In this context, the weakest form of labeling is one where
only the presence or absence of a sound event in a recording is marked, with no further
indication of the number of occurrences of the recording or their locations in the
recording. Approaches that can learn classifiers from this lattermost class of label are
what we refer to as “weak label” approaches.

The development of weak labeling approaches for audio event detection (AED) has
opened up the possibility of large-scale AEDs. However, a deeper understanding of how
weak labeling affects the learning of sound events is still missing from the literature.

In this work, using a CNN-based approach for weakly supervised training of audio
events, we study the effect of factors that naturally arise in weakly supervised learning
of sound events on the generalization of the models. Specifically, we empirically analyze
how two important factors, namely, label density and label corruption, affect the learning
process in weakly supervised training of audio events.

4.1 Background - Importance of Weak labels
The problem of audio event detection (AED) deals with automatically analyzing the
audio content of multimedia data to identify different sound events. The development of

54

55 CHAPTER 4. LEARNING FROM WEAK LABELS

large-scale AED techniques has been slow due to the lack of availability of large datasets
and the difficulty in annotating data for sound events. Many datasets [85, 86, 87, 88]
released in the last decade were small-scale both in terms of amount of training data
and vocabulary of sound events. Supervised learning methods that rely on strongly
labeled exemplars for training or time-stamped information to extract event exemplars
are not expected to be a scalable approach to AED, as large amounts of strongly labeled
data are very hard to come by. In fact, large-scale AED has been possible primarily
due to techniques that learn from weakly labeled data [89]. Following [89, 20], several
works on weakly supervised learning have been proposed, and this is now the primary
mechanism to train audio classifiers.

It should be noted that all of these works use manually created weakly labeled
datasets such as Audioset [16], which is a weakly labeled sound event dataset that, to
the best of our knowledge, is currently the largest dataset for sounds. As a reminder, a
primary motivation behind our work on weak labeling is to scale AED by exploiting
the web data without manual labeling effort, e.g., by using metadata associated with
web videos to automatically tag them with sound event labels. Consumer-generated
web videos are recorded under unstructured conditions; occurrences of sound events
could be corrupted by noise/other events, leading to huge intra-class variations, making
the problem more challenging. This signal noise is, however, not the focus of this work.

In this chapter, we take a closer look at AED using weakly labeled data by analyzing
two factors: label density and label noise, both of which are generally expected to induce
noise in labels during the learning process.

Label density measures what percentage of a weakly labeled recording actually
contains the labeled event. Label noise refers to incorrectly labeling audio events. It can
occur due to several reasons. In the case of manual labeling, sound events are sometimes
hard to interpret„ leading to incorrect labeling. However, label noise becomes a bigger
problem when we attempt to work with labels obtained through automated methods,
and it is essential to understand how this might affect the learning process. So far,
there is little work on understanding label noise for sound events, although there is
some literature on this related to vision tasks [90][91][92].

In [93], the authors have used label noise in weakly supervised learning and have
proposed a unified learning framework that learns simultaneously from strongly and
weakly labeled data. They proposed a graph-based semi-supervised learning method,
which can be hard to scale for large amounts of audio data. In[94], the authors propose
methods for transient sounds that can be thought of as being related to label density
to a certain extent.

In the sections below, we quantify the effect of label noise and label density and

55

56 CHAPTER 4. LEARNING FROM WEAK LABELS

study how these affect learning from weak labels. We first describe a weak label learning
approach that achieves state-of-the-art results on Audioset. Later, we also describe how
we build and analyze a weakly labeled dataset in a fully automated fashion to aid AED.

4.2 CNN for Weakly labeled audio
In our work, we use the CNN-based AED model based on the one described in [95].
The CNNs in the model are designed for X ∈ Rn×m input, where n (row) is the time
dimension and m (column) is some multidimensional feature vector. n depends on the
duration of the recording, and m on the type of feature representation used to represent
the data.

We use two different input features in our work: logMel spectrograms and the
embeddings obtained from Google for the Audioset dataset [96].

The logMel spectrogram of an audio recording is represented by X ∈ Rn×m. In this
case, n is the number of log Mel frames, and m is the number of Mel filters used in
the representation. In this work, we m = 128 Mel-filters. We use the term “frame” to
refer to the ith 128-dimensional time frame, and “segment” to represent a small segment
of the whole audio recording. In terms of logMel features, a segment is a collection of
k continuous frames (k × 128 matrix). For example, k = 128 represents a 1.5 second
segment of the audio recording.

The Google embeddings for Audioset comprise a 128-dimensional feature vector for
each 1-second segment of the audio recording. This leads to a R ∈ n× 128 dimensional
representation for any audio, where n is the duration of the audio recording in seconds.

Given a collection of weakly labeled recordings (Xi, yi), the goal is to design a
network architecture that can learn from this weakly labeled dataset. We would expect
the network to factor in the fact that the labels are weak.

Our network is inspired by [95]. We refer to our weakly labeled network as WalNet.
The WalNet architecture is shown in Figure 4.5 for both logMel and Google-embedding-
based input features. The networks for both features consist of convolutional blocks,
which first predict the posteriors for each class at the segment level. These segment-level
outputs are mapped by a mapping function to produce recording-level outputs. Our
mapping function is an average() function. Thus, the recording level output for any
class is the average of the segment-level outputs. Using the recording level outputs,
we compute the loss with reference to the target labels and train the network using
backpropagation.

56

57 CHAPTER 4. LEARNING FROM WEAK LABELS

Figure 4.1: WalNet CNNs for Audio Events. The upper network is the CNN for logMel
features. The network shown in the lower portion is for Google embedding features.
The network provides an output at two levels of granularity - segment level output and
recording level output

4.2.1 Characteristics of WalNet

Our network design embodies the different aspects of weakly labeled learning. It is
designed to predict posteriors at the recording level by first predicting class posteriors
at the segment level. The principle applied here is that we scan through the recording
and predict outputs at every small segment. Once we know what happened at the
segment level, we can use it to assign what will occur at the recording level. Thus, the
network does not make any assumptions about labeling within the recordings.

Moreover, the network is fully convolutional, allowing it to handle variable length
recordings. The network design controls the size of the segments over which posteriors
are predicted. The network design can also control the amount by segments that are
shifted.

In the specific case of LogMel WLAT in Fig 4.5, the segment size is 128 frames (∼ 1.5
seconds), and segments are shifted by 64 frames (∼ 0.75 seconds). Hence, consecutive
segments overlap by 50%. The number of segments obtained after layer L8 depends on
the duration of the audio recording. For example, an audio recording consisting of 864
logmel frames (R ∈ R864×128) will produce K = 12 segments at L8. These segment-level
outputs also be used for the temporal localization of sound events. Hence, the network
can localize events despite learning from weakly labeled data.

4.3 Label Noise, Label Density, and Corresponding Experimen-
tal Designs

4.3.1 Labels Density
Label density indicates how much of a given audio recording contains the tagged event.
We formally define label density (LD) of a recording R, with respect to an audio event

57

58 CHAPTER 4. LEARNING FROM WEAK LABELS

e as
LDe

R =
D
R

(4.1)

Where D is the duration (any time unit) for which event e is present in recording R, and
L is the length of R. Correspondingly, label density noise (LDN) is LDN e

R = 1− LDe
R.

Label density noise is a measure of the weakness of the labels of a recording with respect
to a given event. For example, an audio recording where a sound event is present for
one-fourth of the duration of the recording is a weaker representation of the event than
an audio recording where the event is present for three-quarters of the duration.

Understanding how label density affects the learning process in a weakly supervised
learning framework is important. However, designing an evaluation strategy to measure
the impact of label density on the generalization capabilities of trained models is not
straightforward. Any such method would require one to measure the label density of
all recordings with respect to each event. This would require us to manually obtain
the duration for which each given event is present in the audio recording. Clearly,
this cannot be done for a large-scale dataset such as Audioset. Hence, we consider an
alternative view on label density, allowing us to study its impact on weakly labeled
AED empirically. This alternate view is based on the intuition that if we mine weakly
labeled audio from the web, the expected density of labels for a given audio event will
be lower for long-duration audio recordings. In other words, on average, long-duration
audio recordings will have higher “label density noise” than shorter audio recordings.

Taking this alternate view, we designed our experiment as follows:
Audioset has weak labels for YouTube audio recordings. On this dataset, weak

labeling was manually done on audio recordings that were of exactly 10 seconds duration
These 10-second audio segments were actually obtained from longer YouTube videos.

Let Ri be the ith recording, Y T i
id be its source YouTube recording, Si and Ei be

the start and end times of Ri in Y T i
id, and Li the list of events marked present in Ri.

Considering that the Ri are predominantly 10 seconds long, a high label density is
anticipated for these recordings. By extracting segments ranging from Si − 10 seconds
to Ei+10 seconds, and Si− 25 seconds to Ei+25 seconds from each Y T i

id, we generate
recordings that exhibit successively lower label densities and concurrently, higher label
noise. The weakly labelled sets thus obtained are denoted as Audioset-At-30 and
Audioset-At-60 for the former and latter cases respectively. This procedure is performed
for each tuple (Y T i

id, S
i, Ei, Li).

WalNet, our proposed model, is trained on these three sets to examine the effect of
label density on its performance. Given the design of our network, which accommodates
audio recordings of variable lengths, modifications in the length of the recordings do
not constitute an obstacle.

58

59 CHAPTER 4. LEARNING FROM WEAK LABELS

4.3.2 Corrupted Labels and Noise
Moreover, we perform the corruption so that the number of recordings marked to
contain the recording remains consistent with respect to the original labels. We perform
an analysis of the different values of r. The set of corrupted labels for each r will be
released for future works.

Labels that are incorrect or corrupted present a significant challenge. This issue
persists even in meticulously labeled datasets such as Audioset, where the authors have
acknowledged that the labels are imperfect, with numerous instances of false positive
labels1.

The quality of labels may significantly deteriorate when we endeavor to mine audio
directly from the web and automate the weak labeling process, employing metadata
associated with the audio (videos) to assign labels. The process could potentially result
in both false positive and false negative label assignments. This could lead to marking
an event as present in the recording when it is not, or inversely, failing to identify an
event and incorrectly marking the recording as devoid of the given sound event. We
conduct an analysis of this form of label noise by intentionally corrupting the labels in
Audioset.

We regard the labels from AudioSet as flawless or having 0% corruption, given that
Audioset is manually labeled, which may be assumed to be the optimal achievable
quality. We subsequently incrementally introduce label noise by manually corrupting
the assigned labels in Audioset. In specific terms, for a subset of the labeled tuples
(Y T i

id, S
i, Ei, Li), we corrupt Li by modifying the events in Li. This corruption process

is executed in a stratified manner, such that approximately r% labels for each event
are corrupted. This r% encompasses both false positive and false negative label noises.
Additionally, we orchestrate the corruption such that the quantity of recordings marked
as containing the event remains consistent with the original labels. We conduct an
analysis for different values of r.

4.3.3 Weakly Labeled Audio In the Wild
In order to deepen our understanding of weakly labeled learning for sound events,
particularly in the context of automated labeling and web data, we directly procure
audio recordings from YouTube associated with a specific sound event and use these
recordings to train our model.

We employ a straightforward yet efficient filtering method to acquire recordings for
a specific sound event. We retrieve videos by using search queries of the form “<sound
event name> sound”. The addition of the word “sound” significantly enhances the

1https://research.google.com/audioset/dataset/index.html

59

https://research.google.com/audioset/dataset/index.html

60 CHAPTER 4. LEARNING FROM WEAK LABELS

retrieval of relevant videos on YouTube. We consider the top 50 retrieved videos (each
under 4 minutes in duration) for each event and label these as containing the event.
If a video is retrieved for multiple events, it is labeled accordingly for each event. We
refer to this training set as YouTube-wild. In YouTube-wild, all forms of label noise can
occur, and label density can range from 0 to 1. Since the retrieval process is imperfect,
labeling all top 50 videos containing the event results in false positive labeling. This
implies that we assign a positive label to the recording even when the event is not
present. In the process, false negative labels are also naturally introduced. For example,
a video V retrieved for an event e1 might also contain another event e2, but unless V is
retrieved for e2 as well, we are unaware of this and mark e2 as not present in V .

The YouTube-wild dataset was created for a subset of 40 sound events from Audioset
and comprises approximately 1,900 recordings. Like Audioset, YouTube-wild is multi-
labeled. The selection of sound events for YouTube-wild was based on several factors.
Please see the appendix of this chapter for more details.

4.4 Experiments and Results
4.4.1 Dataset
The AudioSet dataset [16] comes pre-divided into three subsets: balanced training, Eval
and Unbalanced. We utilize the balanced training set as our training dataset for our
experiments. This balanced training set contains approximately 21,500 audio recordings.
The actual balanced trainingthe set available from Audioset is slightly larger due to a
few videos being unavailable for download. Most of the recordings are 10 seconds in
duration, though a few are less than 10 seconds. The total training data amounts to
around 60 hours. For our experiments, we use the Eval set from Audioset as our test
set, which consists of 19,789 recordings. Both the training and test sets contain at least
59 examples per class. From the Unbalanced set of Audioset, we extract a collection
of 12,676 recordings to use as a validation set in our experiments. This validation
set contains at least 30 examples per class. Audioset is a multi-label dataset with an
average of 2.7 labels per recording.

4.4.2 Acoustic Features, Implementation and Evaluation Met-
rics

As mentioned earlier, we use Logmel spectrograms and Google embeddings as our
features. For logmel spectrograms, all audio recordings are sampled at a 44.1 KHz
sampling rate. A window of ∼ 23 ms (1024 points) and window hop size of ∼ 11.5 ms
is used. The number of mel bands is set to 128. Hence, each frame of X ∈ Rk× 128

corresponds to the logmel representation of a 32 ms window. WAL-Net is designed to
produce outputs for a 128-frame segment moving by 64 frames. This corresponds to a

60

61 CHAPTER 4. LEARNING FROM WEAK LABELS

Table 4.1: Mean Average Precision on Audioset - 10-second recordings

Model AP
ConvNet (mean pooling) 20.3
ResNet (mean pooling) 21.8
ResNet-ATT [Xu et al., 2017a] 22.0
ResNet-SPDA [Zhang et al., 2016] 21.9
M&mnet [Chou et al., 2018] 22.6
WAL Net 22.9

segment size of ∼ 1.5 seconds and a hop size of ∼ 0.75 seconds.
For Google embeddings, we followed the procedure described in [96] and further

outlined here. 2

Hyper-parameters are tuned using the validation set. Adam optimization [97] is
used to train the networks and model selection (across different epochs), and parameter
tuning is done using the validation set. We used average precision (AP) [98] and area
under ROC curves for each event (AUC) [99] as evaluation metrics. The mean average
precision (MAP) and mean area under ROC curves (MAUC) over all events are used as
overall evaluation metrics.

4.4.3 Audioset Performance
Table 4.1 presents the Mean Average Precision (MAP) on the evaluation set across
all 527 sound events. To allow for a comparison with the current state-of-the-art, we
also include the reported figures from [100, 94]. As of the time of this work, WalNet is
capable of achieving state-of-the-art performance by using the balanced training set
from Audioset. An ensemble of M&mnet, as presented in [94], demonstrates slightly
superior performance with a MAP of 23.2. We anticipate that an ensemble of WalNet
models could yield comparable improvements.

4.4.4 Analysis of Label Density
The experimental setup for this portion adheres to the procedure outlined in Section
4.3.1. For the Audioset training set, we created two additional sets, designated Audioset-
At-30 and Audioset-At-60. These two sets, which contain approximately 180 and 360
hours of audio data respectively, have higher label density than the original Audioset.
We train WalNet using the original Audioset, Audioset-At-30, and Audioset-At-60. The
validation and evaluation sets remain identical to those in the original Audioset. The
original Audioset provides label density at 10-second intervals, so we are analyzing the
performance of models trained on datasets with weak labels available at 10-, 30-, and
60-second intervals.

2https://github.com/tensorflow/models/tree/master/research/audioset

61

https://github.com/tensorflow/models/tree/master/research/audioset

62 CHAPTER 4. LEARNING FROM WEAK LABELS

Table 4.2: Effect of label density on performance using AudioSet

Training Set Feature MAP MAUC
Audioset Log Mel Spec 21.3 0.923
Audioset-At-30 Log Mel Spec 21.8 0.928
Audioset-At-60 Log Mel Spec 21.6 0.923
Audioset Google Embedding [96] 22.9 0.919
Audioset-At-30 Google Embedding 22.4 0.905
Audioset-At-60 Google Embedding 22.4 0.908

Table 4.2 illustrates the impact of changes in label density on MAP and Mean Area
Under the Curve (MAUC) values. For logmel spectrograms, there is a minor performance
improvement when transitioning from Audioset to Audioset-At-30. However, a slight
decline in performance is observed when further transitioning to Audioset-At-60. Overall,
it could be contended that WalNet’s performance is not significantly affected by label
density.

This intuitively suggests that WalNet exhibits robustness to increases in label density,
a desirable trait in any weak label learning framework. The enhancement observed with
increasing audio lengths may be due to the corresponding increase in total training
data. However, it can be inferred that extended-duration recordings, assuming they are
available in large quantities, can be effectively utilized for training an architecture like
WalNet, given the minimal impact of label density.

4.4.5 Analysis of Labels Corruption
The analysis of label noise, specifically in the context of corrupted labels, adheres to
the procedure detailed in 4.3.2. We introduce artificially induced corruption in labels
at 9 different rates, denoted by r. Consequently, we obtain 9 distinct training sets. A
WAL-Net model is trained on each of these training sets, utilizing Google embeddings as
input. The validation and evaluation sets are maintained as before. Fig. 4.2 illustrates
MAP values for different rates of corruption, r. The case where r = 0 corresponds to
the original training set from Audioset.

The model demonstrates reasonable robustness to additional noise up until r = 15.
A 15% noise in labels results in only about a 5.9% relative decrease in performance.
This showcases WAL-Net’s resilience to label noise up to a certain extent. However,
at extremely high corruption levels, specifically r = 40 and r = 50, a significant
decrease in performance is observed as expected. The MAP at these corruption rates
are 17.40(−24%) and 16.81(−26.4%) respectively.

From this, it can be concluded that corrupted labels play a significant role, and
depending on the extent of label noise, the performance degradation for a state-of-the-art

62

63 CHAPTER 4. LEARNING FROM WEAK LABELS

Figure 4.2: Effect of corruption of labels on performance. The X-axis represents
corruption level r in %. The Y-axis shows MAP (Mean Average Precision) and %
reduction in MAP compared to no corruption.

Table 4.3: Weakly Labeled Audio in the Wild. Comparison with manually labeled
Audioset

Training Set MAP MAUC
Audioset-40 54.3 0.938
YouTube-Wild 38.0 0.872

method can range from moderate to severe. Although a deep learning model like WalNet
demonstrates a degree of robustness, label noise remains a significant challenge for
future works on Acoustic Event Detection (AED) utilizing weak labels, especially those
relying on YouTube data. Such work should account for the likelihood of corrupted
labels and model accordingly. As previously noted, even a manually labeled dataset
like AudioSet is not immune to label noise, and it can be anticipated that any other
large-scale weakly labeled dataset will encounter the same issue. Therefore, training
algorithms should be designed considering the presence of label noise in datasets.

4.4.6 Weakly Labeled Audio in the Wild
We now present the performance results for YouTube-wild. For comparison purposes,
we trained WalNet on the subset of Audioset training recordings that correspond to
the 40 events included in the YouTube-wild vocabulary. This subset is referred to as
Audioset-40 and comprises approximately 4,650 recordings. The objective is to draw
a comparison between YouTube-wild and a manually labeled set. The list of events

63

64 CHAPTER 4. LEARNING FROM WEAK LABELS

and the YouTube-wild dataset will be made publicly available on our GitHub page.
Evaluation is once again conducted on the recordings from the Eval set of Audioset,
with results presented for Google embedding features.

We note a significant performance disparity between Audioset-40 and YouTube-wild.
Specifically, compared to the manually labeled and scrutinized Audioset-40, YouTube-
wild lags behind by an absolute 16.3% or 30% relative in terms of MAP. This outcome
underscores the importance of careful examination of how weak labels function for
sound event identification and the need to develop more robust learning methodologies.

4.5 Conclusion
In this chapter, our objective was to delve into the challenges associated with large-scale
AED using weakly labeled data, thereby providing a foundation for future research
in this field. We introduced a CNN-based framework designed to learn from weakly
labeled audio recordings and demonstrated its state-of-the-art performance on AudioSet.
Subsequently, we outlined various ways in which label noise might appear in weakly
labeled data. We proposed experimental designs aimed at examining the effects of label
density and labels corruption on performance. As we highlighted in this study, label
density is an inherent aspect of the weak label learning paradigm, but its effects on
performance are minimal. Conversely, label noise can have a moderate to severe impact
on performance.

In addition, we explored the potential of directly mining weakly labeled data from
the web and compared it with AudioSet, which consists of manually labeled short audio
recordings. Our findings indicate a significant need for further work in this area, given
the considerable performance gap.

4.6 Appendix

4.6.1 CNN Architecture

Let’s consider each recording and its weak labels as pairs (Ri, Yi), where Ri is the
ith recording and Yi represents its corresponding label. The label vector, Yi, is a C-
dimensional vector with C denoting the total number of classes. Each index j of this
vector is assigned a value of 1 if the Cth

j sound event is present, otherwise 0. Our goal
is to train a network using this weakly labeled dataset, acknowledging that the labels
are weak. This means that even though we have a label for the entire recording, the
labeled event may not necessarily persist throughout the recording, which complicates
loss calculation and network training.

Let’s represent the segments of the recording Ri as SRi
k , where k = 1, 2, ...K. Here,

64

65 CHAPTER 4. LEARNING FROM WEAK LABELS

Figure 4.3: General Schema of Weak Label Training. The network is designed to
produce segment level outputs first and these segment level outputs are then mapped
by the mapping function g() to obtain recording level output. The loss computation
and updates can then be done using these segment level outputs.

K indicates the total number of possible segments for the recording Ri considering a
certain segment and hop size. We’ll assume that f(SRi

k), where k = 1, 2, ...K, are the
network outputs for the recording segments. Each f(SRi

k) is a C-dimensional vector.
Our method of weak label training chiefly involves mapping these segment-level outputs
to the recording-level, thereby generating a single vector that represents the class-wise
output for the entire recording. Once we have the recording-level outputs for all classes,
we can compute the loss function with the recording-level label Yi and train the network.
This concept is formalized in Eq. 4.2.

Loss(Ri) = L(g(f(SRi
1), , , f(SRi

2),, f(SRi
K))), Yi) (4.2)

In Eq. 4.2, the function g() is used to map the segment-level predictions (f(SR
i)) to

the recording-level prediction. The loss (L loss function) is then computed by comparing
this recording-level prediction with the recording-level label, Yi. The mapping function
g() can be any function that inspects segment-level predictions and uses this information
to generate an output for the entire recording. This formulation encapsulates the notion
that weak labels, which are labels for the entire recordings, originate from the presence
or absence of events at lower levels, such as at the segment level. The purpose of the
mapping function is to analyze these segment-level outputs and generate the recording-
level output based on them. The general structure for Weakly LAbeled Training (WLAT,
pronounced "dub-lat") is depicted in Figure 4.3.

65

66 CHAPTER 4. LEARNING FROM WEAK LABELS

4.6.2 Multi-Label Training for WAL-Net

An audio recording can have multiple classes present in it. The weakly labeled Audioset,
on an average consists of 2.7 labels per recording. Hence, the training procedure needs
to consider presence of multiple labels in the recording. The output of WLAT gives
class specific posteriors for any given input. The binary cross entropy loss with respect
to each class is then given by Eq. 4.3.

l(yc, pc) = −yc ∗ log(pc)− (1− yc) ∗ log(1− pc) (4.3)

yc is the target output for cth class, 1 if cth event is marked to be present and 0

otherwise. pc = WLAT(X) is the network output for the cth class. The training loss is
the mean of losses over all classes

L(X, y) =
1

C
∗ ΣCs

c=1 l(yc, pc). (4.4)

Figure 4.4: WALNet for Audio Events. The upper network is CNN for logmel features.
The network shown in the lower portion is for Google embedding features.

WALNet CNN for Logmel: As shown in the top half of Figure 4.5, we have a CNN
network for logmel features. Any given audio recording is represented by R ∈ Rm×128,
considering we use 128 mel-bands in logmel representations and m stands for the number
of logmel frames for R.

The blocks of layers from L1 to L5 are composed of two convolutional layers, followed
by a max pooling layer. Prior to the non-linear activation function, each convolutional
layer has batch normalization. The ReLU function (max(0, x)) is used in all layers from
L1 to L6, and 3× 3 convolutional filters are used throughout. The stride and padding
values are consistently set to 1. The number of filters used in different layers is as
follows: L1: 32, L2:64, L3:128, L4:128, L5:256, L6:512 . Note that L1 to L5 consist of
two convolutional layers followed by max pooling, while L6 only has one convolutional
layer followed by a max pooling layer. Both convolutional layers in these blocks use the

66

67 CHAPTER 4. LEARNING FROM WEAK LABELS

Figure 4.5: WALNet CNN architecture block level details for log mel features.

same number of filters. The max pooling operation is applied over a 2× 2 window, and
logmel inputs are treated as single channel inputs.

Layer L7 is a convolutional layer with 1024 filters of size 2 × 2 and uses ReLU
activation. The stride is set to 1 and no padding is used. Layer L8 produces segment
level output and is a convolutional layer consisting of Cs filters of size 1× 1, where Cs

is the number of classes in the dataset. This layer uses a sigmoid non-linear activation
function. The mapping function g() averages the segment level outputs for each class.

WALNet for Google Embeddings: Google provides a VGG-like network to compute
segment level embedding for any recording. This network, trained on a substantial
amount of data (over 5 million hours) through strong label assumptions, is expected
to yield discriminative representations for audio recordings. The embeddings are 128-
dimensional quantized vectors, with the details of the embeddings available in [101]3.
Each 1-second of audio recording is assigned an embedding, so a 10-second audio
recording would result in a 10× 128 matrix representation. Thus, each audio recording
is represented by R ∈ RN×128, with N being the number of embedding vectors for the
recording.

The lower half of Figure 4.5 displays the WLAT CNN architecture for these embed-
ding features. The blocks of layers from L1 to L4 are composed of two convolutional
layers, followed by a max pooling layer. Each convolutional layer uses batch normal-

3https://github.com/tensorflow/models/tree/master/research/audioset

67

https://github.com/tensorflow/models/tree/master/research/audioset

68 CHAPTER 4. LEARNING FROM WEAK LABELS

ization followed by ReLU activation. The filter or kernel size, stride, and padding are
again 3 × 3, 1, and 1 respectively. The number of filters used in these blocks is as
follows: L1: 64, L2:128, L3:256, L4:512 . Both convolutional layers in these blocks use
the same number of filters. The max pooling operation is applied over a 1× 2 window,
which moves with the same stride. Layer L5 is a convolutional layer with 1024 filters of
size 1× 8, and ReLU activation is used again. The stride is set to 1 and no padding is
used. Layer L6 is another convolutional layer, this time with 1024 filters of size 1× 1.
Both of these layers apply batch normalization before the non-linear activations. Layer
L7 is the segment level output layer, and is a convolutional layer with C filters of size
1× 1 and uses a sigmoid non-linearity. The mapping function g() averages the outputs
again.

4.7 Datasets

4.7.1 Audioset

AudioSet is classified as a large-scale weakly labelled dataset. It includes weak labels
that have been manually annotated. Each entry in the data set consists of a recording
of 10 seconds or less, and these weak labels signify the existence of events within these
short clips. This dataset is multi-label, with each recording having, on average, 2.7
labels. It comes pre-partitioned into three sets. We utilize the Balanced set as our
training data. At the time of our acquisition, this set comprised approximately 21,500
recordings, which is about 60 hours of audio data. The actual balanced training set
offered by AudioSet is slightly larger, but some videos were unavailable for download at
the time of our retrieval. The Eval set of AudioSet is employed as our test or evaluation
set, which contains about 20,000 recordings in total. We use a subset of around 13,000
recordings from the unbalanced set as our validation set, ensuring at least 30 examples
for each class.

The AudioSet training data can be represented by tuples in the form of (Ri, Y T i
id, S

i, Ei, Li),
where Ri is the ith recording in AudioSet and Y T i

id is the corresponding YouTube id of
Ri. Si indicates the start time of Ri in Y T i

id, while Ei denotes the end time. Hence, Ri

is a segment of the video Y T i
id on YouTube, starting at Si and concluding at Ei. The

recordings Ri are weakly labeled (manually), and Li symbolizes the set of audio events
found in Ri. Consequently, this labeling implies that the set of events in Li are present
in Y T i

id between Si and Ei. For a deeper understanding, we refer readers to the label
sets provided by AudioSet4.

4https://research.google.com/audioset/download.html

68

https://research.google.com/audioset/download.html

69 CHAPTER 4. LEARNING FROM WEAK LABELS

Table 4.4: 10 Events with highest relative drop in performance

Events AudioSet-10 AudioSet-10 at 45 % label corruption AP Drop (% Drop)
Glass 0.080, (0.925) 0.005, (0.476) 0.074, (93.35)
Neigh, whinny 0.165, (0.945) 0.012, (0.692) 0.152, (92.59)
Owl 0.144, (0.929) 0.011, (0.564) 0.134, (92.51)
Knock 0.110, (0.947) 0.008, (0.529) 0.102, (92.43)
Tick-tock 0.109, (0.949) 0.009, (0.735) 0.100, (91.95)
Mouse 0.052, (0.934) 0.004, (0.697) 0.0478, (90.94)
Single lens reflex camera 0.052, (0.935) 0.005, (0.621) 0.047, (90.44)
Breaking 0.142, (0.973) 0.017 (0.782) 0.125, (88.06)
Tap 0.07, (0.) 0.008, (0.833) 0.068, (87.82)
Burping,eructation 0.090, (0.956) 0.014, (0.771) 0.076, (84.13)
Mean 0.101, (0.947) 0.014, (0.670) 0.087, (86.14)

4.7.2 YouTube-Wild

Vocabulary Selection: Numerous audio events in AudioSet represent a vast range
of meanings. The automated labelling process outlined above can yield insignificant
results for these events. Therefore, we chose to work with a smaller subset of events,
specifically, those with a more definitive meaning - that is, those that, when retrieved,
produce a relatively meaningful and pertinent set of audio recordings. The selection
process also considers the total number of examples available for the event in AudioSet.
We select events with a higher count of examples in AudioSet to analyze how YouTube-
Wild compares to AudioSet, which is manually labeled. This choice is driven by the
desire to better understand where YouTube-Wild stands in comparison to AudioSet.
YouTube-Wild is a dataset that is collected and labelled without manual intervention
and comprises lengthy audio recordings, unlike AudioSet, which is manually labelled,
and the weak labels apply to relatively short 10-second recordings. Both datasets
originate from YouTube, hence, the level of background noise is expected to be similar.
The most notable differences, however, are likely to stem from the two forms of “label
noise”.

In this chapter, we have elucidated deep learning techniques for detecting audio events
utilizing weakly labeled data. Our methodologies primarily depend on convolutional
neural networks, subsequently integrating the weak label constraints into the learning
procedure. The fundamental concept entails adopting a bottom-up strategy, where the
recording-level prediction is conducted through segment-level predictions. Within the
Weakly Labeled Audio Tagging (WALNeT) framework, the network is configured to
produce segment-level outputs directly, followed by a mapping function that converts
these segment-level outputs into recording-level outputs. The comprehensive framework
is universally generic and can be implemented with various network architectures. We
explored multiple mapping functions, some of which introduce attention-like behavior
into the framework. Other types of mapping function can also be developed.

69

70 CHAPTER 4. LEARNING FROM WEAK LABELS

From the viewpoint of weakly labeled audio event detection, our methodology
encapsulates several attractive qualities. It can manage recordings of differing lengths,
and the network design governs the segment sizes over which segment-level outputs
are created, eliminating any need for additional preprocessing steps. Our method
can achieve state-of-the-art performance. Particularly compared to the Segment-Level
Audio Tagging (SLAT) method, our WLAT approach performs superiorly and is also
less computationally demanding, resulting in enhanced training and inference times.

Additionally, we delved into the intricacies of weak label learning. We specifically
highlighted two factors likely to be encountered when learning from weakly labeled data.
Label density noise is a problem intrinsic to the nature of weak labels, and corrupted
labels are also anticipated to frequently occur. Considering that other deep learning
techniques for weakly labeled datasets have been proposed [102], it would be intriguing
to discern which methods are more robust against these label noises. It is crucial that
future research endeavors address these issues when learning from weakly labeled data.

5

5Code available at: https://github.com/cmu-mlsp/ankit-phd-thesis/tree/master/
WALNet-Weak_Label_Analysis

70

https://github.com/cmu-mlsp/ankit-phd-thesis/tree/master/WALNet-Weak_Label_Analysis
https://github.com/cmu-mlsp/ankit-phd-thesis/tree/master/WALNet-Weak_Label_Analysis

5
Learning from noisy and web data

Although weakly labeled data provide a significant simplification of labeling requirements,
compared to strongly labeled data, they still require significant manual effort in assigning
the weak labels themselves. In this work, we introduce webly labeled learning for sound
events, which aims to remove human supervision altogether from the learning process.
We first develop a method of obtaining labeled audio data from the web (albeit noisy),
in which no manual labeling is involved. We then describe methods to learn from
these webly labeled audio recordings efficiently. In our proposed system, WeblyNet, two
deep neural networks co-teach each other to robustly learn from webly labeled data,
leading to around 17% relative improvement over the baseline method. The method
also involves transfer learning to obtain efficient representations.

5.1 Motivation: Why deal with noisy and web data

As discussed previously, the long-standing problem in audio event detection (AED)
has been the availability of labeled data. Labeling sound events in an audio stream
requires marking their beginnings and ends. Annotating audio recordings with times
of occurrences of events is a laborious and resource-intensive task. Weakly-supervised
learning for sound events [30] addressed this issue by showing that it is possible to train
audio event detectors using weakly labeled data: audio recordings that are tagged only
with the presence or absence of the events as opposed to the time stamp annotations in

71

72 CHAPTER 5. LEARNING FROM NOISY AND WEB DATA

strongly labeled audio data.
Being able to work with weak labels is, however, only half the story. Even weak

labeling, when done manually, becomes challenging on a large scale; tagging a large
number of audio recordings for a large number of sound classes is non-trivial. Datasets
along the lines of AudioSet [101] are not easy to create and require considerable resources.
However, a significant advantage of weakly labeled learning is that it opens up the
possibility of learning from the data on the web without employing manual annotation,
thereby allowing large-scale learning without laborious human supervision.

The web provides us with a rich resource from which weakly-labeled data could be
easily derived. It removes the resource-intensive process of creating the training data
manually and opens up the possibility of completely automated training. However, this
brings up a new problem – the weak labels associated with these recordings, having
been automatically obtained through some means, are likely to be noisy. The challenge
now extends to being able to learn from weakly and noisily labeled web data. We call
such data webly labeled .

Several works have been on webly supervised learning of visual objects and concepts
[103, 104, 105]. However, learning sound events from webly labeled data has received
little to no attention. The main prior work here is [93], where webly labeled data have
been employed; however, to counter the noise in the labels, strongly labeled data are
used to provide additional supervision. Needless to say, the strong labels that act as
supporting data are manually obtained.

This chapter discusses an approach to utilize the web data to learn sound events.
Primarily, the goal is to eliminate human supervision altogether from the learning
process by proposing webly supervised learning of sounds. Webly labeled data by
default are weakly labeled and hence our proposed methods are designed for weakly
labeled audio recordings. Our motivation then is to introduce a learning scheme that
can effectively counter additional challenges of webly labeled data. We first present
the challenges of webly labeled learning of sounds and then an outline of the proposed
system in next section.

5.1.1 Challenges in Webly Labeled Learning

Webly labeled learning involves several challenges. The first one is obtaining the webly
labeled data itself. The challenge of obtaining quality exemplars from the web has been
well documented in several computer vision works [103, 106, 107, 105]. This applies
to sound events as well and is, in fact, harder due to the complex and intricate ways
we describe sounds [108]. Often, sound-related terms are not mentioned in videos, and
hence, text-based retrieval can lead to a much inferior collection of exemplars.

72

73 CHAPTER 5. LEARNING FROM NOISY AND WEB DATA

Nevertheless, a collection of exemplars for sound events obtained through automated
methods will contain incorrect exemplars or label noise. This is a major challenge from
the learning perspective. Learning from noisy labels has been a known problem [109],
and in recent years, effectively training deep learning models from noisy labels has also
started to get attention. However, it remains an open problem. Even here, most of the
work on learning from noisy labels has been in the domain of computer vision.

The next challenge is the presence of signal noise. Manual annotations keep in check
the overall amount of signal noise in the data. Even if the source of data is the web
(e.g. AudioSet), manual labeling ensures that the sound is at least audible to most
human subjects. However, for webly labeled data, the signal noise is “unchecked,” and
the sound event, even if present, might be heavily masked by other sounds or noise.
Signal noise in the webly labeled data is challenging to quantify and remains an open
research topic for future works.

In this work, we develop an entire framework to deal with such webly labeled data.
We begin by collecting a webly labeled dataset using a video search engine as the source.
We then propose a deep learning-based system for effectively learning from this webly
labeled data. Our primary idea is that two neural networks can co-teach each other
to robustly learn from webly labeled data. The two networks use two different views
of the data due to which they have different learning capabilities. Since the labels are
noisy, we argue that one cannot rely only on the loss with respect to the labels to train
the networks. Instead, the agreement between the networks can be used to address this
problem. Hence, we introduce a method to factor the agreement between the networks
in the learning process. Our system also includes transfer learning to obtain robust
feature representations.

5.2 Webly Labeled Learning of Sounds

5.2.1 Webly Labeled Training Data

Obtaining training audio recordings is the first step in the learning process and is a
considerable hard open problem on its own. The most popular approach in webly
supervised systems in vision has been text-query-based retrieval from search engines
[106, 107, 103]. Our approach is along similar lines where we use text queries to retrieve
potential exemplars from a video search engine, YouTube.

We must first select a “vocabulary” of sounds – terms used to describe sounds.
For this work, we use a subset of 40 sound events from AudioSet, chosen based on
several factors. These include preciseness in event names and definitions, the quality of
metadata-based retrieval of videos from YouTube, the retention of sound hierarchies,

73

74 CHAPTER 5. LEARNING FROM NOISY AND WEB DATA

Figure 5.1: Top 5 sound classes False positive rate False positive False Positive for the
5 sound classes with the highest FP.

and the number of exemplars in AudioSet (larger is better). 1

5.2.1.1 Obtaining Webly Labeled Data

Using only the sound name itself as a text query on YouTube leads to extremely noisy
retrieval. [110] argued that humans often use the phrase “sound of” in texts before
referring to a sound. Based on this intuition, we augment the search query with the
phrase “sound of”. This leads to a dramatic improvement in the retrieval of relevant
examples. For example, using “sound of dog” instead of “dog” improves the relevant
results (sound event actually present in the recordings) by more than 60% in the top
50 retrieved videos. Hence, we use the phrase “sound of <sound-class>” as the search
query for retrieving example recordings of each class.

We formed two datasets using the above strategy. The first one, referred to as
Webly-2k , uses the top 50 retrieved videos for each class and has around 1,900 audio
recordings. The second one, Webly-4k , uses the top 100 retrieved videos for each
class and contains around 3,800 recordings. Note that some recordings are retrieved
for multiple classes; hence, the datasets are multi-labeled, similar to AudioSet. Only
recordings under 4 minutes duration are considered.

5.2.1.2 Analysis of the Dataset

The average duration of the Webly-2k set is around 111 seconds, resulting in a total
of around 60 hours of data. Webly-4k is around 108 hours of audio with an average
recording duration of 101 seconds. As mentioned before, label noise is expected in these
datasets. To analyze this, we manually verified the positive exemplars of each class and

1For more details visit github page mentioned in Section 5.3.

74

75 CHAPTER 5. LEARNING FROM NOISY AND WEB DATA

estimated the number of false positives (FP) for each class. As may be expected, the
larger Webly-4k contains far more noisy labels than Webly-2k.

Figure 5.1 shows the FP counts for 5 classes with the highest false positives. Note
that for these classes, 30-50% of the examples are wrongly labeled to contain the sound
when it is actually not present. However, FP values can also be low for some classes,
e.g., Piano and Crowd. Estimating false negatives requires one to manually check all
of the recordings for all classes, which makes the task considerably tricky. Even the
AudioSet dataset has not been assessed for false negatives (FN), and we also keep FN
estimation out of the scope of this paper.

5.2.2 Our Approach: WeblyNet

The manual verification in the previous section was done only for analysis; the actual
goal is to learn from noisily-labeled Webly-4k (or -2k) directly. Robustly training neural
networks with noisy labels remains a very hard problem [111]. Several methods have
been proposed, especially in the vision domain [112, 103, 104, 113, 111, 109]. These
methods include bootstrapping, self-training, pseudo-labeling, and curriculum learning,
to mention a few. Another set of approaches tries to estimate a noise transition matrix
to estimate the distribution of noise in labels [112]. However, estimating the noise
transition matrix is not an easy problem as it is dependent on the representation and
input features. Conventionally, ensemble learning has also been helpful in handling
noisy labels [109].

In supervised learning, neural networks are trained on some divergence measure
between the output produced by the network and the ground truth label. As the network
is trained, the noise in the labels will lead to wrong updates in parameters, which
can affect the generalization capabilities of the network [114]. Some recent approaches
have used the idea of having two networks working together to address this problem
[115, 116]. [115] gives a “when to update rule” where networks are updated when they
disagree. In [116], networks co-teach each other by sampling instances for training
within a minibatch.

Our approach is fundamentally based on the idea of training multiple networks
together, where the agreements (or disagreements) between the networks are used for
improved learning. The method incorporates ideas from co-training and multi-view
learning. Multi-view learning methods (e.g., co-training [117][118]) are primarily semi-
supervised learning methods where learners are trained on different views of the data.
The goal is to maximize their agreement on the unlabeled data. Our proposed method
exploits this central idea of the agreement between classifiers to address the challenges
of webly labeled data. The intuition is as follows: Two (or more) independent classifiers

75

76 CHAPTER 5. LEARNING FROM NOISY AND WEB DATA

Algorithm 1 WeblyNet system
Input: Networks N1 to NK , Representation R1 to RK of audio recordings for different
networks and labels Y of the recordings, learning rates η1 to ηK , divergence weights α1

to αK(K−1)/2, number of epochs nepochs

Output: Jointly trained networks
1: for n = 1, 2,nepochs do
2: for k = 1, 2,K do
3: Compute loss, Lk(Nk, Y) w.r.t label Y for network Nk

4: end for
5: for k = 1, 2,K(K − 1)/2 do
6: Compute divergence D(Ni(Ri),Nj(Rj)) between each pair of networks
7: Weigh each divergence by its corresponding hyperparameter α
8: end for
9: Combine all loss terms L() and divergence terms D()

10: Update networks based on the combined loss.
11: end for

operating on noisily labeled data are likely to agree with the provided label when it is
correct. When the given label is incorrect, the classifiers will unlikely concur with it.
However, they are likely to agree with one another if both independently identify the
correct label. Hence, the networks can inform each other of the errors they are making
and help in filtering out those that are coming from noisy labels, thereby improving the
overall robustness of the networks.

In contrast to prior work such as [116], our proposed method explicitly ties in
the co-teaching of the networks by having a disagreement measure in the loss term.
Moreover, in our method, the two networks operate on different views of the data and
hence have different learning abilities. As a result, they will not fall into a degenerate
situation where both networks essentially end up learning the same thing. This allows us
to combine the classifiers’ outputs during the prediction phase, which further improves
the performance. We refer to our overall system as WeblyNet.

Furthermore, our method is easily extended to more than two networks. The
central idea remains the same: a divergence measure captures the disagreement measure
between two given network pairs. Given K networks in the system, K(K − 1)/2 pairs
of disagreements can be measured. These disagreement measures along with losses with
respect to the available ground truths are then used to update the network parameters.
Each divergence measure can be appropriately weighed by a scalar α to reflect the
weight given to that particular pair of networks. Algorithm 3 outlines this procedure.

In this work, we work with only two networks. Figure 5.2 shows an overview of
the proposed method. The two networks, “Network 1" and “Network 2," take two

76

77 CHAPTER 5. LEARNING FROM NOISY AND WEB DATA

Figure 5.2: WeblyNet System: Network 1 (N1) is a deep CNN with first view of data
as input. Network 2 (N2) takes in the second view of data obtained through transfer
learning. The networks are trained together to co-teach each other.

different views of the data as input. The networks are trained jointly by combining
their individual loss functions and a third divergence term, which explicitly measures
the agreement between the two networks. The individual losses provide supervision
from given labels, and the mutual agreement provides supervision when the labels are
noisy.

5.2.2.1 Two Views of the Data

Our primary representation of audio recordings are embeddings provided by Google
[96]. The embeddings are 128-dimensional quantized vectors for each 1 second of audio.
Hence, an audio recording R, in this first view, is represented by a feature matrix
X1 ∈ RNX128, where N depends on the duration of the audio. The temporal structure
of the audio is maintained by stacking the embedding sequentially in X1. The first
network N1 is trained on these features.

Several methods exist in the literature for generating multiple views from a single
view [118]. In this work, we propose to use various non-linear transforms through a
neural network to generate the second view (X2) of the data. To this end, we use
a network trained on the first view X1 to obtain the second view of the data. This
network is trained on another large-scale sound events dataset (different from the webly
labeled set we work with). One motivation is that, given the noisy nature of webly
labeled data, a network trained on a large-scale dataset such as AudioSet can provide
robust feature representations (as in transfer learning approaches [119]).

We first train a network (N1 with C = 527) on the AudioSet dataset and then use
this trained model to obtain feature representations for our webly labeled data. More
specifically, the F2 layer is used to obtain 1024-dimensional representations for the audio
recordings by averaging the outputs across all 1-second segments. This representation

77

78 CHAPTER 5. LEARNING FROM NOISY AND WEB DATA

learning through knowledge transfer, as shown empirically later, is significantly useful
in webly labeled data where a higher level of signal noise and intra-class variation is
expected.

5.2.2.2 Network Architectures: N1 and N2

N1 is trained on the first (X1) audio representations. It is a deep CNN. The layer blocks
from B1 to B4 consists of two convolutional layers followed by a max-pooling layer. The
number of filters in both convolutional layers of these blocks are, { B1:64, B2:128, B3:256,
B4:256 }. The convolutional filters are of size 3× 3 in all cases, and the convolution
operation is done with a stride of 1. A padding of 1 is also applied to inputs of all
convolutional layers. The max-pooling in these blocks are done using a window of size
1× 2, moving by the same amount. Layer F1 and F2 are again convolutional layers with
1024 filters of size 1×8 and 1024 filters of size 1×1, respectively. All convolutional layers
from B1 to F2 include batch-normalization [120] and ReLU (max(0, x)) activations.
The layer represented as C is the segment-level output layer. It consists of C filters of
size 1× 1, where C is the number of classes in the dataset. This layer has a sigmoid
activation function. The segment-level outputs are pooled through a mapping function
in the layer marked as G to produce the recording-level output. We use the average
function to perform this mapping.

The network architecture N1 achieves state-of-the-art results on AudioSet when
trained with C = 527 (i.e. all 527 classes in AudioSet). Hence, we believe it is a good
base network for our webly labeled learning.

The network N2 (with X2 as inputs) consists of 3 fully connected hidden layers with
2048, 1024 and 1024 neurons respectively. The output layer contains a C number of
neurons. A dropout of 0.4 is applied after the first and second hidden layers. ReLU
activation is used in all hidden layers, and sigmoid is used in the output layer.

5.2.2.3 Training WeblyNet

Given the multi-label nature of datasets, we first compute the loss with respect to
each class. The output layer of both N1 and N2 gives posterior outputs for each
class. We use the binary cross-entropy loss, defined with respect to cth class as,
l(yc, pc) = −yc ∗ log(pc)− (1− yc) ∗ log(1− pc). Here, yc and pc = N (X) are the target
and the network output for cth class, respectively. The overall loss function with respect
to the target is the mean of losses over all classes, as shown in Eq 5.1

L(N (X), y) =
1

C

C∑
c=1

l(yc, pc) (5.1)

78

79 CHAPTER 5. LEARNING FROM NOISY AND WEB DATA

In the WeblyNet system, N1 and N2 co-teach each other through the following loss
function

L(X1, X2, y) = L(N1(X1), y) + L(N2(X2), y)+

α ·D(N1(X1),N2(X2))
(5.2)

The first two terms in Eq5.2 are losses for the two networks with respect to the
target.
D(N1(X1),N2(X2)) is the divergence measure between the outputs of the two networks.
The divergence of “opinion” between the networks provides additional information
beyond the losses with respect to target labels and helps reduce the impact of noisy
labels on the learning process. The α term in Eq 5.2 is a hyperparameter and controls
the weight given to the divergence measure in the total loss. This can be set through a
grid search and validation.

The divergence, D(N1(X1),N2(X2)), between the networks can be measured through
a variety of functions. We found that the generalized KL-divergence worked best [121].
Note that the outputs from the two networks do not sum to 1. The generalized KL
divergence is defined as DKL(x||y) =

∑d
i=1 xilog(

xi

yi
)−

∑d
i=1 xi +

∑d
i=1 yi. DKL(x||y) is

non-symmetric and is not a distance measure. We use D(x,y) = DKL(x||y)+DKL(y||x)
to measure the divergence between the outputs of the two networks. This measure
is symmetric with respect to x and y. If oN1 and oN2 are outputs from N1 and N2

respectively then D(N1(X1),N2(X2)) is

D(N1(X1),N2(X2)) =
C∑
i=1

(oN1
i − oN2

i)log
oN1
i

oN2
i

(5.3)

During the inference stage, the prediction from WeblyNet is the average of the
outputs from the networks N1 and N2.

5.3 Experiments and Results

WeblyNet is trained on the Webly-4k and Webly-2k training sets. Audio recordings are
represented through X1 and X2 views (Sec. 5.2.2). To the best of our knowledge, no
prior work has done an extensive study of webly supervised learning for sound events.
Previous work, [93], is computationally not scalable to over 100 hours of data we use in
this work. Moreover, it relies on strongly labeled data in the learning process, which is
not available in our case.

All recordings from the Eval set of AudioSet are used as the test set. This set
contains around 4500 recordings corresponding to our set of 40 sound events. A subset
of recordings from the unbalanced set of AudioSet is used for validation. Furthermore,
to compare our webly supervised learning with a manually labeled set, we also create the

79

80 CHAPTER 5. LEARNING FROM NOISY AND WEB DATA

Method MAP Method MAP
WLAT 21.3 ResNet-SPDA 21.9[119] [122]

ResNet-Attention 22.0 ResNet-mean pooling 21.8[123] [94]
M&mmnet-MS 22.6 Ours N1 22.9[94]

Table 5.1: MAP of N1 compared with state-of-the-art on whole AudioSet (527 Sound
Events, Training: Balanced Set, Test: Eval Set)

Methods MAP
N1-Self (Baseline) (4k) 38.7

N2-Self (4k) 41.4
WeblyNet (4k) 45.3

Methods MAP
N1-Self (Baseline) (2k) 38.0

N2-Self (2k) 41.2
WeblyNet (2k) 44.0

Methods MAP Methods MAP
N1-Self (Baseline) 38.7 N1 (Co-trained) 43.6

N2-Self 41.4 N2 (Co-trained) 43.5
N1-Self and N2-Self (Averaged) 43.5 WeblyNet 45.3

N2 [113] 42.6

Table 5.2: Upper Tables: Comparison of systems on Webly-4k (L) and Webly-2k (R).
Lower: N1 and N2 co-teach each other in WeblyNet, leading to improvement in their
individual performances over training them separately. Results are shown on Webly-4k.
See Sec. 5.3.2

AudioSet-40 training set. AudioSet-40 is obtained from the balanced set of the AudioSet
by taking all recordings corresponding to the 40 sound events in our vocabulary with
over 4,600 recordings.

All experiments are done in the PyTorch toolkit. Hyperparameters are tuned using
the validation set. The network is trained through Adam optimization [97]. Similar to
other works [101, 119], we use Average Precision (AP) as the performance metric for
each class and then the Mean Average Precision (MAP) of all classes as the metric for
comparison.

5.3.1 Full AudioSet performance

We begin by assessing the performance of N1 (with C=527) on AudioSet. The primary
motivation behind this analysis is to show that the architecture of N1 is capable of
obtaining state-of-the-art results on a standard well-known weakly labeled dataset.
Table 5.1 shows comparison with state-of-the-art. Our N1 can achieve state-of-art-
performance on AudioSet (as of the time of this work). The performance of N1 on
AudioSet shows that it can serve as a good base architecture for our WeblyNet system.
Hence, it also serves as the baseline method for comparison.

80

81 CHAPTER 5. LEARNING FROM NOISY AND WEB DATA

5.3.2 Evaluation of Webly Supervised Learning

Figure 5.3: (Average Precision) AP for sound events on Webly-4k training. Comparison
of baseline (N1-Self) and WeblyNet System

We first train N1 alone on the webly labeled dataset, and this performance (N1-Self)
is taken as the baseline. We also train N2 alone on X2 features (N2-Self) to assess
the significance of the second view obtained through knowledge transfer in the webly
supervised setting. To compare our method with a noisy label learning method, we
apply the well-known approach described in [113] for training N2.

The two tables in the upper row of Table-5.2 show results for different systems on
Webly-4k and Webly-2k training sets. We observe that WeblyNet leads to an absolute
improvement of 6.6% (17% relative) over the baseline method on the Webly-4k training
set. Moreover, the X2 representations from pre-trained AudioSet lead to considerable
improvement over the baseline performance, around 7% and 8.5% relative improvements
on the Webly-4k and Webly-2k training sets, respectively.

The lower table in Table-5.2 shows how our proposed system in which both networks
co-teach each other leads to an improvement in the performance of the individual
networks. First, we see that a simple combination of the two networks (N1-Self and
N2-Self (Averaged) also leads to improved results. Once the WeblyNet system has been
trained, we consider the output from individual networks N1 (or N2) as the output of
the system. These are referred to as N1 (Co-trained) and N2 (Co-trained) respectively
in Table 5.2. We can observe that the performances of both networks are improved by
a considerable amount, over 12.7% for N1 (38.7 to 43.6) and over 5% for N2 (41.4 to
43.5). The overall WeblyNet system leads to 45.3 MAP.

81

82 CHAPTER 5. LEARNING FROM NOISY AND WEB DATA

Method MAP Method MAP Method MAP
AudioSet-40 54.3 Webly-4k 38.7 Webly-4k 45.3N1-Self (Clean data) N1-Self WeblyNet

Table 5.3: Webly labeled training vs. manual labeling (AudioSet-40)

Sounds Webly-4k Webly-2k
N1-Self WeblyNet N1-Self WeblyNet

Vehicle 28.1 46.9 34.8 36.4
Singing 51.3 52.7 47.8 50.5
Animal 29.7 35.2 29.0 31.1
Water 51.8 59.6 50.4 51.9
Tools 31.9 36.5 40.7 40.6
Avg. 38.6 46.2 40.5 42.1

Table 5.4: APs for five classes with high label noise in webly sets.

Moreover, the noisy label learning approach from [113] leads to an improvement
in N2 (to 42.6), which is 1% absolute less than the improvement in N2 obtained with
our co-training approach (43.6). This shows that “learning together with agreement”
is more effective than bootstrapping in [113]. Moreover, our overall system is 2.7%
absolute (6.4% relative) better than that obtained through [113].

5.3.2.1 Comparison with manual labeling.

Table 5.3 shows the comparison of N1 trained on AudioSet-40 (which is manually
labeled) with systems trained on the Webly-4k set. Note that the test set is the same
for all cases, only the training set is changing. A considerable difference of 15.6%,
exists between N1 trained on AudioSet-40 and that trained on Webly-4k. WeblyNet
improves the webly supervised learning by reducing this gap to 9.0%. Such differences
in performances between human-supervised data and non-human-supervised webly data
have been discussed in computer vision as well. Often, human supervision is hard to
beat even by using even orders of magnitude more data [103].

5.3.2.2 Class specific results.

Figure 5.3 shows the comparison of class-specific result comparison between baseline
(N1-Self) and WeblyNet. WeblyNet improves over the baseline N1-Self for most classes
(32 out of 40). In addition, we analyze the performance of five classes with high label
noise (Fig. 5.1). Table 5.4 shows the AP for these sounds. For all of these events,
the improvements are considerable, e.g., around 67% and 19% relative improvements

82

83 CHAPTER 5. LEARNING FROM NOISY AND WEB DATA

for Vehicle and Animal sounds, respectively. Interestingly, N1’s overall performance
decreases for these 5 events as we increase the size of the dataset, from Webly-2k to
Webly-4k. A considerable performance drop is seen for Vehicle and Tools sounds whereas
only small improvements are seen for Animal and Water sounds. Deep learning methods
are expected to improve as we increase the amount of training dataset. However, it is
clear that the larger Webly-4k contains too many noisy labels, adversely affecting the
performance in certain cases. The proposed WeblyNet system can address this problem.
On average, WeblyNet gives 7. 6% absolute (20% relative) over the baseline method
when trained on the Webly-4k set.

5.3.2.3 Effect of divergence measure.

To ensure that divergence plays a role in improving the system, we performed a sanity
check experiment with α = 0 in Eq. 5.2. The WeblyNet system, in this case, produces a
MAP of 43.5, the same as the simple combination of the individually trained networks.
This is expected as the networks are not tied together anymore, and one network will
have no impact on the learning of the other.

To analyze the role of the divergence measure in the system’s improvement, we
remove it from the loss function in Eq. 5.2 (that is, α = 0) and train the system
using losses with respect to the targets only. This shows that the two networks actually
co-teach each other by measuring the divergence between their outputs. Hence, the
(dis)agreement between the networks can be used to train neural networks better.

5.4 Conclusions

Human supervision comes at a considerable cost, and hence we need to build methods
which rely on human supervision to the least possible extent. We have presented
webly-supervised learning of sound events as the solution. We presented a technique for
mining web data and then a robust deep learning method to learn from webly labeled
data. We showed that our proposed method in which networks co-teach each other
leads to a considerable improvement in performance while learning from challenging
webly labeled data. The method is extendable to more than two networks, although
additional experiments have not shown significant gains from adding more networks.
We also need better methods to mine the web for sound events. This can involve clever
natural processing techniques to associate metadata with different sound events and
then assigning labels based on that. 2

2Code available at: https://github.com/cmu-mlsp/ankit-phd-thesis/tree/master/
webly-labeled-sounds

83

https://github.com/cmu-mlsp/ankit-phd-thesis/tree/master/webly-labeled-sounds
https://github.com/cmu-mlsp/ankit-phd-thesis/tree/master/webly-labeled-sounds

6
Semi weak label learning

6.1 Exploiting Additional Cues with weak labels

Strong labels represent one end of the labeling spectrum, where every instance of
an audio event must be fully tagged, including with its temporal boundaries. At an
abstract level, it is helpful to think of data such as images or sound recordings as bags
of candidate instances (e.g., candidate regions of the image or candidate sections of the
recording), where every instance is labeled. Such labels are labor-intensive to obtain.

Weak labels represent, in some sense, the other end of the labeling spectrum, where
labels are still provided, but only at the presence or absence of an event in a recording.
Using the bag analogy, they only indicate if a bag of instances contains a particular
class without indicating the specific instances or even the number of instances within
the bag from that class. In terms of effort these require, perhaps, the lowest level of
effort that still generates a label. The reduced labeling effort comes at a cost – there
remains a considerable gap between the performances obtained from models trained
with strongly labeled data and those trained from weakly labeled data. This leads to
the question: is there an intermediate labeling strategy that requires only a relatively
low increase in labeling effort over weak labels that can reduce this gap? This is the
problem addressed in this chapter.

We introduce a middle ground between the two settings of full and weak supervision.
In many settings, it is possible to annotate count information, which specifies the

84

85 CHAPTER 6. SEMI WEAK LABEL LEARNING

number of occurrences of individual classes in a bag, for not much extra effort over
simple weak labeling that merely tags their presence or absence. For instance, it is
often fairly straightforward to annotate how many dogs there are in an image, if the
annotation of exact bounding boxes is not required. Similarly, it is reasonable to expect
that it is not significant extra effort to indicate how many (e.g.) gunshots were heard
in an audio recording, if it is not required that their exact locations be tagged as well.

We refer to such labels as “semi-weak” labels, and the problem of learning from such
data as as learning with semi-weak supervision, or learning from counts. We show that
classifiers trained using semi-weak labels can classify test instances with much greater
accuracy than those trained with merely weak labels.

Figure 6.1: An example of semi-weak labels for audio event detection. Semi-weak labels
give count information, while weak labels only provide information about the presence
or absence of classes.

Our proposed solution for learning from semi-weak labels is to pose the training
as a constraint satisfaction problem. The constraint to satisfy is that the sum of the
counts predicted per category in each bag must equal the size of the bag. Thus, we
first learn to predict whether the instance is present in the bag or not similar to the
weak-label-learning setup, and then obtain an expected count of each class in a bag.
Then, given the bag size and conditional expected count for each class, we propose
to solve an optimization problem to translate the real valued expected count to a
non-negative integer count. Finally, given the predicted count as “ground truth” and the
instance-level logits, we try to find the best assignment of labels such that the counting
requirement is satisfied as well as the likelihood of the bag is maximized.

85

86 CHAPTER 6. SEMI WEAK LABEL LEARNING

6.2 Related Work

We first review some of the existing literature on prior approaches to using somewhat-less-
weak labels than weak labels. These have generally considered counts and proportions
in a bag.

6.2.1 Multiple Instance Learning

Learning from bag-level labels is often referred to as multi-instance learning (MIL).
Carbonneau et al. [124] provides an extensive summary detailing most aspects of
multiple instance learning. Dietterich [125] first introduced multiple instance learning
where it was applied to predict drug activity. Since then, several algorithms have
been introduced to address MIL. To deal with label noise, a natural solution is to
count the number of positive instances in a bag and apply a threshold to tag a bag
as positive. This was summarized in [126] as the threshold-based assumption for
multi-instance learning. The threshold-based assumption, which defined that a bag is
positive if and only if the number of positive instances is between a range, was the first
time that count information was brought into multiple instance learning. Since then,
several efforts[127, 128] have been made to predict at the bag level using count-based
assumptions. [126] extended the assumption and proposed an SVM-based algorithm to
predict the bag label. One common problem with those methods was scalability; also,
those methods do not generalize to multi-class classification.

Multiple Instance Regression: MIL regression consists of assigning a real value to
a bag. Compared to MIL classification, MIL regression has attracted much less attention
in the literature. For MIL regression, one line of research has the assumption that some
primary instance contributes largely to the bag label. This motivated sparsity-based
approaches that assign sparse weights to instances and use regularization methods
such as L1 and L2 regularizers [129, 130, 131]. However, most of these methods work
only for small-scale data and focus on the accuracy of the predicted results rather
than attempting to identify the primary instances that contribute to the bag label.
Subramanian et al. [132] addressed the identification of primary instances by using
a Dirichlet process to group the instances and find clusters. However, this method
assumes that the largest cluster defines the label; this method also does not work for
multi-class machine learning problems. Also, those methods do not work properly in
our semi-weakly supervised setting, as they fail to incorporate the natural property of
counts, which is a non-negative integer value.

Instance-Level Prediction: Another relevant mainstream of MIL research is
instance-level prediction. Maron[133] is perhaps the best-known framework for instance-

86

87 CHAPTER 6. SEMI WEAK LABEL LEARNING

level prediction for MIL. Following this framework, many research ideas have been
proposed. The basic ideas of those frameworks are to label the instance dynamically
or statically according to the bag label. Training instance-level classifiers is nontrivial
as strong labels are unavailable. Recently, many methods have proposed to perform
bag-level prediction and “hope” that bag-level accuracy could propagate to instance-level
accuracy [125, 134, 135]. However, as discussed in [136, 137], this method is suboptimal.
Empirical studies have been conducted in [137] that better bag-level prediction does not
promise better instance-level prediction. Consequently, the most successful instance-
level prediction models, i.e., mi-SVM and SI-SVM [134], discard the bag information as
much as possible, and treat each instance individually.

6.2.2 Learning from Proportions

A related approach, previously proposed in the literature, is that of learning from
proportions [138, 139, 140], where the proportion of instances in a bag that belong
to any class is indicated. When the precise number of instances in individual bags is
known, knowing proportions is identical to knowing instance counts of classes in the
bag. But in other settings, such as in the image or sound examples mentioned above, it
is much simpler and possibly far more natural to annotate the counts of occurrences of
a class than the proportions. For example, in an audio recording that must be labeled
for the occurrence of, say, dog barks, it is more intuitive and natural to state that a
dog barks three times in the recording than to say (e.g.) that 20% of the recording
comprised the sound of dogs barking. In fact, the main signature of sound events such
as dog barked is their onset, which is generally distinct, while it is generally hard to
spot precisely when the sound terminates. As such, while it is perfectly reasonable to
state that the recording includes three barks, it may be infeasible, or even meaningless,
to specify what fraction of the recording comprised dog barks as shown in Figure C.4.

Quadrianto [141] proposed the MeanMap model which assumes that the data follows
an exponential distribution and is conditionally independent of the bags. Fan [142] and
Patrini[143] further refined the loss function of MeanMap and made it applicable for
multi-class classification. Yu [144] proposed another line of research and used SVM
models to iteratively estimate the instance-level classifier. However, this method suffers
from scalability issues when it is extended to a multi-class setting. More recently, a
DL-based method was proposed by [138, 145, 146]. The commonality for the DL-based
methods for the LLP problem is that they try to use bag-level supervision to perform
instance-level estimation such that the estimated distribution is as close as possible
to the bag label. Interestingly, [138] introduces another loss function that directly
minimizes the prediction results at the instance level. They introduced the Optimal

87

88 CHAPTER 6. SEMI WEAK LABEL LEARNING

Transport algorithm to make the loss function computationally tractable.

Figure 6.2: Left: We illustrate scenario which is natural for human to annotate between
counts and proportions. Right: The relation between learning from proportion (LLP),
learning from count (LLC) and Learning from Weak labels (MIL). The intersection
part assumes that the bag size is known, and the count is exact. MIL problem is a
special case of LLC where the count is equal to 1.

6.3 Problem Statement

Figure 6.1 shows an example setting of a problem in the detection of audio events.
Generally, we consider a supervised multi-class classification problem, where we define
the instance-level data x ∈ X and label y ∈ Y, where X ⊂ RH×W×C and Y =

{0, . . . , K}. Let K be the number of classes, NB be the number of instances in a bag,
and N be the number of bags. For each bag bi ∈ B = {X}, yBi ∈ YB is the label of the
bag level. More specifically, yBi,k is the count of class k in bag i. Formally, given the bag
size, we define the space of labels as

YB = {c ∈ ZK
+ :

K∑
i=1

ci = NB} (6.1)

Given a series of bags, S = [(b0, y
B
0), (b1, y

B
1), . . . , (bN , y

B
N)] ⊆ B×YB, our goal is to

learn a predictor f : X → RK that predicts the probability distribution of an instance
belonging to different classes, i.e. fθ(xi) = {p(yi = 0|xi), p(yi = 1|xi), . . . , p(yi = K|xi)},
where xi is a feature vector for an instance and θ is the parameters of the network.

6.3.1 A General Loss Function

In this problem, we focus on instance-level prediction and solve it by viewing the
problem as a risk minimization task. More specifically, given a regression loss function
Lreg : B ×YB → R+ defined as

RN(f) :=
1

N

N∑
i=1

Lreg(f(xi), y
B
i) (6.2)

88

89 CHAPTER 6. SEMI WEAK LABEL LEARNING

One intuitive approach is the define a divergence function that quantitatively quantify
the distance between the predicted bag labels and the ground-truth label. As such, let’s
define ∀bi ∈ B, the predicted count as c̃k =

∑ni

j=1 f(xj), and we want to minimize the
divergence between the predicted counts and the actual counts

Lreg(f(xi), y
B
i) :=

1

ni

div(c̃k, y
B
i)) (6.3)

Usually, learning from counts could be formulated as a regression problem. However,
for interclass separation of the features at the bag-level and to tackle the problem
as multi-label bag classification, we used binary cross-entropy to recognize different
classes existing in a bag. So let ⊮(·) denotes the indicator function, taking values 1 or
0 depending on whether its argument is true or not, we define another loss term as
follows:

Fmax = maxi∈0,1,...,BN
[f(x0), f(x1), ...f(xBN

)] (6.4)
Additionally, we require the loss function to be robust to the sparsity of the bag

and the generalizability of the loss function is critical in the learning process. Thus, we
introduce one L1 regularization term that makes the model perform better when the
bag is sparse or "pure". Here, we define sparseness based on the bag level counts of
each class. Our proposed loss function with the regularization term is defined as follows

RN(f) = Lreg + αLcls + β
∑
xi∈bi

1

NB

∥f(xi)∥L1 (6.5)

6.4 Preliminary: DLLP Approach

DLLP [145] approach is a DNN-based model for learning from proportion. Mathemati-
cally, given a bag b1, b2, ·, bN , suppose that fθ(bij) = pθ(y | bij) is the vector outputs of
the DNN for the j-th instance in bi. Let

⊕
is an element-wise addition operator. Then

the posterior bag-level class proportion could be estimated as

pi =
1

NB

NB⊕
j=1

pθ (y | bij) (6.6)

The final objective, i.e., Ldllp, is made of a distance measurement. Let cki be the
counts of class k in bag i, pk

i be the counts normalized by bag size, and pk
i be the k-th

element in the vector pi (the estimated proportion of class k), then the loss is defined
as Ldllp = KL(pi,pi). KL refers to the commonly used Kullback–Leibler divergence
for measuring the distance between two distributions.

89

90 CHAPTER 6. SEMI WEAK LABEL LEARNING

6.5 Proposed Methods: Two-Stage Framework

In this section, we introduce a two-stage model for learning from counts. It is extended
from DLLP [145].

6.5.1 Stage-1: Estimating Class Count

6.5.1.1 Poisson Loss and Expected Count

As mentioned in Section 6.1, one difference between LLP problem and LLC problem is
that the label for LLC problem is discrete. So it is not optimal to use a KL-divergence
to measure the difference between prediction and the true labels. Instead, we propose to
use Poisson Loss - a Poisson distribution based loss function. The Poisson distribution
is the discrete probability distribution of the number of events occurring in a given time
period, which applies to the LLC setting if we consider the counting is the number of
times a class instance appears in this bag [147].

In our framework, we assume that the counting for class j follows a Poisson distri-
bution, i.e. p(cji = k|λj) =

λk
j e

−λj

k!
. For simplicity, since we assume the size of the bag is

unknown, we assume the count for each class in a bag is independent. Given a bag of
output of the network pθ (y | bij), we define cki as the expected count for class k in bag
bi.

cki =

NB⊕
u=1

pθ
(
y | bu

ij

)
(6.7)

So we have

λ̂ = Ê(cki | x) = cki (6.8)
Then the Poisson loss is defined as the negative log likelihood function

Lreg(y, λ̂) = − log(p(y|λ̂)) = λ̂− y log(λ̂) + log(y). (6.9)
Because the last term in Equation 6.13 would be a constant for a given bag, it is

usually omitted. So, the final loss and its gradient is

L(y, λ̂) ∝ λ̂− y log(λ̂)

∇λ̂L(y, λ̂) = 1− y/λ̂.
(6.10)

The following are two interesting properties for the Poisson loss. Adapted gradient:
Unlike other distance functions like mean absolute error, the Poisson loss doesn’t have a
constant gradient for all input values. Also, when the actual count is large, the gradient
value would be relatively smaller. This matches our intuition that when the actual

90

91 CHAPTER 6. SEMI WEAK LABEL LEARNING

count is very large, an off-by-1 error matters less than if the actual count is 1 or 2.
Asymmetric gradient: the gradient is zero when λ̂ = y but the gradient is different
when λ̂ = y − 1 and λ̂ = y + 1, where the absolute gradient would be 1/(y − 1) and
1/(y + 1) respectively. The gradient tends to focus on penalizing the under-estimation
rather than over-estimation.

In addition, we introduce a classification loss, Lcls, and a regularizer LL1 =∑NB

j=1
1

NB

∥∥pij

∥∥
L1

to make our model more robust to sparse bags [148] and ensure
the inter-class separability of the learned representations [149]. Lcls is nothing but
a binary cross-entropy loss to measure whether the network can classify if a class is
present/absent in a given bag. We use a unified loss function defined as

LLLC = Lreg + Lcls + βLL1 (6.11)

6.5.1.2 Estimating Class Count

Although we have λ̂j as the expected count for class j, it remains a problem to estimate
the exact count for each class. Mathematically, let cji ∈ R be the expected count for
class j in bag bi, and then ti ∈ ∆K =

{
c ∈ ZK

+ :
∑K

j=1 c
j
i = NB

}
, then the exact count

for each class in bi could be obtained by

t̂i = arg max
t∈∆K

K∑
j=1

log
(
p
(
cji = ti | cji

))
(6.12)

This is constrained convex optimization and we can use any greedy algorithm to get
the optimal solution. Initializing t̂i as a vector of zeros, for each iteration, we manually
calculate the marginal gain to increase t̂ji to t̂ji + 1. We choose to increase the count of
a class such that the increment is maximized, and iterate until the sum of the count
vector is equal to NB. Using a heap to track the maximum value, we can design an
algorithm with time complexity of O(log(K) ∗NB) as shown in Algorithm 2.

6.5.2 Stage-2: Estimation of the Instance Label (Decoder)

In Stage-1, the network outputs the expected count for each class, and then we develop
an optimization problem to translate the expected count to the exact count. In stage-2,
given the exact count of each class and the predicted probability distribution of each
instance pθ(y|bij), we devise a assignment problem to obtain the instance-level label.
Thus, we have the following linear-sum optimization problem.

91

92 CHAPTER 6. SEMI WEAK LABEL LEARNING

max
x

∑NB

j

∑K

k
log(pkij) ∗ xij

s.t∑
k
xk
ij = 1,∀j ∈ {0, 1, · · ·NB − 1}∑

j
xk
ij = ci

k,∀k ∈ {0, 1, · · ·K − 1}

pkij ≥ 0

xk
ij ∈ {0, 1},∀j, k

(6.13)

where pkij = pθ(y = k|bij) , cki is the estimated exact count of class k in the bag i

and xk
ij = 1 if and only if the instance j is assigned with the label k.

6.5.3 Algorithm: Greedy algorithm to obtain exact count and
Semi-Weak Label Classification System

The following algorithm provides the greedy approach chosen to translate from the
expected count to the exact count.

Algorithm 2 Greedy Algorithm to Translate Expected Count to Exact Count
Input: Number of bag size NB; Number of classes K; A list of floating points
[a0, a1, · · · , aK]; a list of probability density function for Poisson distribution
[fa0(x), fa1(x), · · · , faK (x)]
Output: A list of integers [t0, t1, ..., tK] such that

∑K
j=0 tj = NB.

Initialize: Let q = heap < int, int > be a max-heap that stores pairs. Heap has two
methods: q.pop() would pop and return the max value from the heap and q.push(v, i)
would add a pair of < v, i > to the heap. The comparison of pair is based the first
value in the pair;
Let ret = [0, 0, · · · , 0] be a zero-initialized vector of size K;
1: for i = 1, 2,K do
2: r ← fai(ret[i] + 1)− fai(ret[i])
3: q.push(r, i)
4: end for
5: for _ = 2,NB do
6: v, i← q.pop()
7: ret[i]← ret[i] + 1
8: r ← fai(ret[i] + 1)− fai(ret[i])
9: q.push(r, i)

10: end for
11: return ret

The following section provides the algorithm 3 for our semi-weak label classification
system. In theory, the weak label classification system can work for all kinds of input

92

93 CHAPTER 6. SEMI WEAK LABEL LEARNING

data for classification whereas as an initial validation of the proposed algorithm, we
run experimental analysis on an image classification task.

Algorithm 3 Semi-Weak Label Classification System
Input: batchsize number of bags [(b0, y

B
0), (b1, y

B
1)..., (bN , y

B
N)], loss weight α, and

regularization weight β, number of epochs nepochs and a loss function for regression Lreg

Output: A predicted label for each instance [y0, y1, ..., yN].
1: for n = 1, 2,nepochs do
2: for i = 1, 2,NB do
3: Compute the class-wise distribution for xi.
4: end for
5: for k = 1, 2,K do
6: Compute Ck =

∑NB

i=1.
7: end for
8: Compute loss, Lreg w.r.t label yB,Ck.
9: Compute bag-level binary label using max pooling.

10: Compute loss, Lcls w.r.t label yB.
11: Compute the regularization term and compute the final loss given α, β
12: Update networks based on the combined loss.
13: end for
14: for i = 1, 2,N do
15: for i = 1, 2,NB do
16: compute the the probability distribution for xi using learned classifier.
17: end for
18: Enumerate all combinations of counts and get the guess t that maximizes the

likelihood of bi.
19: Given t and the probability distribution, using linear sum max algorithm to get

the best assignment y0, y1, ...yBN

20: end for

6.6 Experiments and Results

6.6.1 Datasets

We conducted experiments based on the CIFAR-10 dataset. CIFAR-10 dataset consists
of 50000 train and 10000 test images with each class consisting of 5000 and 1000
training and testing images, respectively. We created bags of different sizes from each
of the dataset images with and without replacement in our analysis. Each bag was
created according to the size ranging from 2, 4, 6, 8, 16,32 bag sizes. In the case
of the images with the replacement, we make sure that the number of images being
repeated is restricted with a reuse parameter, which is controllable to avoid a bag being
over-represented by the same image. For each data set generated with a different bag

93

94 CHAPTER 6. SEMI WEAK LABEL LEARNING

size, we ensure that the parameter configuration is set such that the maximum amount
of the CIFAR-10 data set is used during both the training and testing phase is used to
represent the newly generated dataset with semi-weak labels. As the CIFAR-10 dataset
has a training to testing image ratio is maintained as 5:1, the same ratio is maintained
in different datasets generated as shown in table 6.1

We generate the dataset with the following distribution: Poisson, exponential
and uniform distribution. This distribution is based on how the class information
is distributed in each given bag. The rationale with the generation of the instances
of the bag in the above format was to ensure that the bags are generated based on
naturally occurring instances in nature for the Poisson distribution, the exponential
distribution, and the uniform distribution. The generation process is the following. 1)
randomly sample a class i with equal probability. 2) sample a number ni from the
given distribution and then truncate it into the range between 0 and NB. 3) sample
ni instances from class i. In the case where the number of instances needed would be
more than the total number of instances, the instances would be sampled at most two
times. For each parameter setting, we sample the bags with 5 different random seeds.
All the experiments are conducted on these 5 trials and the final value is obtained by
averaging the best performance on the validation set. In the standard setting, to try to
generate more balanced data, where each class has some instances in a bag. Therefore,
we selective choose a hyperparameter for the distribution that minimizes the sparsity
level of the bag. We define the sparsity of a bag as the number of absent classes divided
by the number of classes. In particular, we use the following settings for the Poisson
distribution [(NB = 2, λ = 0.5), (NB = 4, λ = 0.5), (NB = 8, λ = 1.2), (NB = 16, λ =

2.0), (NB = 32, λ = 3.2)], and [(NB = 8, λ = 0.67), (NB = 16, λ = 0.5)] The data
summary table is provided in Table 6.1. For uniformly distributed samples, directly
sample the number NB of samples from the original dataset and label them with the
counting vector.

6.6.2 Architecture

We use a Residual Network with 18 layers as our base backbone for extracting features
from the image. Given a bag of images {x0, x1, ..., xNB

} ∈ BNL×H×C , the embedding
ei ∈ RBN×K for each instance is first extracted using a Convolutional Neural Network
as the feature extractor. Then a linear layer fc : Rd → RK is used to create a class
activation map. Different pooling layer is applied at the end to generate counting
prediction vector and logits for multi-label classification problem. All models are
trained using Stochastic Gradient Descent with an initial learning rate of 0.01 for 100
epochs. The learning rate would be manually divided by 10 at epochs 30 and 50. The

94

95 CHAPTER 6. SEMI WEAK LABEL LEARNING

Table 6.1: Generated Data Summaries

Distribution Bag Size lambda # of training bags # of testing bags Avg. Count Avg. (Std) Sparsity Dataset Id

Poisson

2 0.5 40,000 8,000 1.13 82%(4%) p0
4 0.5 22,000 4,500 1.28 68%(7%) p1
8 1.2 10,000 2,000 1.63 50.02%(10.53%) p2
16 2 4,000 1,000 2.28 28.9%(12.4%) p3
32 3.2 2,000 800 3.65 8.72%(8%) p4
8 1.2 5,000 1,000 3.43 8.32%(8%) p5
8 1.2 1,000 200 3.56 9%(8.2%) p6
16 8 4,000 1,000 6.52 79%(6%) p7
16 2 2,000 500 6.32 80%(6.2%) p8
16 2 1,000 200 6.21 79%(6.1) p9

Exponential 8 0.67 10,000 2,000 1.97 58%(11.7%) e0
16 0.5 4,000 1,000 2.89 42%(13.9) e1

Uniform 8 N/A 10,000 2,000 1.41 42%(9.21%) u0
16 N/A 4,000 1,000 1.95 18.7%(9.72%) u1

weight decay is set to 5e-4 for training. Standard data augmentations are utilized to
avoid overfitting of CIFAR10 dataset, including random crop with padding of 4 and
random horizontal flip with a probability of 0.5.

6.6.3 Baselines

Fully-supervised Upper-bound: We want to argue that comparable results could
be achieved by using semi-weak label compared to strong labels. Therefore, we also
train ResNet18 in a fully supervised setting on CIFAR10. We trained it 250 epochs
with an initial learning rate of 0.1 and then divided it by 10 in the mid-training.
This model could be deemed as an upper-bound of the performance in a semi-weak
setting. For our analysis with different base network architectures, we further use
similar hyperparameters.

Weakly Supervised Baseline: We produce results with the weakly supervised
baseline where we consider the loss from counting to be absent and thus we generate
the results based on bag level prediction where only presence or absence of the class is
available.

Learning from Proportions: If we set the loss function as KL-loss, the our model
without the decoder could be used a baseline model to represent the performance of
modeling the learning from counts as LLP.

6.6.4 Evaluation

We use precision to evaluate our framework for both instance-level prediction and
bag-level prediction. For bag-level prediction, we compute the precision rate using
macro averaging. For fully supervised model, we predict the class label individually
and label the bag positive for class i if there is at lease one predicted instance for class

95

96 CHAPTER 6. SEMI WEAK LABEL LEARNING

i in this bag. Similarly, for semi-weakly supervised model, we label a bag according to
the instance-level predicted results.

Table 6.1 provides a detailed summary of all the generated dataset configurations.
We use the following settings for the Bag size where NB ∈ [2, 4, 8, 16, 32] and the number
of training instances are chosen such that we utilize most of the data available in the
CIFAR-10 dataset. The average count here represents the aggregated mean of average
number of instances per class. We represent the sparsity based on the percentage
of classes with zero instance in a bag. Our experimental results for all the dataset
configurations from Table 6.1 are summarized in Table 6.2. To remove the effect of
randomness, for each dataset setting, we train the model with 5 different random seeds
and then average the results across all trials. The comparison between baselines are
discussed in the loss ablation section 6.6.9

Table 6.2: Benchmarking Results on Different Datasets using Semi-weak label

Dataset ID Bag Prec. Inc. Prec. Dataset ID Bag Prec. Inc. Prec.

p0 94.24 92.76 p7 64.37 85.20
p1 93.78 92.65 p8 89.92 81.92
p2 93.20 91.21 p9 84.97 69.93
p3 92.92 88.07 e0 90.69 91.05
p4 93.9 71.91 e1 87.10 87.65
p5 90.54 87.73 u0 94.86 91.42
p6 77.39 68.91 u1 95.62 87.34

6.6.5 Baseline Results

Fully-supervised baseline:Table 6.3 shows the results obtained with the different
classifiers constructed as the base classifier for the classification with the CIFAR-10
dataset. We find that the bag level prediction on the dataset p2 is comparable to
the fully-supervised dataset which is expected as the semi-weak label dataset will be
upper-bounded by the fully supervised setting.

Table 6.3: Fully supervised upper-bound results with classifier configuration

Classifier Loss Bag Prec. Inc. Prec.

ResNet18 Poisson 94.26 94.40
ResNet34 Poisson 94.67 94.681
ResNet50 Poisson 95.2 96.41
MobileNetV2 Poisson 90.03 89.066

96

97 CHAPTER 6. SEMI WEAK LABEL LEARNING

Learning-from-proportion baseline: For the learning-from-proportion baseline,
results are shown in Table 6.7 (KL v.s Poisson) because we use KL-loss to proxy the
baseline model of learning-from-proportion. This baseline achieved 87% instance-level
precision, which is less than our proposed model on dataset p3, i.e., 88.07%. This result
also holds if we consider bag size equals to 8 for dataset p2.

Table 6.4: Effect of the Choices of Lreg on two standard dataset setting with NB ∈ {8, 16}

Dataset ID Lreg Bag Prec. Inc. Prec.

p5 KL 90.26 90.40
p5 L1 92.67 90.681
p5 Poisson 93.2 91.21
p3 KL 87.03 87.066
p3 L1 92.01 85.97
p3 Poisson 92.92 88.08

Learning-from-weak-label baseline: For the learning-from-weak-label baseline, we
report those number in Table 6.5. Once we deactivate the counting loss, then the model
is converted into the traditional weak label setting. In Table 6.5, without counting
loss, the performance is much worse than our proposed semi-weak labeling framework.
It only achieves 87% instance-level prediction precision, which is 5% worse than our
proposed framework.

Table 6.5: Ablation Study of Removing Regression Loss and Classification Loss. (β ∈
{0, 1.0})

Dataset ID Bag Prec. Inc. Prec.

p2 93.20 91.21
p2 (w/o Lcls) 93.23 91.17
p2 (w/o Lreg) 90.92 87.39

p8 92.92 88.07
p8 (w/o Lcls) 62.13 83.92
p8 (w/o Lreg) 41.81 72.04

6.6.6 Ablation Study for the Decoder

As is shown in Table 6.6, instead of using greedy search, we use the proposed three-stage
framework to infer the instance-level labels. Results show consistent improvement after
using the decoder algorithm. More importantly, when the bag is sparse, the counting for
each class is high and thus the estimation would have high variance. Therefore, when
the bag is less sparse, greedy search works well. But once the bag size increases or the
bag becomes sparse, the high variance of the estimated logits would make the greedy

97

98 CHAPTER 6. SEMI WEAK LABEL LEARNING

solution less attractive. Therefore, the decoder contributes more to the performance of
the predicted value (+2%) as the greedy predictions become unstable.

Table 6.6: Ablation Study for the Decoder

Dataset ID Inc. Prec.

p2 91.21
p5 87.73
p7 85.20
p2(+Decoder) 92.08
p7(+Decoder) 88.92
p7(+Decoder) 87.32

6.6.7 Variation with the Number of Training Samples

We investigate the degree to which the size of the dataset relates to the model perfor-
mance. We progressively sample different number of bags and evaluate them on the
test set. We compare the results using different scales of training samples. The dataset
settings are illustrated in Table 6.7.

Table 6.7: Scale Testing Results on two standard dataset setting with NB ∈ {8, 16}.

Dataset ID Bag Prec. Inc. Prec.

p2 93.2 91.21
p5 90.54 87.74
p6 77.39 68.91

p3 92.93 88.08
p8 89.92 81.92
p9 84.97 69.93

6.6.8 Variation with the Batch Sizes and Architectures

We conduct experiments on variants batch sizes and find different performance char-
acteristics. For all experiments, we train the model with batch size equal to 32, 64,
96, 128 and 256 as seen in Table 6.8 and bag size equal to 8 and 16 as the standard
setting. We found that the results with the batch size doesn’t provide large variation in
the output of the optimization for the bag level training. However, as we increase the
batch size there is a drop in performance observed on the instance level prediction.

98

99 CHAPTER 6. SEMI WEAK LABEL LEARNING

Table 6.8: Ablation Study of Using different backbones and different batch sizes on
dataset p2 BN = 8.

Backbone Bag Prec. Inc. Prec.
Resnet18 (bs=32) 94.036 92.096
Resnet18 (bs=64) 93.20 91.21
Resnet18 (bs=96) 93.630 91.944
Resnet18 (bs=128) 93.2 91.23
Resnet18 (bs=192) 92.661 90.649
Resnet18 (bs=256) 92.541 90.183
Resnet34 (bs=128) 93.763 91.763
Resnet50 (bs=128) 93.512 91.893
MobileNetV2 (bs=128) 91.474 89.002

6.6.9 Effectiveness of Different Regression Losses

As is proposed for learning from proportions, KL loss is mostly widely used loss function
for comparing the estimated class distribution and the true class distribution. Therefore,
we also tried to use KL-loss as well L1 loss, which is usually used for multi instance
regression as alternative choices.

As is summarized in Table 6.7, poisson loss function performs better than other
loss functions for bag size equal to 8 and 16, in terms of bag level prediction as well
as instance-level prediction. This is as expected as poisson distribution is naturally
defined for non-negative and integer values like counting. Another explanation is that
the data is generated from poisson distribution but according to Table 6.9, even though
the dataset is generated from non-poisson distribution, the poisson loss function still
achieve comparable values. This implies that poisson distribution is robust.

6.6.10 Effect of Regularizer with Sparse Bags

In order to analyze the model performance on bags with different sparsity, we further
create bags with higher expected counts for each class to generate bags with higher
sparsity. The specific setting and data statistics are summarized in Table 6.1

Interestingly, we found that the regularized term works really well for sparse bags.
It consistently improve the performance thought marginally.

6.6.11 Performances over Different Bag Sizes

As we see in table 6.1, we have different bag sizes generated with a variation of the
parameters lambda and number of training bags to create new copies of dataset with
different bag size. Table 6.2 shows that as we increase the bag size the performance

99

100 CHAPTER 6. SEMI WEAK LABEL LEARNING

Table 6.9: Effect of the Regularizer on Sparse Bags (Dataset ID=p7)

β Bag Prec. Inc. Prec.

0.0 63.7 84.67
0.01 64.37 85.20
0.1 65.09 85.52
0.5 65.07 85.87

remains fairly increasing upto a bag size of 8 and then there is a gradual decrease in
performance observed with large drop seen with the bag size of 32. Such variation can
be attributed to the fact that with the larger bag size the nature of the distribution of
the bags to the instance level information per class is artificial and there is a consistent
decrease in the performance as we increase bag size from 16 to 32 and beyond.

6.6.12 Comparison with Different Distribution

Besides generating data from poisson distribution, we also train our models with the
exponential distribution as well as the uniform distribution. We observe that the results
with the poisson distribution is better as compared the exponential distribution which is
in accordance with our expectation as the count information in case of the exponential
distribution will be sparse than case of the poisson distribution. The analysis can be
reviewed in the table 6.2 for case of the dataset id e0 and p2 there is a stark difference
with the same bag size and sparsity distribution but difference in the distribution of
classes in each bag results in performance drop from 93.2% precision to 90.69% precision.

6.6.13 Example of Count assignment optimization

Figure 6.3 gives an example with bag size of 4 and class size 3. If we negate the reward,
then the objective becomes minimizing the "cost", which is referred to a classical
linear-sum assignment problem in bipartite graphs [150].

6.7 Using Semi Weak labels for Sound event detection

HTS-AT leverages a hierarchical Transformer-based architecture coupled with multi-
scale attention mechanisms designed specifically for audio processing. Unlike traditional
convolutional neural networks (CNNs) that primarily capture local time-frequency
patterns, HTS-AT effectively models both short-term and long-term dependencies in
complex acoustic scenes. By jointly attending to multiple temporal scales, HTS-AT can
handle overlapping events and fine-grained temporal structures often encountered in real-
world audio. Additionally, its token-semantic representation of audio signals facilitates

100

101 CHAPTER 6. SEMI WEAK LABEL LEARNING

Figure 6.3: An example of assignment problem. The nodes on the left represent the
unsigned instance and on the right represent the label. There are 4 instances in a bag
and with 2 class-0 instances, 1 class-1 instance and 1 class-2 instance. Each edge has
an associated reward pij, which is probability of instance i belonging to class j. Each
instance must have one assignment and the goal is to maximize the reward.

improved interpretability, as each token corresponds to a meaningful acoustic concept.
As a result, HTS-AT provides a flexible and robust framework that not only excels in
classification tasks but also enhances temporal localization and event segmentation,
making it a compelling choice for advancing state-of-the-art SED performance. The
Hierarchical Transformer for Sound Event Detection (HTS-AT) outputs an event
presence probability map that indicates the probability of an event’s occurrence over
time. To incorporate count information, we first refine this map and then estimate how
many times each event occurs. The main steps involve thresholding, median filtering,
and counting the number of event onsets.

6.7.1 Thresholding the Event Presence Map

Let P (yc | xt) be the probability that event class c ∈ {1, . . . , C} occurs at time
t ∈ {1, . . . , T}. To obtain a binary map indicating event presence or absence, we apply
a threshold δ:

P̂ (yc | xt) =

1, if P (yc | xt) > δ,

0, otherwise.
(6.14)

Here, P̂ (yc | xt) ∈ {0, 1} represents the binarized event presence at time t.

6.7.2 Median Filtering

The binarized presence map may contain noisy spikes or brief gaps. To address this, we
apply median filtering across the temporal dimension. Let M be the size of the median
filter window. The median-filtered presence map P̂mf(yc | xt) is defined as:

101

102 CHAPTER 6. SEMI WEAK LABEL LEARNING

P̂mf(yc | xt) = median
(
P̂ (yc | xt−⌊M/2⌋), . . . , P̂ (yc | xt+⌊M/2⌋)

)
. (6.15)

This step removes isolated spikes and fills in short gaps, ensuring that only consistent,
sustained activations are maintained.

6.7.3 Counting Event Occurrences

Once we have a smoothed, binarized event presence map P̂mf(yc | xt), we estimate the
number of event occurrences by counting transitions from 0 to 1 as we move forward in
time:

countc =
T∑
t=2

max
(
0, P̂mf(yc | xt)− P̂mf(yc | xt−1)

)
. (6.16)

The value countc is the estimated number of occurrences of event class c within the
time window.

6.7.4 Incorporating the Count Loss

If ground-truth counts N true
c are available for each event class c, we can include a count

loss to train the model to predict accurate counts. Let Npred
c be the predicted count

obtained from countc. We define the count loss as a mean squared error (MSE):

Lcount =
1

C

C∑
c=1

(Npred
c −N true

c)2. (6.17)

This count loss can be combined with the original classification loss Lclassification:

Lfinal = Lclassification + λLcount, (6.18)
where λ is a hyperparameter controlling the trade-off between classification performance
and counting accuracy.

6.7.5 Results

By integrating the count information, we observe increase in the sound event detection
performance for AudioSet dataset from 0.385 mAP (without counts) to 0.403 (with
counts) added.

6.8 Conclusion

In this chapter, we propose various ways of “strengthening’ weak labels in a manner
that does not impose serious additional labelling burden.

102

103 CHAPTER 6. SEMI WEAK LABEL LEARNING

We propose “semi-weak” labelling: a novel machine-learning problem that learns
from counts. We propose a two-stage framework to do instance-level prediction given
only a counting vector for a bag is available. We generated a dataset from CIFAR10 for
experimentation. We achieve comparable results with the fully-supervised setting and
much better results than the weakly supervised setting. Additionally, we introduced
an L1 regularization term that makes our model robust to sparse bags and achieves
marginal prediction improvement on sparse bags. We propose additional forms of
semi-weak labelling including those that work from bounds on counts, approximate
counts, and sequentiality information, all of which are easily obtained. We believe
semi-weak labels provide better insights in real-world tasks where counting information
can be easily obtained and future research can extend our work on other modalities or
mixture of modalities. 1

1Code: https://github.com/cmu-mlsp/ankit-phd-thesis/tree/master/
semi-weak-label-learning

103

https://github.com/cmu-mlsp/ankit-phd-thesis/tree/master/semi-weak-label-learning
https://github.com/cmu-mlsp/ankit-phd-thesis/tree/master/semi-weak-label-learning

Section IV - Enriching Weakly Supervised
Learning

In weakly supervised learning, limited label precision poses unique challenges to model
robustness and adaptability. However, this shift in labeling strategy introduces unique
challenges in ensuring that models remain robust, accurate, and adaptable. The
chapters in this section present three distinct but complementary approaches to push
these boundaries of what is possible with weakly supervised learning: strategic negative
sampling and ontological based enhancements.

Chapter 7 delves into the role of negative sampling in the refinement of classifiers
trained on weak labels. By identifying and selecting the most informative negative
samples, it highlights a pathway to improve model performance even when only approx-
imate class presence is known. Rather than overloading the classifier with countless
uninformative negatives, it shows how more surgical selection can foster better decision
boundaries and more nuanced understanding of complex categories.

Chapter 8 focuses on the integration of ontologies - structured, hierarchical rep-
resentations of domain knowledge - into weak label learning frameworks. Ontologies
capture the interconnectedness of concepts, providing models with a robust backbone
of domain-specific information. This infusion of structured knowledge helps to disam-
biguate related classes, bridge semantic gaps, and yield better generalization, especially
when data labels are limited or uncertain. The combined effect of these three approaches
illustrates a future where weakly supervised models are not only cheaper and faster to
train, but also more reliable, interpretable, and domain-aware.

In essence, these chapters together map an exciting territory for weakly supervised
learning. They show how we can go beyond simply making do with less information
and begin actively leveraging the unique properties of weak labels to discover deeper
patterns, refine representations, and harness domain knowledge. The advances discussed
here promise to reduce our dependence on costly strong labels, while achieving a new
level of performance and understanding in machine learning models.

104

7
Importance of sampling negative in weak

labels

7.1 Problem: Sampling of negatives in weak labels

Data selection is essential for deep learning, which determines the budgets and the
performance of the network. Motivated by reducing the total amount of data fed into
the neural network, we study the selection of more informative negative samples and
the underlying principles to quantify the importance of data. Compared to our baseline,
our experiment results on CIFAR-10 and AudioSet propose that negative sampling
strategies can improve classification performance under weak label settings. Through
these negative sampling strategies, we elegantly remove negative data that are less
important while retaining AP and AUC scores even when we use a 1/3 subset rather
than the whole data set.

Weak labels imply the knowledge of the presence/absence of an event rather than
the exact location of it compared to strong labels. With strongly labeled data, one can
only work with a limited number of labels, and the annotator’s subjective bias during
labeling is unavoidable. However, with the weak label, since what we need is only the
presence information, it saves the effort for intensive labeling, and subjective bias is
significantly suppressed, which means the scaling is easier as we can gather data quickly,
especially when the data acquisition is easy nowadays while labeling is still far more

105

labor-some.
For a particular class in the weak-label classifier, all samples without instances of

this class are considered negative samples. For instance, when learning a classifier to
detect cars in an image, all images without cars can be simply viewed as negative
samples. Note here the label is weak, it only tells a story that the image contains cars
in it, but the exact location information is unknown. In this case, the rest of the parts
except the car in the positive labeled image, which themselves are negative samples,
could become the dominating factor of our classifier’s prediction. To alleviate this
situation, negative selecting strategy comes as a rescue, this is where negative sampling
comes into place.

As we discussed above, we are interested in learning the decision boundary, which
can best separate the positive and negative instances to build highly accurate weak label
classifiers. To achieve this goal, we need a strategy to better select the negative samples,
telling which of these negative samples are better or more informative for the current
task. The strategy to be used here is called Negative Sampling , which leads to the
task of our project: Find an optimal sampling strategy for the weak-label classifier. We
aim to optimize the decision boundary in weak label classifiers by selecting the most
informative negative samples.

To address this problem, the following questions need to be answered:

• Whether some negative samples are more important than the others, if yes, is
there an underlying criterion to quantify it;

• More specifically, whether negative data is similar to or different from the target
object contributes more to the classification results and how to measure that;

• Can the data selection strategy (Negative Sampling) be modeled for different
tasks using weak labels combined with negative sampling;

• To what proportion should the positive against negative instances enough to train
a classifier.

We look to address the following: How to choose the reasonable sampling strategy?
The sampling strategy we designed should identify the most informative negative samples
that can help learn the best classifier with a reasonable label budget, which is also the
core problem in active learning research field. That is why we introduce this topic in our
project. Even though active learning aims to sample unlabeled data while only negative
instances is our focus, the method will intrinsically select informative data samples
that can improve the learning of the model and thus enhance the discriminative and

106

predictive ability of the model. In other words, the active learning algorithm will only
select the data samples that are closest to the actual decision boundary disregarding
irrelevant data samples from consideration, which will hopefully give us guidance on
how to choose our negative samples.

7.2 Related work on Negative Sampling

7.2.1 Active Learning

Several sampling strategies have been proposed for active learning, focusing on identify-
ing the most uncertain samples. For instance, [151] introduced an uncertainty-based
active learning algorithm for positive and unlabeled data. This approach estimates the
probability density of the positive and unlabeled points separately using Bayes’ rule.
Then it employs margin-based and entropy-based methods to measure informativeness
and select the most uncertain samples for querying.

To enhance the quality of negative samples in tasks with high mutual information,
[152] developed an active sampling strategy inspired by [153]. Their approach aims
to select the most informative data for contrastive learning using a gradient-based
method for uncertainty measurement, coupled with the solution [153] to ensure sample
diversity. Additionally, [154] devised an active learning strategy in which the uncertainty
and informativeness of data are assessed by a multi-model committee. This method
prioritizes minority classes with low variance during sampling to address class imbalance
in the training set. Similarly, [155] proposed a kernel machine committee model that
integrates Bayesian (RVM) and discriminative (SVM) kernel machines for multi-class
data sampling. This model effectively captures decision boundaries and can sample
informative data for multi-class training.

Learning-based methods for sampling have also been explored. [156] introduced
a learning-based active learning framework, where a sampling model and a boosting
model iteratively learn from each other to improve performance. Their sampling
model integrates uncertainty sampling and diversity sampling into a unified process for
optimization, actively selecting the most representative and informative samples.

7.2.2 Weak Label Learning

[21] studied how characteristics like label density and label corruption needs to be
considered for large scale audio or sound event detection (AED) problem, which basically
means the portion of positive data in positive bags and influence of mislabeled data.
They also proposed a CNN based weak label learning model for large scale AED. [157]
introduced semi-weak labels as weak label with counting information, and developed a

107

two-stage framework for semi-weak label learning. It not only learns classification at
the bag level but can also be extended to instance level classifier with counts assigned.
However, semi-weak labels are not often available, especially for audio or video data.

7.2.3 Negative Sampling

For Knowledge Graph Embedding problem where high score negative samples are
rare, [158] developed a more stable and efficient GAN-based method with caching.
High-quality triplets are cached and sampled by the generator when training. The
cache is updated with Importance Sampling method to adapt to its dynamically
changed distribution. [159] studied the influence of negative sampling on objective
and risk of embedding learning, and proposed a negative sampling strategy MCNS
based on their theory, which approximates the positive distribution with self-contrast
approximation and accelerated by Metropolis-Hastings. [160] incorporates the richness
of graph structure and designed a structure-aware sampling strategy to sample semantic
meaningful negative data for Knowledge Graphs.

7.3 Baseline Selection

To the best of our knowledge, importance of negative sampling in weak label learning
is a novel research area as for now. As can be seen above, although many research and
studies have been conducted in related fields, like weak label learning, active learning,
etc., few of them have made a detailed discussion if we could achieve better or worse
results by sampling different negative samples. So in this project, we first implement
random sampling on negative data as a baseline score. Without loss of generality, we
are going to conduct experiments on both image bag and weak label audio classification.

7.3.1 Image Bag Classification

Aiming at developing effective negative sampling strategy on more general form of weakly
labeled data, we generate image bags from randomly selected images of CIFAR-10 such
that instances in the same bag may possibly be irrelevant. We start from bags with
fixed size 5, and uniformly distributed the label density, which denotes the proportion
of positive data in positive bags, among all the bags. To alleviate the influence caused
by single image being learned unevenly multiple times in a single epoch, each image
only occurs in one bag.

Although the full dataset is unbalanced for a single class, its wide coverage and
large size are important to the robustness of training. Any subset sampled from the
original dataset is likely to be at a disadvantage. Therefore, results on full weakly

108

labeled dataset naturally become the ideal benchmark that we intend to approximate
and even surpass. As for the baseline, a randomly sampled balanced subset is used for
comparison and demonstration of other strategies’ effectiveness. Each epoch, it will
re-sample same amount of negative bags as all the positive ones.

For downstream classification problem, we pick a simple CNN model and a complex
ResNet18 model to examine strategies’ effectiveness on different models.

Figure 7.1: Learning Decision boundary showcasing importance of negative sampling

7.3.2 Audio Classification

AudioSet is a large weakly labeled and multi-class dataset consisting of 527 classes
on sound events. The dataset is consists of 3 subsets, namely balanced training set,
unbalanced training set and evaluation set. Considering the consumption of time and
computing resource, we use the balanced training set as the training set and evaluation
set for testing. The balanced training set contains 22k samples and the evaluation
set contains 20k samples. However, some YouTube URLs are not available when we
download audio clips from YouTube. 21515 audio clips for the balanced training set
and 16322 samples for the evaluation set were downloaded in all, which is 97% and
80% of the original set respectively. For preprocessing, the audio clips are padded or
truncated into 10 seconds waveform. Then we convert them into log Mel spectrograms,
which are the acoustic features of the audio recordings. Hence, each feature input of
X ∈ R1056×128 corresponds to the log Mel representation of a recording segment with

109

Figure 7.2: Figure showing the negative bags with minimal contribution towards learning
the decision boundary

different lengths. All of the audio recordings are sampled with a sample rate of 44.1
kHz.

To form the list of training for the baseline, we define positive and negative data as
follows: first, we name all the samples that contain audio segments from a pre-selected
subset of classes as Positive and the left as Negative. For the experiment study,
negative audio bags were sampled by different sampling strategies based on a specified
Positive-Negative-ratio in each epoch of training. In our baseline experiment, we use a
random sampling strategy, which means that each negative sample would be selected
under the same probability.

We focus on a subset of 50 classes over the entire AudioSet. A thing to note is that
we removed the first and second frequent class, which transformed the balanced train
set into an imbalanced set with a large pool of negative bags to sample. The difference
of AudioSetsubset50 is that it contains all the audio recordings but only contains labels
in the subset of classes. Table 7.1 shows the top 5 classes information in AudioSet50.

"Music" and "Speech" classes have many positive data samples in the whole train
and evaluation set. However, most of classes like "vehicle", "in small room" and
"animal", whose positive samples only make up a little proportion to the whole train
set, are imbalanced.

We choose PSLA [161], one of the state-of-the-art methods used in audio classification,

110

as our model structure for training and evaluation. Our implementation is based on the
PyTorch framework. Hyper-parameters are tuned on our dataset according to [161].

We applied the same data augmentation as in paper [161]: MixUp and Time and
Frequency masking to improve the performance of the classification on audio. The
input spectrogram has the shape of (1056, 128). Frequency masking is applied to
the frequency domain. The mask window is sampled from f uniform(0, F) and the
start frequency for masking is drawn from f0 uniform(0, 128− f). Time masking is
applied to the time domain so that spectrogram in [t0, t0 + t] frames are masked, where
t uniform(0, T) and t0 uniform(0, 1056− t). We use the same parameter F = 48 and
T = 192 as [PSLA]. Mixup augmentation combines the waveform of 2 different training
audio recordings xi, xj and their labels yi, yj:

x = λxi + (1− λ)xjy = λyi + (1− λ)yj (7.1)
where λ is drawn from a beta distribution:

Beta(α, α) : prob(x;α, α) =
xα−1(1− x)α−1

B(α, α)
We set α = 10 and a mix-up rate of 0.5 to achieve better classification performance.

Table 7.1: Top 5 classes in AudioSet40

Name Mid1 Class number Frequency of occurrence
music /m/04rlf 137 6244
speech /m/09x0r 0 5735
vehicle /m/07yv9 300 860
Inside, small room /t/dd00125 506 764
Animal /m/0jbk 72 734

7.4 Experiments Results

7.4.1 Image Bag Classification

Experiments for image bag classification are conducted with Python v3.8.11, PyTorch
v1.9.0 and CUDA v11.1 on NVIDIA GeForce GTX 1070. For inference from output
logits to labels, we tried 3 methods, softmax followed by mean, mean followed by
softmax and softmax followed by max. As the results show that mean followed by
softmax is the most effective one, we stick to this computation during following runs
for consistency. It is reasonable that output of softmax is bounded from 0 to 1, if
few instances in the bag are positive and have high probability outputs, the averaged

1In AudioSet, the labels are stored as integer indexes. Mid represents the mapping for each class.

111

probability of that class is still low, and can be even lower than class that has all
hard-to-distinguish negative instances. What’s more, we also tried out the influence of
resample frequency on this task by comparing results of resampling every epoch and
resampling every 3 epochs. However, no obvious relation can be observed between these
two settings, and we adopt resampling every epoch for later experiments.

To better evaluate the effectiveness of sampling strategy and the robustness to
different classes and seeds and postive-negative ratios, we consider several strategies
from the literature, which are listed below. Each are implemented for sampling from
pool of negative bags and getting a truncated training dataset.

1. Random: Randomly select k bags with uniform distribution at each epoch.

2. Least Confidence: An uncertainty-based strategy that samples k bags with
lowest prediction confidence, which is defined as the difference between positive
probability and negative probability.

3. SVM-Margin: An uncertainty-based strategy that samples k bags with lowest
margin. A SVM model is trained first on full dataset and used to generate margin
scores of bags.

4. Entropy: An uncertainty-based strategy that samples k bags with lowest entropy
scores. The entropy score is computed as the entropy of predicted positive-negative
distribution

5. Gradient Embedding: An uncertainty-based strategy that selects k bags that
generates largest gradient in terms of L2 norm.

6. BADGE: A strategy combining uncertainty and diversity by picking bags that
have gradient embedding as centers of k clusters in the pool. It selects the bag
with the largest gradient embedding and use k-MEANS++ to find the rest ([153]).

7. KL Divergence: A similarity-based strategy that selects k negative bags that
are closest to positive bags in terms of KL Divergence.

The first is a standard sampling method, the next four are uncertainty-based, the
sixth is a mixture of uncertainty and diversity-based method, and the last is similarity-
based. By randomly choosing the negative bags, we want to produce the same amount
of negative bags as the sampled version of the negative bags since they will guarantee
the same condition of total bags to be selected for the task, and this will produce the
baseline for the sampling strategy. By comparing the final AP and ROC-AUC scores of

112

Table 7.2: Comparison between different models using sampling strategies

Method Sampling strategy Class 0 AP Class 0 AUC Class 1 AP Class 1 AUC
CNN Full Set 0.88 0.95 0.93 0.97
CNN Random 0.83 0.93 0.87 0.95
CNN Least Confidence 0.81 0.92 0.82 0.93
CNN BADGE 0.85 0.94 0.87 0.95
CNN Entropy 0.81 0.92 0.82 0.93
CNN KL_embedding 0.83 0.93 0.89 0.95
CNN KL_prob 0.87 0.95 0.88 0.95
CNN Grad_embedding 0.83 0.93 0.84 0.94
CNN SVM-Margin 0.87 0.95 0.87 0.95

ResNet Full Set NaN 0.01
ResNet Random 0.37 0.65
ResNet Least Confidence 0.23 0.25

Figure 7.3: The left column shows the curve of AP, the right column shows the curve
of ROC-AUC; Two rows from top to bottom represent class 0 and class 1 with seed 0,
respectively.

113

the proposed sampling strategy and the random version, we can easily find whether the
proposed sampling is effective or not.

Figure 7.3 and Table 7.2 shows the results of 2 classes. In the experiments, KL-
Divergence method is implemented in two ways, one computes KLD based on the
embedding extracted from the model, and the other uses output probability distribution.
As we can see, CNN+fullset, which is our baseline, it has relative good performance
for test data due to the large amount of data. The performance with other negative
sampling strategies like Gradient Embedding are not consistently as good as the baseline.
However, strategies like BADGE, SVM-Margin, KL-prob can beat Random most of the
time, and achieve AP and AUC asymptotical to Full dataset.

7.4.2 Audio Classification

We run experiments using Python v3.8.8, Pytorch v1.10.0 and CUDA v11.4 on NVIDIA
GeForce RTX 2080Ti. By comparing the result of multiple experiments, we decided to
use the following parameters and training strategy: Most of the samples have length of
10 seconds so we pad or truncate the other audio clips to 10 seconds. We use batch size
of 32 on the json of data files. Before each epoch of training, we sample the negative
with the sampling strategies and keep all the positive samples. Then we will perform
data augmentation on those samples and shuffle them. The optimizer we used in our
experiments is Adam, with learning rate setting as 1e−3 for 30 epochs in total. Weight
decay of 5e−7 is added to our model to alleviate overfitting. We adopt the parameters
and strategies mentioned before for the following experiments.

7.5 Conclusion

We have experimented with several sampling strategies on the CIFAR10 and Audioset.
It turns out that KL divergence of final output, SVM-Margin and BADGE will give
a consistent better performance than random and quite similar to that of the full set.
These strategies quantify the similarity of the positive bags and the negative ones then
effectively select samples with more information, which leads to a better classification
performance for the weak label.

In this chapter, we explore the importance of negative sampling in weak label
learning, focusing on the selection of more informative negative samples to improve
classification performance. Our experiments on CIFAR-10 and AudioSet demonstrated
that negative sampling strategies can significantly enhance the performance of weak

1P-N ratio represents the ratio between the number of positive samples and negative samples, which
is an important hyperparameter during training.

114

Table 7.3: Baseline model scores for Top 5 classes in AudioSet40

Class Name P-N Ratio1 AP AUC
Music_random 1.0 0.8600 0.9049
Music_margin 1.0 0.8520 0.8980
Music_Badge 1.0 0.8315 0.8899
Music_grad 1.0 0.8608 0.9040
Speech_random 1.0 0.7999 0.8919
Speech_margin 1.0 0.8256 0.8990
Speech_Badge 1.0 0.8040 0.8964
Speech_grad 1.0 0.8140 0.8939
Vehicle_random 0.1 0.4295 0.9066
Vehicle_margin 0.1 0.4172 0.9005
Vehicle_Badge 0.1 0.4262 0.9083
Vehicle_grad 0.1 0.4206 0.9089
In Small Room_random 0.1 0.1420 0.7807
In Small Room_margin 0.1 0.1310 0.7585
In Small Room_Badge 0.1 0.1353 0.7722
In Small Room_grad 0.1 0.1560 0.7914
Animal_random 0.1 0.2410 0.8263
Animal_margin 0.1 0.2523 0.8368
Animal_Badge 0.1 0.2983 0.8522
Animal_grad 0.1 0.2689 0.7943

115

label classifiers. By selectively removing less important negative data, we were able to
maintain high AP and AUC scores even when using a reduced subset of the dataset. We
highlighted the advantages of weak labels, which require only the presence information
of an event, making data acquisition and scaling easier compared to strong labels. This
approach reduces the effort and subjective bias associated with intensive labeling.

Our literature review covered various sampling strategies in active learning, weak
label learning, and negative sampling, providing a comprehensive background for our
study. We implemented random sampling as a baseline and conducted experiments on
image bag classification using CIFAR-10 and audio classification using AudioSet.

For image bag classification, we generated image bags from CIFAR-10 and examined
the effectiveness of different sampling strategies using simple CNN and ResNet18
models. For audio classification, we used a subset of AudioSet and applied state-of-the-
art methods like PSLA, along with data augmentation techniques such as MixUp and
Time and Frequency masking.

In summary, our results indicate that negative sampling plays a pivotal role in
weak label learning. Developing efficient sampling strategies can enhance classification
performance while minimizing data needs. This direction of paves the way for additional
investigation in the areas of weak label learning and negative sampling.

116

8
Learning with Ontologies

Ontologies play a crucial role in the formal representation of knowledge by defining the
concepts and properties within a specific domain, as well as the relationships between
these concepts. They provide a structured framework that facilitates the organization,
sharing, and reuse of knowledge across various applications. Prominent ontologies such
as WordNet and AudioSet exemplify the state-of-the-art in capturing domain-specific
information, offering comprehensive vocabularies and hierarchical relationships that
enhance the understanding and processing of data.

The significance of ontologies extends to numerous fields, including natural lan-
guage processing, image classification, and knowledge graph completion. Using the
rich semantic information embedded within ontologies, previous studies have demon-
strated improvements in model performance, particularly in tasks that require a deep
understanding of domain-specific concepts and their interrelations.

In this chapter, we explore the potential of using ontological information to enhance
learning from weakly labeled data. Weakly labeled data, which only require the presence
or absence of an event, are advantageous due to their relative ease of collection compared
to strongly labeled data. Specifically, we employ the AudioSet ontology and dataset,
which comprises audio clips weakly labeled with ontology concepts and incorporates "Is
A" relationships between these concepts.

Our approach begins with a reimplementation of the model proposed by [Sound Event

117

Ontology Reference], adapted to accommodate a multilabel scenario. Building upon this
foundation, we introduce a Graph Convolutional Network (GCN) to effectively model
the ontology information, enabling more nuanced learning of the underlying concepts.
Through our investigations, we discover that while the baseline Siamese network does
not exhibit improved performance when incorporating ontology information in a weak
and multilabel context, the GCN approach successfully captures the ontology knowledge,
enhancing performance under these conditions.

Furthermore, we examine the resilience of different modules to noise introduced by
weak labels and their ability to integrate ontology information more effectively. Our
most effective model, the Siamese-GCN hybrid, achieves a mean Average Precision
(mAP) of 0.45 and an Area Under the Curve (AUC) of 0.87 for lower-level concepts,
and a mAP of 0.72 and an AUC of 0.86 for higher-level concepts. These results indicate
a notable improvement over the baseline Siamese network, although the gains are
comparable to models that do not use ontology information.

This chapter underscores the importance of ontologies in enhancing machine learning
models, particularly in scenarios involving weakly labeled and multi-label data. By
integrating structured domain knowledge through advanced techniques such as graph-
convolutional networks, we demonstrate the potential for more robust and semantically
informed learning processes.

8.1 Importance of Utilizing Ontologies

Ontologies offer structured, hierarchical representations of domain knowledge through
defined concepts and the relationships among them. They enable a machine to generalize
from unknown or unfamiliar instances to broader, more recognizable categories. For
example, a listener may not identify the exact animal making a particular sound, yet still
recognize it as an “animal sound.” In the same way, a machine can leverage ontological
information to classify an object it has never explicitly encountered as belonging to a
higher-level class. Incorporating these hierarchical relations from ontologies can help
refine model predictions, especially when faced with semantically similar observations
or ambiguous subclasses. Previous works have explored using such external knowledge
both to guide feature extraction [162, 163] and to integrate this structured information
directly into model architectures [164, 165, 166, 167].

This chapter investigates whether learning ontological classes from weakly labeled
data can be improved by incorporating such external knowledge. Consider an audio
clip containing dog howling, baby crying, and engine idling, yet only weakly labeled
as containing dog howling. Using ontological information, the model might infer that
the sound of a howling dog implies broader categories like animal sounds or living

118

things. Even if the clip also featured a cat meowing but remained unlabeled as such,
the ontology could guide the model toward identifying the higher-level class animal
sounds or living things, despite incomplete labeling. Thus, ontological knowledge can
help the model interpret hidden cues in the data, improving classification performance
for both annotated and unannotated but related categories.

The appeal of weakly labeled datasets lies in their scalability and reduced annotation
cost, as they require only the presence or absence of an event to be known. Google’s
AudioSet, for instance, employs weak labels at massive scale [168]. However, these
labels often introduce noise that complicates model training. Ontologies may help
mitigate this issue by furnishing structured domain insights that strengthen a model’s
interpretive capabilities, even under noisy conditions.

This chapter expands on prior research into ontology-guided classification, hier-
archical learning, and knowledge graph utilization. We implement and evaluate two
models that incorporate ontology information to predict classes and hierarchies from
weak labels. Through our experiments, we aim to gain a clearer understanding of how
ontological embeddings affect performance in weakly supervised scenarios and to assess
the strengths and limitations of these approaches. The following sections discuss related
literature, detail the methods and models employed, and present an in-depth analysis
of our results and conclusions.

8.2 Methods

8.2.1 Dataset and Ontology

We use the AudioSet dataset, which consists of an ontology of weakly labeled 632 audio
event classes and 2,084,320 human-labeled 10-second sound clips drawn from YouTube
videos. The 128-dimensional Audioset features and ontology files are made available
by Google and accessed online from previous work [21], [168]. Feature embeddings
provided by [168] are extracted from a VGGish model [169] followed by a PCA to reduce
down to 128 dimensions and each ten second clip is represented by ten 128-dimension
feature vectors, i.e. one feature vector represents one second of one clip. Each clip in
the dataset can contain mutiple labels where the clsses encompass a wide variety of
sounds like human noises, music, animals or vehicles.

AudioSet is an audio dataset that consists of 2,084,320 10-second recordings, each
with feature encodings and an event label. Each 10-second recording has ten 1-second
segments and ten 128-dimensional feature encoding. For each 1-second segment of the
10-second clip, there is a corresponding 128 dimension embedded representations. Each
clip in the dataset can contain mutiple labels where the clsses encompass a wide variety

119

of sounds like human noises, music, animals or vehicles. AudioSet is made available
through [21] and [168], whose feature embedding is derived using [168] with methods
from [169].

We use balanced training set of Audioset for training our models, containing about
22,160 ten second clips. We then preprocess the corresponding labels of each audio clip
to get the labels in the top two levels of the Audioset ontology. The validation set is
about 20% of the training set size and is drawn from the unbalanced training set of
Audioset, and the Audioset test set contains about 20,383 audio clips. The same label
processing is done for the validation and test set to obtain two levels of ontology labels.
Although there are more levels to the Audioset ontology, we choose to focus on the top
two levels to fit our model architectures. “ “ To give a more general idea of the Audioset
data, consider a weakly labeled audio clip which could have multiple labels with no
timing information, but the labels could be related due to their ontology. For example,
a human voice and hands could possibly co-occur because they are both natural sounds.
The labels could also be related due to their dependency, such as a human crying could
co-occur with sad music. On the other hand the labels could also not be related with
each other. For instance, a dog barking sound and car engine sound could co-occur in a
clip accidentally.

8.2.2 Framework

We consider multi-labeled training data {(x1, y1), ..., (xn, yn)} where xi ∈ X is a single
128-dimension audio feature representation and the corresponding yi is a collection of
labels {(y11, y21, ..., yT1

1), ..., (y1k, y2k, ..., yTk
k)} with k equal to the number of ontology

levels and Ti equal to the number of labels for x at the ith ontology level. Thus in our
post-processed dataset we have k = 2 and will refer to these as subclass or "level 1"
labels and superclass or "level 2" labels.

8.2.3 MLP Network without Ontology Information

To investigate whether incorporating the ontology information is beneficial to use with
weakly labeled data, we first need to train a model which uses no ontology information.
We implement a simple MLP network with three hidden layers and a final output layer
that collectively predicts ontology classes. More concretely, the final layer has size∑k

i=1 Ti to predict all ontology labels. Each hidden layer is of size 512 followed by a
BatchNorm layer, ReLU activation, and a Dropout layer. This model makes no use of
the ontology information to aid in the prediction of the ontology labels, making it a
good baseline to compare to our models which will incorporate the ontology information.

120

The final outputs pass through a final sigmoid activation for the multi-label scenario
and the model aims to minimize the binary cross entropy loss.

8.2.4 Twin Neural Network Model with Ontology-based embed-
dings and Ontological layer

The ontology based model from [170] is a recent contribution that specifically focuses on
audio data while also providing a method for prediction of classes at different ontology
levels. Much of the prior work on ontology prediction has been in different areas such as
medicine (drug classification) or text classification, whereas [170] presents a framework
that is more relevant and recent. This model will therefore serve as a baseline for the
models which will incorporate ontology information. The framework with modification
for multi-label scenarios is shown in Figure 8.1.

Figure 8.1: Architecture of Twin Neural Network + Ontological Layer with modification
to fit the multi-label task

Now we present the components of the model and its mathematical formulation,
which is an extension of the work in [170] to learn ontology-based embeddings for
classification of multi-labeled data. We use a Siamese neural network (SNN) to separate
the ontology-based embeddings by imposing the embedding distance close to 0 if the
input pairs are from the same subclass, close to 1 if they are from different sub classes,
but the same super class, and close to 2 if they are from different super classes. To fit
in the multi-label scenario, we applied two kinds of sampling methods, the first one
is that samples fall into the same sub (super) class category if and only if they have
exactly the same subclasses; samples fall into different sub (super) class category if any
of their sub (super) classes is different. The second approach is that samples fall into
the same sub (super) class category if and only if there is any sub (super) class in their
intersection; samples fall into different sub (super) class category if there is no any sub
(super) class in their intersection.

121

The base model architecture of the Siamese net is the same MLP with three hidden
layers from section 3.3, and each branch of the Siamese net shares the MLP parameters.
Given a pair of input vectors x1,x2, the output of the MLP is an ontology embedding
z1 = f(x1), z2 = f(x2). The embedding vectors z1, z2 produce subclass probabilities
after a sigmoid activation, which is used for the prediction of multi-labeled data.

The ontological layer, M, then relates the class probabilities of level 1 to those in
level 2 of the ontology through the following relation:

p(y2|x) = M · p(y1|x) (8.1)
We modify the ontological layer proposed in [170] in order to fit the multi-label

data scenario, where M is constructed such that it averages the probabilities of the
subclasses within a single superclass. Note that this layer is fixed and not trainable, it
depends strictly on the ontology of the training data.

The final loss function incorporates the binary cross entropy loss of the level 1 classes,
L1, and the level 2 classes, L2, with the embedding loss, Dw = (||z1 − z2||2 − d)2 where
d ∈ {0, 1, 2} according to the type of input pair.

L = λ1(L1
1 + L2

1) + λ2(L1
2 + L2

2) + λ3Dw (8.2)
The base network takes an input feature of dimension 128 before the output layer

to the 42 classes in the first ontology level and then through the ontology layer to the
7 classes in the second level. The baseline paper does not actually report evaluation
metrics for the Audioset data, as they focused on other audio datasets: Urban Sounds -
US8K and data from the Making Sense of Sounds Challenge. These are both single
labeled datasets.

8.2.5 Graph Convolutional Network

To model both the co-occurrence information introduced from weak labels and the
domain knowledge from ontology, we seek to utilize graph embedding approaches to
extend the Siamese network architecture. In [171] and [172], a Graph Convolution
Network (GCN) is shown to be effective for learning useful node representations through
the information in a correlation graph. The essential idea is to update the node
representations by aggregating information from neighboring nodes.

Following the ideas of previous work, [171, 172, 173] , we define the subclass labels
and superclass labels as the nodes of the graph and aim to learn the label representation.
The knowledge in the graph is encoded as a correlation matrix, which is a crucial part
of the GCN. We will describe how it is constructed in Section 8.2.5.1.

We use one-hot encoding of labels as the initial node representation and use 2 GCN
layers to extract embeddings with neighboring information. For each GCN layer we
use 2 linear layers to transform the input embedding of the node itself and a graph

122

convolution to aggregate the embeddings from its neighbor. Given a label embedding
Z ∈ RC×d (where C is the number of nodes and d is the dimensionality of node features),
the graph convolution operations is:

Z l+1 = h(A′Z lW l
1W

l
2) (8.3)

where W l
1 ∈ Rd×d′ and W2l ∈ Rd′×d′′ are 2 transformation matrices to be learned

and A′ ∈ RC×C is the correlation matrix and h(.) is a non-linear operation which is a
LeakyReLU in our experiments. The dimensions of each the linear layers are 280 and
512 for the first GCN layer and 320 and 128 for the second GCN layer.

8.2.5.1 Correlation Matrix

The GCN learns node representations by collecting information from other nodes based
on the correlation matrix provided. Thus, how we build the correlation matrix is crucial
but also challenging for GCN. In this work, we referred to previous work [171, 172] and
experimented on 3 different correlation matrices.

Labels Co-occurrence based Correlation Matrix: [172] proposed a way to
model label dependency in the form of conditional probability, i.e. P (Lj | Li) denotes
the probability of occurrence of Lj when Li is present. To construct the correlation
matrix, we count the co-occurrence of label pairs present in training set to get a matrix
M ∈ RC×C , where Mi,j denotes the co-occurrence time of Li and Lj. We then divide
M by the occurrence time of Li in training set to get the conditional probability P .
To prevent a long-tail distribution where some rare co-occurrences may be noisy, we
binarize P by setting a tunable threshold t. The correlation matrix A is set to 1 if P is
above the t and set to 0 when P is below the t, where A ∈ RC×C .

Ontology-based Method One: [171] proposed the correlation matrix A to denote
label pairs who have same parents. Ai,j = 1 when Li and Lj have same parents; Ai,j = 0

otherwise.
Ontology-based Method Two: [171] proposed the correlation matrix A to denote

label pairs who have edges in between them. In the dataset we are using, edges only
occur between parents and children, so we set Ai,j = 1 when Li is a child of Lj or the
other way around; otherwise, Ai,j = 0.

To prevent over-smoothing, after binarizing, we re-weight A to get the desired
correlation matrix A′ by setting A′

i,j = p when i = j and A′
i,j = (1− p)/

∑
j Aj when

Ai,j = 1.

8.2.6 Siamese Network with Graph Convolutional Network

The Graph Convolution Network module described in Section 8.2.5 can convert the
label embedding from a one-hot representation to an embedding aggregating neighbor

123

information. We use a matrix multiplication to get the similarity between a given audio
clip embedding and every label’s embedding. Given these similarity values, we then use
a SoftMax activation and Binary Cross Entropy loss to calculate the loss between our
outputs and the target labels. The overall framework is shown in Figure 8.2.

Figure 8.2: The framework of Siamese Network + GCN

Here we replace the baseline Ontological Layer with the label embeddings that the
GCN generates. To combine it with Siamese Network, we still keep the λ1, λ2 and λ3

for the loss term. Next we will discuss the experiments in more detail and the results
from the various models.

8.3 Experiments

8.3.1 Evaluation Metrics

The performance of our models is evaluated using weighted average precision and AUC
from predictions. All reported metrics are on the test set of the Audioset dataset. As
discussed previously, we extract the labels for each segment from the top two levels of
the Audioset ontology. The average precision (AP) metric is first computed for each
class by considering the precision (fraction of true positive labels out of all predicted
positive labels) - recall (fraction of true positive labels out of actual positive labels)
curve at different thresholds. Thus it is an indication of how well the model can identify
positive classes in the data. The other metric we consider is AUC, which considers
negative labels by computing the area under the TPR (true positive rate) - FPR (false
positive rate) curve and is an indication of how well the model can distinguish between
classes. The AP/AUC metric for the classes on the same ontology level is combined

124

through a weighted average based on the proportion of each class that is present in the
training data to get a final weighted AP and weighted AUC score for each level.

8.3.2 Performance of MLP Model with no Ontology Information

The MLP model with no ontology information achieves a weighted AP/AUC score of
0.45/0.87, respectively for subclasses. The weighted AP/AUC score for the superclasses
are 0.71/0.86, as shown in Table 8.1. The model is trained for about 70 epochs at a
learning rate of 2e-3. Please refer to the Appendix for more hyperparameter training
details for each of the models.

8.3.3 Performance of Siamese Network with Ontological Layer

The Siamese model with Ontology layer achieves a subclass weighted AP/AUC =
0.36/0.81 and superclass weighted AP/AUC = 0.39/0.65. After hyperparameter tuning
of the loss function, we were able to achieve results in Table 8.1 with λ1 = 1.5, λ2 =

1, λ3 = 0.25. The experiments found that these metrics can be tuned based on the λ

values in the loss function to control the contributions from each level of the ontology.
A more detailed table of the hyperparameter tuning is presented in the appendix, and
the results in the summary table are chosen as a good balance between the two ontology
levels.

This experiment shows there should be more research work to apply a Siamese net-
work to a multi-label scenario, such as how to generate pairs of the same sub/superclass
as well as their similarity metric. We further investigated this problem by considering
two definitions: one in which a pair of data is of the "same" subclass if they have
exactly the same labels and another in which "same" means that two pairs just have
some intersection in their labels. Our experiments suggest that the latter definition is
better for the multi-label scenario. However, the performance of this baseline Siamese
model which uses ontology information suggests that this external knowledge is still
difficult to embed into a model for weakly labeled data. Furthermore, we believe that
this definition of "same" or different" sub/superclass is still ambiguous and introduces
even more noise into the model as it attempts to cluster pairs that are not really the
"same" subclass. This can explain why we see such poor performance metrics compared
to the MLP with no ontology information.

8.3.4 Performance of Siamese-GCN Model

The extension of the Siamese model replaces the Ontology layer with a Graph Convolu-
tion network to embed ontology information. We trained the model by Adam optimizer
for about 30 epochs. We use 2 Linear Layer as the node embedding of GCN and apply

125

Weighted AP Weighted AUC
Model Subclass Superclass Subclass Superclass
MLP 0.4509 0.7056 0.8706 0.8556

Siam. + Ont. 0.3653 0.3876 0.8055 0.6505
Siam. + GCN 0.4285 0.6790 0.8460 0.8280
MLP + GCN 0.4590 0.7117 0.8751 0.8602

Table 8.1: mAP and AUC Results of different models. Siam. = Siamese, Ont. =
Ontology.

Figure 8.3: mAP across different low-level labels

2 Layer GCN. The performance is sensitive to the hyper-parameters λ1, λ2 and λ3 of
the loss function because it would amplify or reduce learning rate for different loss
terms. We find the observation is that the greater λ is not necessary equal to the greater
learning rate.

We also can see that the Siamese network with GCN could tolerate noises introduced
from weakly labelled data better than the baseline Siamese with an un-trainable
Ontological Layer. This suggests that the GCN can better capture the ontology
hierarchy and that it can even overcome the noise introduced by attempting to find
pairs for the Siamese net. Overall, the evaluation metrics for this model are close to
the baseline MLP with no ontology information.

8.3.5 Performance of MLP-GCN Model

To study the utility of the Siamese net we also implement an MLP-GCN using the
same GCN structure as the one in the Siamese GCN. We investigate which correlation

126

Figure 8.4: AUC across different low-level labels

matrices can provide the best improvement in performance. Among the 3 correlation
matrices, we found label-co-occurrence based correlation works best to model ontology
information in the weak label scenario. Consequently, we did more experiments on the
two trainable parameters: t, p.

From our experiments we found p = 0.2, t = 0.08 achieved the best results. Also
although this model performs better than the previous models, the improvement w.r.t
an MLP without an Ontological Layer is still limited. This suggests that even with
the ontology information embedded into the GCN, it is still hard to get significant
improvements in classification results. It further demonstrates that the architecture
of the Siamese net is not a great fit for the multi-label scenario. Using just a simple
MLP to learn embeddings, it can already achieve relatively good performance with the
GCN. Overall, we found that there were certain classes for which it was always difficult
to achieve high AP or AUC scores as demonstrated in Figures 8.3, 8.4, 8.5. For these
classes, e.g. glass, fire, or silence, we analyzed which data points contain those classes
and found that they are often multi-labeled with more commonly found classes in the
training set, such as human voice, or domestic sounds. This could make it difficult for
the model to learn different representations for those classes.

127

Figure 8.5: AP (left) and AUC (right) across different superclass labels

8.4 Hyperparameters

8.4.1 MLP Model with no Ontology Information

The simple MLP model is trained using the Adam optimizer with a learning rate=2e−3

and weight decay=1e− 4, trained for around 73 epochs.

8.4.2 Siamese with Ontology Layer

The following results are for the Siamese network with Ontology layer.

λ1 λ2 λ3 Low Level mAP High Level mAP Low Level AUC High Level AUC
1.5 1 0.25 0.3379 0.4470 0.7904 0.7061
1.75 1 0.25 0.3480 0.4357 0.7941 0.6959
2 1 0.25 0.3511 0.4175 0.7969 0.6799
2 0.75 0.5 0.3653 0.3876 0.8055 0.6505
2 1 0.5 0.3586 0.4196 0.8004 0.6845

Table 8.2: mAP and AUC Results of MLP-GCN with different p parameters when
t = 0.168

8.4.3 Siamese-GCN

λ1 λ2 λ3 lr Low Level mAP High Level mAP
20 2 0.5 1e− 3 0.34 0.625
100 100 0.5 1e− 3 0.4285 0.679
1 1 0.005 1e− 1 0.306 0.615

λ1 λ2 λ3 lr Low Level AUC High Level AUC
20 2 0.5 1e− 3 0.796 0.788
100 100 0.5 1e− 3 0.846 0.828
1 1 0.005 1e− 1 0.797 0.772

Table 8.3: mAP and AUC results of Siamese GCN with different λ and learning rate
(lr)

128

8.4.4 MLP-GCN

p Low Level mAP High Level mAP Low Level AUC High Level AUC
0.1 0.4477 0.7091 0.8571 0.8690
0.2 0.4469 0.7098 0.8693 0.8575
0.3 0.4467 0.7083 0.8568 0.8690

Table 8.4: mAP and AUC Results of MLP-GCN with different p parameters when
t = 0.168

t Low Level mAP High Level mAP Low Level AUC High Level AUC
0.010 0.4455 0.7072 0.8687 0.8566
0.025 0.4479 0.7077 0.8694 0.8567
0.080 0.4501 0.7141 0.8710 0.8613
0.100 0.4471 0.7128 0.8696 0.8597
0.150 0.4462 0.7093 0.8691 0.8577

Table 8.5: mAP and AUC Results of MLP-GCN with different t parameters when
p = 0.2

8.4.5 Overall Observations

Our experiments highlight the importance of careful hyperparameter selection: factors
such as λ-values, learning rates, and the parameters p and t all significantly influence
performance. Identifying the optimal settings for these parameters is crucial to achieving
stable and robust results.

From a model comparison perspective, the Siamese-GCN configuration—when
appropriately tuned—generally outperformed the Siamese network equipped with
a static Ontology Layer for lower-level concepts, improving both mAP and AUC.
Moreover, the MLP-GCN model demonstrated competitive performance, especially at
higher ontology levels, where its results rivaled or exceeded those of the more complex
architectures. This indicates that, while intricate models can yield gains in certain
scenarios, simpler frameworks enriched with graph-based label embeddings may also
offer substantial benefits.

8.5 Conclusions

To conclude, we observed that the Siamese model with ontology layer has the worst
performance, while a simple MLP obtains better results, and the combination of MLP
with GCN works even better. It is possible for the Siamese architecture to have a negative
impact on prediction, introducing confusion through the construction of input pairs for

129

data that is weakly multi-labeled. Although the GCN provides slight improvement, it
appears the model still has difficulty in differentiating ambiguous subclasses or using the
hidden knowledge in weakly labeled data. The way to incorporate ontology information
may differ with context (dataset, ontological architecture, network structure, etc.);
additional investigation is needed to determine the best ways to use it. For a dataset
like AudioSet, where each instance has multiple, or even wrong labels, having a simple
ontology layer at the output of a Siamese network might not be a good choice. So
the next step is to narrow the scope of dataset and try different approaches to embed
ontological information and approaches that could also make use of deeper levels of
ontology information.

130

Section V: Unified Formalism

This section presents a unified formalism that synthesizes and generalizes a wide range
of imprecise labeling problems into a single, coherent framework. By modeling true
labels as latent variables and leveraging the expectation-maximization (EM) principle,
this formalism establishes a common ground for integrating partial labels, noisy labels,
and unlabeled instances—all of which have traditionally been addressed by separate,
specialized methods. This approach is the first of its kind: rather than relying on
ad-hoc designs tailored to each type of imprecision, it offers a principled, theoretically
grounded solution that can accommodate and seamlessly adapt to any form of label
uncertainty.

The following chapter will delve into this unified viewpoint, detailing how the pro-
posed framework surpasses existing solutions and achieves robust, effective performance
across a wide range of challenging imprecise label scenarios. This endeavor represents
the culmination of our work, setting the stage for future research that can build upon
this versatile and comprehensive foundation.

131

9
Imprecise Label Learning

In this chapter, we propose a unified formalism for that we aim to tie together the
following tasks. The unified formalism will be completing the task of

Learning with reduced labeling standards, such as noisy label, partial label, and
supplementary unlabeled data, which we generically refer to as imprecise label, is a
commonplace challenge in machine learning tasks. Previous methods tend to propose
specific designs for every emerging imprecise label configuration, which is usually
unsustainable when multiple configurations of imprecision coexist. In this paper, we
introduce imprecise label learning (ILL), a framework for the unification of learning
with various imprecise label configurations. ILL leverages expectation-maximization
(EM) for modeling the imprecise label information, treating the precise labels as latent
variables. Instead of approximating the correct labels for training, it considers the
entire distribution of all possible labeling entailed by the imprecise information. We
demonstrate that ILL can seamlessly adapt to partial label learning, semi-supervised
learning, noisy label learning, and, more importantly, a mixture of these settings, with
closed-form learning objectives derived from the unified EM modeling. Notably, ILL
surpasses the existing specified techniques for handling imprecise labels, marking the
first practical and unified framework with robust and effective performance across
various challenging settings. We hope our work will inspire further research on this
topic, unleashing the full potential of ILL in wider scenarios where precise labels are

132

expensive and complicated to obtain.

9.1 Introduction

One of the critical challenges in machine learning is the collection of annotated data
for model training [174, 175, 176, 177, 178, 179]. Ideally, every data instance would be
fully annotated with precise labels. However, collecting such data can be expensive,
time-consuming, and error-prone. Often, the labels can be intrinsically difficult to
ascertain precisely. Factors such as a lack of annotator expertise and privacy concerns
can also negatively affect the quality and completeness of the annotations.

In an attempt to circumvent this limitation, several methods have been proposed to
permit model learning from the data annotated with reduced labeling standards, which
are generally easier to obtain. We will refer to such labels as imprecise. Figure 9.1
illustrates some typical mechanisms of label imprecision that are commonly addressed
in the literature. Label imprecision requires a modification of the standard supervised
training mechanism to build models for each specific case. For instance, partial label
learning (PLL) [180, 181, 182, 183, 184, 185, 2] allows instances to have a set of candidate
labels, instead of a single definitive one. Semi-supervised Learning (SSL) [186, 187, 188,
189, 3, 190, 191, 192, 193, 194] seeks to enhance the generalization ability when only a
small set of labeled data is available, supplemented by a larger unlabeled set. Noisy label
learning (NLL) [195, 196, 112, 197, 198, 199, 200, 201, 202, 203, 204, 205] deals with
noisy scenarios where the labels are corrupted or incorrect. There is a greater variety
of other forms of label imprecision, including crowd-sourcing [206, 207], programmable
weak supervision [208, 209], and bag-level supervision [210, 211, 212, 213, 214, 215],
among others.

While prior arts have demonstrated success in handling individual configurations
of label imprecision, their approaches often differ substantially. They are tailored to a
specific form of imprecision, as depicted in Figure 9.16. Such specificity not only imposes
the necessity of devising a solution for emerging types of label imprecision scenarios,
but also complicates the deployment in practical settings, where the annotations can
be highly complex and may involve multiple coexisting and interleaved imprecision
configurations. For instance, considering a scenario where both noisy labels and partial
labels appear together, it might be challenging to adapt previous methods in NLL
or PLL to this scenario since they either rely on the assumption of definite labels
[207] or the existence of the correct label among label candidates [216], thus requiring
additional algorithmic design. In fact, a few recent works have attempted to address
the combinations of imprecise labels in this way, such as partial noisy label [217, 218]
and semi-supervised partial label learning [219, 220]. However, simply utilizing a more

133

𝒙𝟏

𝒙𝟐

𝒙𝟒

𝒙𝟑

Label 1 Label 2 Label 3

True Label

(a) Full Label

𝒙𝟏

𝒙𝟐

𝒙𝟒

𝒙𝟑

Label 1 Label 2 Label 3

Candidate Label

(b) Partial Label

𝒙𝟏

𝒙𝟐

𝒙𝟒

𝒙𝟑

Label 1 Label 2 Label 3

Unlabeled

(c) Semi-Supervised

𝒙𝟏

𝒙𝟐

𝒙𝟒

𝒙𝟑

Label 1 Label 2 Label 3

Noisy Label

(d) Noisy Label

Figure 9.1: Illustration of the full label and imprecise label configurations. We use an
example dataset of 4 training instances and 3 classes. (a) Full label, the annotation is a
single true label; (b) Partial label, the annotation is a label candidate set containing
true label; (c) Semi-supervised, only part of the dataset is labeled, and the others are
unlabeled; (d) Noisy label, the annotation is mislabeled.

sophisticated or ad-hoc design can hardly scale to other settings. In addition, most of
these approaches attempt to infer the correct labels given the imprecise information (e.g.
through consistency with adjacent data [186, 221], iterative refinement [222, 223], average
over given labels [224, 225], etc., to train the model, which inevitably accumulates error
during training.

In this chapter, we formulate the problem from a different perspective: rather than
taking the imprecise label information provided as a potentially noisy or incomplete
attempt at assigning labels to instances, we treat it generically as the information that
imposes a deterministic or statistical restriction of the actual applicable true labels. We
then train the model over the distribution of all possible labeling entailed by the given
imprecise information. More specifically, for a dataset with samples X and imprecise
label information I, we treat the inaccessible full and precise labels Y as a latent variable.
The model is then trained to maximize the likelihood of the provided information I.
Since the likelihood computed over the joint probability P (X, I; θ) =

∑
Y P (X, I, Y ; θ)

must marginalize out Y , the actual information I provided could permit a potentially
exponential number of labeling. To deal with the resulting challenge of maximizing the
logarithm of an expectation, we use the common approach of expectation-maximization
(EM) [226], where the E-step computes the expectation of P (X, I, Y ; θ) given the
posterior of current belief P (Y |X, I; θt) at time step t and the M-step maximizes the
tight variational lower bound over P (X, I; θ). The overall framework is thus largely
agnostic to the various nature of label imprecision, with the imprecise label only
affecting the manner in which the posterior P (Y |X, I; θt) is computed. In fact, current
approaches designed for various imprecise label scenarios can be treated as specific
instances of our framework. Our approach can serve as a solution towards a unified
and generalized view for learning with various imprecise labels.

134

While there exist earlier attempts on generalized or EM solutions for different (other)
imprecise supervisions or fuzzy observations [227, 228, 229, 230, 231, 213, 232, 233, 234],
they usually require additional assumptions and approximations on the imprecise
information for learnablility [216, 235], thus presenting limited scalability on practical
settings [229]. On the contrary, the unified framework we propose subsumes all of these
and naturally extends to the more practical “mixed” style of data, where different types
of imprecise labels coexist. Moreover, for noisy labels, our framework inherently enables
the learning of a noise model, as we will show in Section 9.7.2. Through comprehensive
experiments, we demonstrate that the proposed imprecise label learning (ILL) framework
not only outperforms previous methods for dealing with single imprecise labels of PLL,
NLL, and SSL, but also presents robustness and effectiveness for mixed imprecise label
learning (MILL) settings, leveraging the full potential to more challenging scenarios.
Our contributions are summarized as follows:

• We propose an EM framework towards the unification of learning from various
imprecise labels.

• We establish scalable and consistent state-of-the-art (SOTA) performance with
the proposed method on partial label learning, semi-supervised learning, and noisy
label learning, demonstrating our method’s robustness in more diverse, complex
label noise scenarios.

• To the best of our knowledge, our work is the first to show the robustness
and effectiveness of a single unified method for handling the mixture of various
imprecise labels.

9.2 Labeling scenarios and their distribution

In traditional supervised learning, each instance comes with a definitive label—e.g.,
positive or negative. However, under weak supervision or indirect forms of labeling,
the provided information about the data is more constrained and does not directly
specify which instances are positive or negative. Instead, we may only be informed
about some property of the label configuration as a whole. This changes the problem
from treating labels as known facts to treating them as latent variables, and the “label
information” as constraints or clues that define a probability distribution over all valid
labeling configurations.

135

9.2.1 Illustrative Example

9.2.1.1 Positive Bag (Weak Label)

Consider a bag containing three instances: X, Y, and Z. We are only given that the
bag is “positive.” as shown in figure 9.2 Under standard Multiple Instance Learning
(MIL) assumptions, this means that at least one instance in the bag must be positive.
However, we are not told which one is positive.

Figure 9.2: Example showing multiple labeling possibilities (L1–L7) when only the given
information that bag is positive.

Without any additional information, there are multiple valid configurations of
instance-level labels consistent with the bag-level “positive” label. Let us denote a
positive instance by Y and a negative instance by X.

Since there are three instances, each can be either positive or negative, giving:
23 = 8 (9.1)

possible ways to assign binary labels. Out of these 8 configurations, the only invalid
labeling is the one where all three are negative (X,X,X). Thus, there are:

8− 1 = 7 (9.2)
valid configurations:
(Y,X,X), (X, Y,X), (X,X, Y), (Y, Y,X), (Y,X, Y), (X, Y, Y), (Y, Y, Y).

Since we have no reason to prefer one valid configuration over another, we assign
equal probability to each of these 7 valid labelings:

P (Li | I) =
1

7
∀i ∈ {1, 2, . . . , 7}, (9.3)

where I is the information: “This bag is positive.” The result is a uniform distribution
over all labelings that satisfy the bag-level constraint.

9.2.1.2 Bag with a Given Positive Instance Count

Another form of weak information could be: “This bag has exactly two positive instances.”
Consider again a bag of three instances (X, Y, Z). We ask: how many label configurations
have exactly two positives?

136

Figure 9.3: Example showing bag with given positive instance count

The total number of configurations with exactly two positives out of three instances
is:

(Y, Y,X), (Y,X, Y), (X, Y, Y).

There are exactly 3 such configurations. Without any other information, we assign:

P (Li | I) =
1

3
∀i ∈ {1, 2, 3}, (9.4)

where I is: “This bag has two instances that are positive.”

9.2.1.3 Key Insight

What we have effectively done is to translate weak or indirect label information into
a probability distribution over possible instance-level label assignments. Instead of
treating the weak information as a single “truth,” we recognize that it only narrows down
the space of possible labelings. Each labeling consistent with the provided information
is one “hypothesis.” In the absence of further evidence, we consider them all equally
likely.

This is a Bayesian perspective: we incorporate the given label information as con-
straints that define a conditional distribution over latent labels. Thus, weak supervision
guides a probability distribution over all valid configurations, rather than giving a single
deterministic labeling.

9.2.2 Labels With Uncertainty (Probabilistic Confidence Scores)

9.2.2.1 Scenario

Consider a set of instances for which we have probabilistic confidences rather than hard
labels. For example, let us have three instances X, Y, and Z. We assume each instance
can be either “2” (positive) or “Not 2” (negative). Instead of a definitive label, we have
probabilities indicating the likelihood of each instance being a “2.”

Specifically:
P (X = 2) = 0.2, P (Y = 2) = 0.7, P (Z = 2) = 0.1.

137

Figure 9.4: Example showing Uncertain label configuration

From these probabilities, it follows:
P (X = Not 2) = 1−0.2 = 0.8, P (Y = Not 2) = 1−0.7 = 0.3, P (Z = Not 2) = 1−0.1 = 0.9.

9.2.2.2 Distribution Over Label Configurations

Let each labeling configuration be denoted by Li, where Li specifies a particular
assignment of each instance to “2” or “Not 2.” Since we have 3 instances, each with 2
possible labels, there are:

23 = 8 (9.5)
possible configurations.

For example, consider a configuration:
L2 = (X = 2, Y = 2, Z = Not 2).

The probability of this configuration, given the individual instance probabilities, assum-
ing independence, is:

P (L2 | I) = P (X = 2) · P (Y = 2) · P (Z = Not 2) = (0.2)(0.7)(0.9). (9.6)
We do this for every configuration Li. The unnormalized probability of configuration

Li is:
P (Li | I) =

∏
j∈{X,Y,Z}

P (j = li,j), (9.7)

where li,j is the label assigned to instance j in configuration Li.
To ensure these form a proper probability distribution, we normalize by the sum

over all possible configurations:

P (Li | I) =
∏

j∈{X,Y,Z} P (j = li,j)∑
k

∏
j∈{X,Y,Z} P (j = lk,j)

. (9.8)

9.2.2.3 Benefits

Incorporating uncertain labels in this way lets the model reason directly about un-
certainty. Rather than forcing a single “truth” for each instance, the model considers

138

multiple plausible configurations, each weighted by its probability. This is especially
useful when obtaining exact labels is challenging or when labeling arises from weak
signals or noisy sensors.

9.2.3 Labels With Noise

9.2.3.1 Scenario

In some cases, the provided labels may not only be uncertain, but explicitly noisy. That
is, the label you observe might be incorrect due to flawed data collection, annotation
errors, or sensor failures. Suppose we have three instances that should ideally be:

(X = 2, Y = Not 2, Z = Not 2),

but due to noise, the label for Z may sometimes be misrecorded as “2” when it should
not be.

Figure 9.5: Noisy model required for labels with noise

9.2.3.2 Modeling Noise

To handle this, we introduce a noise model, which gives the probability of observing an
incorrect label. For example, suppose:

P (label flip) = ϵ = 0.05.

If the original intended label for Z is “Not 2,” the probability of observing “Z = 2”
due to noise is ϵ = 0.05. Conversely, the probability of a correct label is 1− ϵ = 0.95.

Thus, if the observed label is “Z = 2,” the probability that this observation is
correct is low in this scenario. We can incorporate such noise models by adjusting the
probabilities:

P (Z = Observed Label | Z = True Label) =

1− ϵ if True Label = Observed Label,

ϵ otherwise.
(9.9)

139

9.2.3.3 Inference With a Noise Model

Given a set of noisy observed labels, we combine the noise probabilities with prior
beliefs about the true labels. We then compute a posterior distribution over all possible
“true” label configurations:

P (Li | I,Noise Model) ∝ P (I | Li,Noise Model)P (Li), (9.10)
where I is the information from observed labels, and Li represents a hypothetical true
labeling. Here, P (I | Li,Noise Model) accounts for how likely we are to observe the
given noisy labels if Li were the true configuration.
Benefits of the approach : By modeling noise explicitly, we avoid treating observed
but incorrect labels as ground truth. This reduces the risk of overfitting to faulty
annotations and leads to more robust, trustworthy models that better reflect the actual
underlying relationships.

9.2.4 Strong Labels (Perfect Information)

Figure 9.6: Strong labels

9.2.4.1 Scenario

At the other extreme, we may have perfect, noise-free labels. Suppose we are certain
that:

X = 2, Y = Not 2, Z = Not 2.

In this ideal scenario, the label configuration is known with absolute certainty:
P (Ltrue | I) = 1, (9.11)

for the correct configuration Ltrue, and:
P (Li | I) = 0 for all i ̸= true. (9.12)

140

No uncertainty or noise modeling is needed since the data are completely reliable.
Models trained under these conditions may achieve excellent predictive performance,
but this is often challenging to achieve in practice.

9.3 Basic EM formulation

Let X = {x1, x2, · · · } represent the features and Y = {y1, y2, · · · } represent their labels.
We are separating the labels from the features for this explanation, however the data,
in fact, comprise the tuples (x, y).

Let I be information given to us about the data. The information may be an
explicit labelling, e.g. I =⇒ Y = {0, 1, 0, · · · } for a binary classification problem,
or I =⇒ Y = {class(x1), class(x2), · · · } more generally. Such a condition would
represent a strong labelling of the data. Alternately, for a binary classification problem,
I =⇒

∑N
i=1 yi ≥ 1 (indicating that among the set (or bag) of instances {x1, · · · , xN},

at least one instance is positive. I might also take other forms, e.g. it might comprise
bounds on the number of positive instance, noisy labels, partial labels (where only some
instances or labelled), or any other form of information.

From a data perspective, we are only given X and I. We must learn the distribution
of P (x, y) from these givens.

Let P (X, I; θ) represent a parametric form for the joint distribution of X and I.
We have:

P (X, I; θ) =
∑
Y

P (X, Y, I; θ)

The maximum likelihood principle requires us to find:

θ̂ = argmax
θ

logP (X, I; θ)

= argmax
θ

log
∑
Y

P (X, Y, I; θ) (9.13)

Here Y represents the true label set for X. If I represents a full (strong) labelling
of X, then I =⇒ Y and the above simply collapses to

θ̂ = argmax
θ

logP (X, Y ; θ) (9.14)
which, for generative models, is decomposed into

θ̂ = argmax
θ

logP (Y ; θ) + logP (X|Y ; θ)

and, for discriminative models, is decomposed into
θ̂ = argmax

θ
logP (X) + logP (Y |X; θ)

In the most general case, however, we cannot assume strong labels, i.e I ̸=⇒ Y , and

141

may only represent partial, incomplete, or noisy information about Y . In that case,
Equation 9.26 must be explicitly optimized.

We know from long years of painful experience that Equation 9.26 cannot generally
be solved in closed form and requires iterative hill-climbing solutions. Of these, arguably
the most popular is the Expectation Maximzation algorithm, which iteratively maximizes
a tight variational lower bound on the log likelihood, which in our case becomes

θk+1 = argmax
θ

EY |X,I;θk logP (X, Y, I; θ)

= argmax
θ

EY |X,I;θk logP (X, Y ; θ) + logP (I|X, Y ; θ) (9.15)

where θk is the kth estimate of the optimal θ.
The precise nature of the solution to the Equation 9.15 will depend on the nature

the data and the information provided I. If I repersents noisy labels, then P (I|X, Y ; θ)

represents a potentially learnable noise model.
In problems where I represents some information about the true labels (i.e. not noisy

labels), e.g. the actual labels, bounds on the labels, weak labels etc, P (I|X, Y ; θ) =

P (I|Y), i.e. once the actual labels are given, the probability of I no longer depends on
X or parameters θ. In this case Equation 9.15 reduces to:

θk+1 = argmax
θ

EY |X,I;θk logP (X, Y ; θ) (9.16)
In particular, for discriminative models, such as neural networks, it becomes

θk+1 = argmax
θ

EY |X,I;θk logP (Y |X; θ) (9.17)
Note that this solution depends on our ability to compute P (Y |X, I; θ). In some

cases we can compute this in closed form; in others we may require approximations
(converting the EM solution to the more generic approximate solution of maximizing
variational lower bounds).

9.4 IID observations

Let us now consider the case where the data are IID, i.e. each instance of (xi, yi) is
statistically independent of every other instance. Assume without loss of generality that
the set of observations occurs as a sequence {(x1, y1), (x2, y2), · · · }. The specific order
of the sequence does not matter for the IID case (although it might in other cases).

First, we will assume conditional independence of the yis, given X (recalling that
X = {x1, x2, · · · }), i.e.

142

P (Y |X; θ) =
∏
i

P (yi|X; θ) (9.18)

logP (Y |X; θ) =
∑
i

logP (yi|X; θ) (9.19)

This assumption is accurate if computed by any model where the labels predicted for
any instance are not fed back to the net as input when computing the labels for other
inputs.

Using the linearity of the expectation operator, we can write the following. Here, in
Equation 9.21 we have adopted the Pyi(y) subscripted notation to distinguish between
the random variable yi and the value y that it takes.

EY |X,I;θk logP (Y |X; θ) =
∑
i

EY |X,I;θk logP (yi|X; θ) (9.20)

=
∑
i

∑
y

Pyi(y|X, I; θk) logPyi(y|X; θ) (9.21)

The problem thus reduces to that of computing Pyi(y|X, I; θk). We can write

Pyi(y|X, I; θk) =
1

P (I|X; θk)
Pyi(y, I|X; θk) (9.22)

We recognize P (I|X; θk) as the probability of I given the input data, as computed
using the current model with parameter θk, and Pyi(y, I|X; θk) as the joint probability
of I and the label of the ith instance taking the value y, given X, also as computed
using the current model with parameter θk.

In order to compute Pyi(y, I|X; θk), we treat the problem of assigning labels y1, y2, · · ·
to the inputs x1, x2, · · · as one of generating a sequence of symbols y1, y2, · · · , yi ∈
{0, 1},such that at least one of the symbols yi is 1.

Figure 9.7 shows a finite-state automaton that generates symbol sequences with
this feature. In this figure, the green dot repersents a state that outputs a symbol 1,
while the red dot is a state that outputs 0. A sequence of symbols that mandatorily
includes a 1 can be one of four kinds: one that begins with a 1 and ends with a 0, one
that begins with a 0 and ends with a 1, one that begins and ends with 0s, but has
one or more 1s between them, and one that begins and ends with a 1, and optionally
has one or more intervening 0s. The four branches of the automaton show these four
possibilities. Note that if one were to additionally assume that the first and last symbol
in the sequence are always a 0, then the automaton becomes much simpler, including
only the second branch (from the top) in the figure.

Figure 9.8 represents the set of all possible label sequences of length 6, that can be
generated by the automaton of Figure 9.7 in the form of a graph, or trellis. This trellis,
which is just a product of the automaton of Figure 9.7 and a linear graph (constructed

143

Figure 9.7: Finite state graph representing all ways of aligning a sequences of instances
such that at least one instance is from the positive class. Green dots represent the
“positive” state (positive instances) and red dots represent the “negative” state. The
four branches from the top to the bottom represent the cases where (a) the sequence
both begins and ends with a positive label, (b) the sequence begins and ends with a
negative label, buth as at least one positive instance, (c) the sequence begins with a
negative instance and ends with a positive instance, and (d) the sequence begins with a
positive instance and ends with a negative instance. All edges have weight 1.

simply by “unrolling” the automaton so that every transition actually transitions to the
next symbol), can be extended to accommodate an input of any length.

If we were to restrict our original automaton such that the first and last symbols
in the sequence were both 0, the trellis would only consist of the second subtrellis
(comprising 3 states) in the figure.

Figure 9.8: “Trellis” representing all possible ways of labelling a sequence of six instances
such that at least one instance is positive. This is composed from the graph of Figure
9.7.

We are now set to compute Pyi(y, I|X; θk).
Using our current model for P (y|x; θk) we compute Pyi(y|X; θk), y ∈ {0, 1}, ∀i.

We then associate Pyi(0|X; θk) and Pyi(1|X; θk) with the red and green states of the ith

144

coloured column of the trellis, as illustrated by Figure 9.9. The black nodes, representing
the source and destination states get a value 1, as do all edges.

Figure 9.9: The entire CTC model for the trellis of Figure 9.8. At each instance, the
probabilities assigned to the “positive” (green) nodes and “negative” (red) nodes is
computed by the neural network.

Pyi(y, I|X; θk) can subsequently be computed using the forward-backward algorithm.
P (I|X; θk) is merely the forward probability in the final absorbing node of the trellis.
These can be used in Equation 9.22 to compute Pyi(y|X, I; θk), which can then be used
to compute the objective of Equation 9.21, which must be optimized via gradient ascent.

9.5 Generalizing

The example above is only an illustration for a simple binary classification problem with
the trivial case of a weak label. The key takeaway lesson is that any kind of labelling
information I can be used within an EM objective to obtain linear time (in the number
of inputs) updates to the model provided I can be stated as a (language accepted by
a) finite-state automaton. This, in fact, subsumes many cases, leading to very simple
solutions.

Figure 9.15 shows several examples of FSAs for various types of label information
for a binary classification tasks. Here we have used non-deterministic finite automata
(NFA), and shown them using the more conventional notation, which shows symbols

145

on the edges, rather than the nodes of the automaton. The symbol “1” represents
the positive class and “0” represents the negative class. The examples include FSAs
for strong labelling (Figure 9.10), for the case where no labels are provided and any
labelling is potentially valid (Figure 9.14), a simpler version of the weak-label solution
of Figure 9.7 (Figure 9.12), label conditions that give us an exact count of positives –
two, in the shown example (Figure 9.13), and a label condition that gives us a minimum
count on positives – two in our example (Figure 9.14) .

Figure 9.10: An FSA for the strong label sequence “1, 0, 1, 0”.

Figure 9.11: FSA for unlabelled data.
Figure 9.12: FSA for weak labelling: “at
least one positive instance”.

Figure 9.13: FSA representing the
event that the collection has exactly
two positive instances.

Figure 9.14: FSA for labellings
with at least two positive instances.

Figure 9.15: Finite-state automata (nondeterministic) representing different kinds of
label information I for a binary classification task.

Although the examples of Figure 9.15 are specific to binary classification, they are
easily extended to multi-class classification, simply by extending the symbol set for the
label “language” accepted by the automatons.

In all cases, the complexity of computing the loss remains linear in the number
of instances in the collection. Since the branching factor of the FSAs is typically not
greater than O(C), where C is the number of classes, loss computation is also upper
bounded quadratically by the number of classes, in most cases.

9.6 Baselines solutions from different imprecise label settings

In this section, we illustrate the notations and baselines from different imprecise
label settings that adopt various solutions. We will show later how our proposed
method generalize and subsumes these prior arts. Let X denote the input space,

146

and Y = [C] := {1, . . . , C} represent the label space with C distinct labels. A fully
annotated training dataset of size N is represented as D = {(xi, yi)}i∈[N]. Learning
with imprecise labels involves approximating the mapping function f ◦ g : X → Y from
a training dataset where the true label y is not fully revealed from the annotation
process. Here f is the backbone for feature extraction, g refers to the classifier built
on top of the features, and the output from f ◦ g is the predicted probability p(y|x; θ),
where θ is the learnable parameter for f ◦ g. In this study, we primarily consider three
imprecise label configurations (as illustrated in Figure 9.1) and their corresponding
representative learning paradigms (as shown in Figure 9.16), namely partial label
learning, semi-supervised learning, and noisy label learning.

𝓐𝒘 (𝒙)

Encoder
𝒇

EMA
Encoder

Linear
Head 𝒈

𝓛𝑪𝒐𝒏𝒕

𝓛𝑪𝑬𝓐𝐬 (𝐱)

MLP
Head 𝐡

(a) Partial Label

𝓐𝒘(𝒙𝒍)
𝓐𝒔(𝒙𝒖)

𝓛𝑪𝑬
𝒔𝒖𝒑

𝓐𝒘(𝒙𝒖) 𝓛𝑪𝑬
𝒖𝒏𝒔𝒖𝒑

Encoder
𝒇

Linear
Head 𝒈

(b) Semi-Supervised

𝓛𝑪𝒐𝒏𝒔𝒊𝒔𝒕
𝓛𝑪𝑬𝒏𝒐𝒊𝒔𝒆Encoder

𝒇
Linear
Head 𝒈

Noise
Model

𝓛𝑴𝑺𝑬𝒏𝒐𝒊𝒔𝒆

𝓛𝑬𝒏𝒕

𝓐𝒔 (𝒙)

𝓐𝒘 (𝒙)

(c) Noisy Label

EM

𝓛𝑰𝑳𝑳

Encoder
𝒇

Linear
Head 𝒈

𝓐𝒔 (𝒙)

𝓐𝒘 (𝒙)

(d) Imprecise Label

Figure 9.16: Baseline model pipelines for various imprecise label configurations. (a)
PiCO [2] for partial label learning. (b) FixMatch [3] for semi-supervised learning. (c)
SOP [4] for noisy label learning. (d) The proposed unified framework. It accommo-
dates any imprecise label configurations and also mixed imprecise labels with an EM
formulation.

Partial label learning (PLL). PLL aims to learn with a candidate label set
s ⊂ Y, where the ground truth label y ∈ Y is concealed in s. The training data for
partial labels thus becomes DPLL = {(xi, si)}i∈[N]. PiCO [2] is a recent contrastive
method that employs class prototypes to enhance label disambiguation (as shown in
Figure 9.16(a)). It optimizes the cross-entropy (CE)1 loss between the prediction of
the augmented training sample Aw(x) and the disambiguated labels ŝ. PiCO learns a
set of class prototypes from the features associated with the same pseudo-targets. A
contrastive loss, based on MOCO [236], is employed to better learn the feature space,
drawing the projected and normalized features zw and zs of the two augmented versions
of data Aw(x) and As(x)

2 closer. The objective of PiCO is formulated as:
LPiCO = LCE (p(y|Aw(x); θ), ŝ) + LCont (zw, zs,M) . (9.23)

Semi-supervised learning (SSL). For SSL, we can define the labeled dataset as
DL

SSL = {(xl
i, y

l
i)}i∈[NL], and the unlabeled dataset as DU = {xu

j}j∈[NL+1,NL+NU], with
NL ≪ NU. A general confidence-thresholding based self-training [221, 3] pipeline for

1For simplicity, we use LCE for labels of the formats of class indices, one-hot vectors, and class
probabilities.

2We use Aw to indicate the weaker data augmentation and As to indicate the stronger data
augmentation.

147

SSL is shown in Figure 9.16(b). Consider FixMatch [3] as an example; there are usually
two loss components: the supervised CE loss on labeled data and the unsupervised CE
loss on unlabeled data. For the unsupervised objective, the pseudo-labels ŷu from the
network itself are used to train on the unlabeled data. A “strong-weak” augmentation
[221] is commonly adopted. To ensure the quality of the pseudo-labels, only the
pseudo-labels whose confidence scores p̂u are greater than a threshold τ are selected to
participate in training:

LFix = LCE

(
p(y|Aw(x

l); θ), yl
)
+ 1 (p̂u ≥ τ)LCE (p(y|As(x

u); θ), ŷu) . (9.24)
Noisy label learning (NLL). NLL aims at learning with a dataset of corrupted

labels, DNLL = {(xi, ŷi)}i∈[N]. We illustrate the NLL pipeline (in Figure 9.16(c)) with
the recent sparse over-parameterization (SOP) model [4], where a sparse noise model
consisting of parameters ui,vi ∈ [−1, 1]C for each sample is adopted. The noise model
transforms the network prediction from the true label distribution into the noisy label
distribution. A CE loss and a mean-squared-error (MSE) loss optimize parameter {ui}
and {vi} respectively:

LSOP = LCE (ϕ (p(y|Aw(x); θ) +m) , ŷ) + LMSE (p(y|Aw(x); θ) +m, ŷ) , (9.25)
where ϕ denotes the L∞ normalization and mi = ui⊙ui⊙ ŷoh

i −vi⊙vi⊙
(
1− ŷoh

i

)
, with

ŷoh
i referring to the one-hot version of yi. Consistency regularization with strong-weak

augmentation and entropy class-balance regularization are additionally utilized for
better performance in SOP [4].

9.7 Imprecise Label Learning

Although current techniques demonstrate potential in addressing particular forms of
imprecise labels, they frequently fall short in adaptability and transferability to more
complicated and more realistic scenarios where multiple imprecise label types coexist
and interleave. This section first defines the proposed expectation-maximization (EM)
formulation for learning with various imprecise labels. Then, we demonstrate that our
unified framework seamlessly extends to partial label learning, semi-supervised label
learning, noisy label learning, and the more challenging setting of mixed imprecise label
learning. Connections and generalization to previous pipelines can also be drawn clearly
under the proposed EM framework.

9.7.1 A Unified Framework for Learning with Imprecise Labels

Exploiting information from imprecise labels. The challenge of learning with
imprecise labels lies in learning effectively with inaccurate or incomplete annotation
information. Per the analysis above, prior works catering to specific individual imprecise

148

labels either explicitly or implicitly attempt to infer the precise labels from the imprecise
label information. For example, partial label learning concentrates on the disambiguation
of the ground truth label from the label candidates [2, 237, 218] or averaging equally
over the label candidates [238]. In semi-supervised learning, after the model initially
learns from the labeled data, the pseudo-labels are treated as correct labels and utilized
to conduct self-training on the unlabeled data [239, 3]. Similarly, for noisy label learning,
an integral part that helps mitigate overfitting to random noise is the implementation
of an accurate noise model capable of identifying and rectifying the incorrect labels
[203, 4], thereby ensuring the reliability of the learning process. However, inferring the
correct labels from the imprecise labels or utilizing the imprecise labels directly can
be very challenging and usually leads to errors accumulated during training [239, 240],
which is also known as the confirmation bias. In this work, we take a different approach:
we consider all possible labeling along with their likelihood that the imprecise labels
fulfill to train the model, rather than using a single rectified label from the imprecise
information. Such an approach also eliminates the requirements for designing different
methods for various imprecise labels and provides a unified formulation instead, where
closed-form solutions can be derived.

A unified framework for learning with imprecise labels (ILL). Let {xi}i∈[N]

represent the features as realizations from X and {yi}i∈[N] represent their precise labels
as realizations from Y for the training data. Ideally, Y would be fully specified for
X. In the imprecise label scenario, however, Y is not provided; instead we obtain
imprecise label information I. We view I not as labels, but more abstractly as a
variable representing the information about the labels. From this perspective, the
actual labels Y would have a distribution P (Y |I), and I can present in various forms.
When the information I provided is the precise true label of the data, P (Y |I) would be
a delta distribution, taking a value 1 at the true label, and 0 elsewhere. If I represents
partial labels, then P (Y |I) would have non-zero value over the candidate labels, and
be 0 elsewhere. When I represents a set of noisy labels, P (Y |I) would represent the
distribution of the true labels, given the noisy labels. When I does not contain any
information, i.e., unlabeled data, Y can take any value.

By the maximum likelihood estimation (MLE) principle, we must estimate the model
to maximize the likelihood of the data/information we have been provided, namely
X and I. Let P (X, I; θ) represent a parametric form for the joint distribution of X
and I3 Explicitly considering the labels Y , we have P (X, I; θ) =

∑
Y P (X, Y, I; θ). The

3The actual parameters θ may apply only to some component such as P (Y |X; θ) of the overall
distribution; we will nonetheless tag the entire distribution P (X, I; θ) with θ to indicate that it is
dependent on θ overall.

149

maximum likelihood principle requires us to find:
θ∗ = argmax

θ
logP (X, I; θ) = argmax

θ
log

∑
Y

P (X, Y, I; θ), (9.26)

with θ∗ denotes the optimal value of θ. Equation (9.26) features the log of an expectation
and cannot generally be solved in closed-form, and requires iterative hill-climbing
solutions. Of these, arguably the most popular is the expectation-maximization (EM)
algorithm [226], which iteratively maximizes a tight variational lower bound on the
log-likelihood. In our case, applying it becomes:

θt+1 = argmax
θ

EY |X,I;θt [logP (X, Y, I; θ)]

= argmax
θ

EY |X,I;θt [logP (Y |X; θ) + logP (I|X, Y ; θ)] ,
(9.27)

where θt is the tth estimate of the optimal θ. Note that P (X; θ) is omitted from Equa-
tion (9.27) as P (X) is not based on θ. The detailed derivation of the variational lower
bound is shown in Appendix D.3.1. There are several implications from Equation (9.27).
(i) The expectation over the posterior P (Y |X, I; θt) equates to considering all labeling
entailed by the imprecise label information I, rather than any single (possibly corrected)
choice of label. For independent instances setting studied in this paper, we can derive
closed-form training objectives from this formulation as shown in Section 9.7.2. (ii) The
property of the second term logP (I|X, Y ; θ) is dependent on the nature of imprecise
label I. If I contains information about the true labels Y , such as the actual labels or
the label candidates, it can be reduced to P (I|Y), i.e., the probability of I is no longer
dependent on X or θ and thus can be ignored from Equation (9.27). If I represents the
noisy labels, P (I|X, Y ; θ) instead includes a potentially learnable noise model. (iii) It
is a general framework towards the unification of any label configuration, including full
labels, partial labels, low-resource labels, noisy labels, etc. In this work, we specialize the
proposed EM framework to PLL, SSL, NLL, and the mixture of them in the following.

9.7.2 Instantiating the Unified EM Formulation

We illustrate how to seamlessly expand the formulation from Equation (9.27) to partial
label learning, semi-supervised learning, noisy label learning, and mixture settings, with
derived closed-form loss function4 for each setting here. The actual imprecise labels
only affect the manner in which the posterior P (Y |X, I; θt) is computed for each setting.
We show that all learning objectives derived from Equation (9.27) naturally include
a consistency term with the posterior as the soft target. We also demonstrate that
the proposed unified EM framework closely connects with the prior arts, which reveals
the potential reason behind the success of these techniques. Note that while we only
demonstrate the application of the proposed framework to four settings here, it can

4To formulate the loss function, we convert the problem to minimization of the negative log-likelihood.

150

also be flexibly extended to other settings. More details of derivation below are shown
in Appendix D.3.

Partial label learning (PLL). The imprecise label I for partial labels is defined as
the label candidate sets S containing the true labels. These partial labels indicate that
the posterior P (Y |X,S; θt) can only assign its masses on the candidate labels. Since S

contains the information about the true labels Y , P (S|X, Y ; θ) reduces to P (S|Y), and
thus can be ignored. We also demonstrate with instance dependent partial labels that
maintains P (S|X, Y ; θ) in Appendix D.4.2.2. Defining the label candidates as {si}i∈[N]

and substituting it in Equation (9.27), we have the loss function of PLL derived using
ILL framework:
LPLL

ILL = −
∑
Y ∈[C]

P (Y |X,S; θt) logP (Y |X; θ) ≡ LCE

(
p(y|As(x); θ),p(y|Aw(x), s; θ

t)
)
,

(9.28)
where p(y|Aw(x), s; θ

t) is the normalized probability that
∑

k∈C pk = 1, and pk =

0,∀k ∈ s. Equation (9.28) corresponds exactly to consistency regularization [221], with
the normalized predicted probability as the soft pseudo-targets. This realization on
PLL shares similar insights as [185] which exploits a gradually induced loss weight for
PLL on multiple augmentations of the data. However, our framework is much simpler
and more concise as shown in Appendix D.4.2.2, which does not require additional
techniques.

Semi-supervised learning (SSL) In SSL, the input X consists of the labeled
data XL and the unlabeled data XU. The imprecise label for SSL is realized as the
limited number of full labels Y L for XL. The labels Y U for unlabeled XU are unknown
and become the latent variable. Interestingly, for the unlabeled data, there is no
constraint on possible labels it can take. The posterior P (Y U|XL, XU, Y L; θ), which
is the actual prediction from the network, can be directly utilized as soft targets for
self-training. Since Y L is conditionally independent with Y U given X, the second term of
Equation (9.27): P (Y L|XL, XU, Y U; θ), is reduced to P (Y L|XL; θ), which corresponds
to the supervised objective on labeled data. The loss function for SSL thus becomes:
LSSL

ILL = −
∑
Y ∈[C]

P (Y U|XU, XL, Y L; θt) logP (Y U|XU, XL; θ)− logP (Y L|XL; θ)

≡ LCE

(
p(y|As(x

u); θ),p(y|Aw(x
u); θt)

)
+ LCE

(
p(y|Aw(x

l); θ), yl
) (9.29)

The first term corresponds to the unsupervised consistency regularization usually
employed in SSL, and the second term refers to the supervised CE loss only on labeled
data. Equation (9.29) has several advantages over the previous methods. It adopts
the prediction as soft-targets of all possible labeling on unlabeled data, potentially
circumventing the confirmation bias caused by pseudo-labeling and naturally utilizing
all unlabeled data which resolves the quantity-quality trade-off commonly existing in

151

SSL [3, 194]. It also indicates that previous pseudo-labeling with confidence threshold
implicitly conducts the EM optimization, where the maximal probable prediction
approximates the expectation, and the degree of the approximation is determined by
the threshold τ , rationalizing the effectiveness of dynamic thresholding.

Noisy label learning (NLL). Things become more complicated here since the
noisy labels Ŷ do not directly reveal the true information about Y , thus P (Ŷ |Y,X; θ)

inherently involves a noise model that needs to be learned. We define a simplified
instance-independent5 noise transition model T (Ŷ |Y ;ω) with parameters ω, and take a
slightly different way to formulate the loss function for NLL from the ILL framework:
LNLL

ILL = −
∑
Y ∈[C]

P (Y |X, Ŷ ; θt, ωt) logP (Y |X, Ŷ ; θ, ωt)− logP (Ŷ |X; θ, ω)

≡ LCE

(
p(y|As(x), ŷ; θ, ω

t),p(y|Aw(x), ŷ; θ
t, ωt)

)
+ LCE (p(ŷ|Aw(x); θ, ω), ŷ) ,

(9.30)
where the parameters ω and θ are learned end-to-end. The first term corresponds to
the consistency regularization of prediction conditioned on noisy labels and the second
term corresponds to the supervised loss on noisy predictions that are converted from
the ground truth predictions. Both quantities are computed using the noise transition
model given the noisy label ŷ:

p(y|x, ŷ; θ, ωt) ∝ p(y|x; θ)T (ŷ|y;ωt), and p(ŷ|x; θ, ω) =
∑
y∈[C]

p(y|x; θ)T (ŷ|y;ω).

(9.31)
Mixture imprecise label learning (MILL). We additionally consider a more

practical setting, mixture of imprecise label learning, with partial labels, noisy labels,
and unlabeled data interleaved together. On the unlabeled data, the unsupervised
objective is the same as the unsupervised consistency regularization of SSL as shown
in Equation (9.29). The labeled data here present partial and noisy labels ŝ. Thus
the noisy supervised objective in Equation (9.31) becomes the supervised consistency
regularization as in Equation (9.28) of partial label setting to train the noise transition
model, and the noisy unsupervised objective becomes the consistency regularization of
the prediction conditioned on noisy partial labels. Thus we have the loss function for
MILL derived as:

LMILL
ILL = LCE

(
p
(
y | As(x

l), ŝl; θ, ωt
)
,p

(
y | Aw(x

l), ŝl; θt, ωt
))

+ LCE

(
p
(
ŷ | Aw(x

l); θ, ω
)
, ŝl

)
+ LCE

(
p(y|As(x

u); θ),p(y|Aw(x
u); θt)

) (9.32)

5A more complicated instance-dependent noise model T (Ŷ |Y,X;ω) can also be formulated under
our unified framework, but not considered in this work. Also, since we use T both in forward fashion
and backward fashion, it is unidentifiable in this work.

152

Table 9.1: Accuracy of different partial ratio q on CIFAR-10, CIFAR-100, and CUB-200
for partial label learning. The best and the second best results are indicated in bold
and underline respectively.

Dataset CIFAR-10 CIFAR-100 CUB-200

Partial Ratio q 0.1 0.3 0.5 0.01 0.05 0.1 0.05

Fully-Supervised 94.91±0.07 73.56±0.10 -

LWS [184] 90.30±0.60 88.99±1.43 86.16±0.85 65.78±0.02 59.56±0.33 53.53±0.08 39.74±0.47

PRODEN [222] 90.24±0.32 89.38±0.31 87.78±0.07 62.60±0.02 60.73±0.03 56.80±0.29 62.56±0.10

CC [182] 82.30±0.21 79.08±0.07 74.05±0.35 49.76±0.45 47.62±0.08 35.72±0.47 55.61±0.02

MSE [245] 79.97±0.45 75.65±0.28 67.09±0.66 49.17±0.05 46.02±1.82 43.81±0.49 22.07±2.36

EXP [245] 79.23±0.10 75.79±0.21 70.34±1.32 44.45±1.50 41.05±1.40 29.27±2.81 9.44±2.32

PiCO [2] 94.39±0.18 94.18±0.12 93.58±0.06 73.09±0.34 72.74±0.30 69.91±0.24 72.17±0.72

Ours 96.37±0.08 96.26±0.03 95.91±0.05 75.31±0.19 74.58±0.03 74.00±0.02 70.77±0.29

We can compute both quantity through the noise transition model:
p(y|x, ŝ; θ, ωt) ∝ p(y|x; θ)

∏
ŷ∈ŝ

T (y|ŷ;ωt), and p(ŷ|x; θ, ω) =
∑
y∈[C]

p(y|x; θ)T (ŷ|y;ω).

(9.33)

9.8 Experiments

In this section, we conduct extensive experiments to evaluate ILL. Albeit simple, the
ILL framework achieves comparable state-of-the-art performance regarding previous
methods on partial label learning, semi-supervised learning, and noisy label learning.
Moreover, our experiments show that ILL could be easily extended to a more practical
setting with a mixture of various imprecise label configurations. For all settings, we
additionally adopt an entropy loss for balancing learned cluster sizes [241, 242], similarly
as [4, 193]. Experiments are conducted with three runs using NVIDIA V100 GPUs.

9.8.1 Partial Label Learning

Setup. Following [2], we evaluate our method on partial label learning setting using
CIFAR-10 [243], CIFAR-100 [243], and CUB-200 [244]. We generate partially labeled
datasets by flipping negative labels to false positive labels with a probability q, denoted
as a partial ratio. The C − 1 negative labels are then uniformly aggregated into the
ground truth label to form a set of label candidates. We consider q ∈ {0.1, 0.3, 0.5}
for CIFAR-10, q ∈ {0.01, 0.05, 0.1} for CIFAR-100, and q = 0.05 for CUB-200. We
choose six baselines for PLL using ResNet-18 [174]: LWS [184], PRODEN [222], CC
[182], MSE and EXP [245], and PiCO [2]. The detailed hyper-parameters, comparison
with the more recent method R-CR [185] that utilizes a different training recipe and
model [246], and comparison with instance-dependent partial labels [247] are shown in
Appendix D.4.2.2.

Results. The results for PLL are shown in Table 9.1. Our method achieves the

153

Table 9.2: Error rate of different number of labels l on CIFAR-100, STL-10, IMDB, and
Amazon Review datasets for semi-supervised learning.

Datasets CIFAR-100 STL-10 IMDB Amazon Review

Labels l 200 400 40 100 20 100 250 1000

AdaMatch [250] 22.32±1.73 16.66±0.62 13.64±2.49 7.62±1.90 8.09±0.99 7.11±0.20 45.40±0.96 40.16±0.49

FixMatch [3] 29.60±0.90 19.56±0.52 16.15±1.89 8.11±0.68 7.72±0.33 7.33±0.13 47.61±0.83 43.05±0.54

FlexMatch [191] 26.76±1.12 18.24±0.36 14.40±3.11 8.17±0.78 7.82±0.77 7.41±0.38 45.73±1.60 42.25±0.33

CoMatch [251] 35.08±0.69 25.35±0.50 15.12±1.88 9.56±1.35 7.44±0.30 7.72±1.14 48.76±0.90 43.36±0.21

SimMatch [252] 23.78±1.08 17.06±0.78 11.77±3.20 7.55±1.86 7.93±0.55 7.08±0.33 45.91±0.95 42.21±0.30

FreeMatch [193] 21.40±0.30 15.65±0.26 12.73±3.22 8.52±0.53 8.94±0.21 7.95±0.45 46.41±0.60 42.64±0.06

SoftMatch [194] 22.67±1.32 16.84±0.66 13.55±3.16 7.84±1.72 7.76±0.58 7.97±0.72 45.29±0.95 42.21±0.20

Ours 22.06±1.06 16.40±0.54 11.09±0.71 8.10±1.02 7.32±0.12 7.64±0.67 43.96±0.32 42.32±0.02

best performance compared to the baseline methods. Perhaps more surprisingly, on
CIFAR-10 and CIFAR-100, our method even outperforms the fully-supervised reference,
indicating the potential better generalization capability using the proposed framework,
sharing similar insights as in Wu et al. [185]. While PiCO adopts a contrastive learning
objective, our method still surpasses PiCO by an average of 2.13% on CIFAR-10
and 2.72% on CIFAR-100. Our approach can be further enhanced by incorporating
contrastive learning objectives, potentially leading to more significant performance.

9.8.2 Semi-Supervised Learning

Setup. For experiments of SSL, we follow the training and evaluation protocols of
USB [5] on image and text classification. To construct the labeled dataset for semi-
supervised learning, we uniformly select l/C samples from each class and treat the
remaining samples as the unlabeled dataset. We present the results on CIFAR-100 and
STL-10 [243] for image classification, and IMDB [248] and Amazon Review [249] for text
classification. We compare with the current methods with confidence thresholding, such
as FixMatch [3], AdaMatch [250], FlexMatch [191], FreeMatch [193], and SoftMatch
[194]. We also compare with methods with the contrastive loss, CoMatch [251] and
SimMatch [252]. A full comparison of the USB datasets and hyper-parameters is shown
in Appendix D.4.3.

Results. We present the results for SSL on Table 9.2. Although no individual
SSL algorithm dominates the USB benchmark [5], our method still shows competitive
performance. Notably, our method performs best on STL-10 with 40 labels and Amazon
Review with 250 labels, outperforming the previous best by 0.68% and 1.33%. In the
other settings, the performance of our method is also very close to the best-performing
methods. More remarkably, our method does not employ any thresholding, re-weighting,
or contrastive techniques to achieve current results, demonstrating a significant potential
to be further explored.

154

Table 9.3: Accuracy of synthetic noise on CIFAR-10 and CIFAR-100 and instance
noise on Clothing1M and WebVision for noisy label learning. We use noise ratio of
{0.2, 0.5, 0.8} for synthetic symmetric noise and 0.4 for asymmetric label noise. The
instance noise ratio is unknown.

Dataset CIFAR-10 CIFAR-100 Clothing1M WebVision

Noise Type Sym. Asym. Sym. Asym. Ins. Ins.

Noise Ratio η 0.2 0.5 0.8 0.4 0.2 0.5 0.8 0.4 - -

CE 87.20 80.70 65.80 82.20 58.10 47.10 23.80 43.30 69.10 -
Mixup [255] 93.50 87.90 72.30 - 69.90 57.30 33.60 - - -
DivideMix [203] 96.10 94.60 93.20 93.40 77.10 74.60 60.20 72.10 74.26 77.32
ELR [202] 95.80 94.80 93.30 93.00 77.70 73.80 60.80 77.50 72.90 76.20
SOP [4] 96.30 95.50 94.00 93.80 78.80 75.90 63.30 78.00 73.50 76.60

Ours 96.78±0.11 96.60±0.15 94.31±0.07 94.75±0.81 77.49±0.28 75.51±0.52 66.46±0.72 75.82±1.89 74.02±0.12 79.37±0.09

9.8.3 Noisy Label Learning

Setup. We conduct the experiments of NLL following SOP [4] on both synthetic
symmetric/asymmetric noise on CIFAR-10 and CIFAR-100, and more realistic and
larger-scale instance noise on Clothing1M [253], and WebVision [254]. To introduce
the synthetic symmetric noise to CIFAR-10 and CIFAR-100, we uniformly flip labels
for a probability η into other classes. For asymmetric noise, we only randomly flip the
labels for particular pairs of classes. We mainly select three previous best methods
as baselines: DivideMix [203]; ELR [202]; and SOP [4]. We also include the normal
cross-entropy (CE) training and mixup [255] as baselines. More comparisons of other
methods [256, 198] and on CIFAR-10N [257] with training details and more baselines
[258, 198] are shown in Appendix D.4.4.

Results. We present the noisy label learning results in Table 9.3. The proposed
method is comparable to the previous best methods. On synthetic noise of CIFAR-10,
our method demonstrates the best performance on both symmetric noise and asymmetric
noise. On CIFAR-100, our method generally produces similar results comparable to SOP.
One may notice that our method shows inferior performance on asymmetric noise of
CIFAR-100; we argue this is mainly due to the oversimplification of the noise transition
model. Our method also achieves the best results on WebVision, outperforming the
previous best by 2.05%. On Clothing1M, our results are also very close to DivideMix,
which trains for 80 epochs compared to 10 epochs in ours.

9.8.4 Mixed Imprecise Label Learning

Setup. We evaluate on CIFAR-10 and CIFAR-100 in a more challenging and realistic
setting, the mixture of various imprecise label configurations, with unlabeled, partially
labeled, and noisy labeled data existing simultaneously. We first sample the labeled
dataset and treat other samples as the unlabeled. On the labeled dataset, we generate
partial labels and randomly corrupt the true label of the partial labels. We set

155

Table 9.4: Accuracy comparison of mixture of different imprecise labels. We
report results of full labels, partial ratio q of 0.1 (0.01) and 0.3 (0.05) for CIFAR-10
(CIFAR-100), and noise ratio η of 0.1, 0.2, and 0.3 for CIFAR-10 and CIFAR-100.

Method q
CIFAR-10, l=50000

q
CIFAR-100, l=50000

η=0.1 η=0.2 η=0.3 η=0.1 η=0.2 η=0.3

PiCO+ [259]

0.1

93.64 93.13 92.18

0.01

71.42 70.22 66.14
IRNet [237] 93.44 92.57 92.38 71.17 70.10 68.77
DALI [218] 94.15 94.04 93.77 72.26 71.98 71.04
PiCO+ Mixup [218] 94.58 94.74 94.43 75.04 74.31 71.79
DALI Mixup [218] 95.83 95.86 95.75 76.52 76.55 76.09
Ours 96.47±0.11 96.09±0.20 95.83±0.05 77.53±0.24 76.96±0.02 76.43±0.27

PiCO+ [259]

0.3

92.32 92.22 89.95

0.05

69.40 66.67 62.24
IRNet [237] 92.81 92.18 91.35 70.73 69.33 68.09
DALI [218] 93.44 93.25 92.42 72.28 71.35 70.05
PiCO+ Mixup [218] 94.02 94.03 92.94 73.06 71.37 67.56
DALI Mixup [218] 95.52 95.41 94.67 76.87 75.23 74.49
Ours 96.2±0.02 95.87±0.14 95.22±0.06 77.07±0.16 76.34±0.08 75.13±0.63

l ∈ {1000, 5000, 50000} for CIFAR-10, and l ∈ {5000, 10000, 50000} for CIFAR-100.
For partial labels, we set q ∈ {0.1, 0.3, 0.5} for CIFAR-10, and q ∈ {0.01, 0.05, 0.1} for
CIFAR-100. For noisy labels, we set η ∈ {0, 0.1, 0.2, 0.3} for both datasets. Since there
is no prior work that can handle all settings all at once, we compare on partial noisy
label learning with PiCO+ [259], IRNet [237], and DALI [218]. Although there are also
prior efforts on partial semi-supervised learning [219, 220], they do not scale on simple
dataset even on CIFAR-10. Thus, we did not include them in comparison. We conduct
additional validation of our method on more complex settings for partial noisy labels
with unlabeled data to demonstrate its robustness to various imprecise labels.

Results. We report the comparison with partial noisy label learning methods in
Table 9.4. Compared to previous methods, the proposed method achieves the best
performance. Despite the simplicity, our method outperforms PiCO+ and DALI with
mixup, showing the effectiveness of dealing with mixed imprecise labels. We also
report the results of our methods on more mixed imprecise label configurations in
Table 9.5. Our method demonstrates significant robustness against various settings of
the size of labeled data, partial ratio, and noise ratio. Note that this is the first work
that naturally deals with all three imprecise label configurations simultaneously, with
superior performance than previous methods handling specific types or combinations
of label configurations. This indicates the enormous potential of our work in realistic
applications for handling more practical and complicated data annotations common in
real world applications.

9.9 Results for Imprecise Label Learning on Audio Analysis

In addition to the vision and text domains, the proposed ILL framework can also be
applied to audio analysis tasks, where annotations often come in the form of noisy,

156

Table 9.5: Robust test accuracy results of our method on more mixture of imprecise
label configurations. l, q and η are the number of labels, partial, and noise ratio.

l q
CIFAR10

l q
CIFAR100

η=0.0 η=0.1 η=0.2 η=0.3 η=0.0 η=0.1 η=0.2 η=0.3

5,000
0.1 95.29±0.18 93.90±0.11 92.02±0.22 89.02±0.63

10,000
0.01 69.90±0.23 68.74±0.15 66.87±0.34 65.34±0.02

0.3 95.13±0.16 92.95±0.37 90.14±0.61 87.31±0.27 0.05 69.85±0.20 68.08±0.28 66.78±0.43 64.83±0.17

0.5 95.04±0.10 92.18±0.52 88.39±0.62 83.09±0.56 0.10 68.92±0.45 67.15±0.63 64.44±1.29 60.26±1.96

1,000
0.1 94.48±0.09 91.68±0.17 87.17±0.51 81.04±1.13

5,000
0.01 65.66±0.27 63.13±0.27 60.93±0.17 58.36±0.56

0.3 94.35±0.05 89.94±1.90 82.06±1.52 69.20±2.16 0.05 65.06±0.04 62.28±0.47 58.92±0.34 53.24±1.69

0.5 93.92±0.29 86.34±2.37 70.86±2.78 38.19±6.55 0.10 63.32±0.55 58.73±1.33 53.27±1.57 46.19±1.04

partial, or weak labels. For example, in large-scale sound event detection (SED)
scenarios, collecting perfectly accurate labels for every time frame is expensive and
prone to error. Instead, annotators might provide bag-level labels (indicating that a
sound is present in at least one segment), partial labels (specifying a small candidate
set of possible events), or noisy labels (due to human errors or automatic labeling
pipelines).

When applying ILL to audio tasks, key points include:

1. Temporal Segmentation and Aggregation: Audio data is a time series
data consisting of time segments. The ILL framework can work at the segment
level, allowing the model to consider multiple possible label assignments for each
segment and integrate them into a consistent posterior distribution.

2. Noise Modeling in Audio Labels: Just as in image or text data, noisy labels
can be modeled with a noise transition matrix. The ILL framework iteratively
refines the estimation of this matrix, thus improving the quality of inferred true
labels, even if the initial annotations are imprecise.

3. Partial Label Handling: Partial labels in audio may arise when annotators are
uncertain which of several candidate events occurs in a given segment. ILL can
model the set of candidate labels as a probability distribution, eliminating the
need for a single hard guess and reducing the risk of error propagation.

4. Unlabeled and Weakly-Labeled Data: Large-scale audio corpora often include
unlabeled audio or audio with weak labels that only specify coarse attributes (e.g.,
presence of a sound class somewhere in a long recording). ILL can handle these
cases by treating them as latent label distributions and leveraging EM steps to
naturally integrate them into the training process.

As demonstrated in the table below, applying the ILL framework to a variety of
audio datasets and tasks—ranging from general audio classification to sound event
detection—yields competitive performance. More importantly, it maintains the flexibility

157

and robustness to handle various imprecise label conditions that are common in audio
analysis scenarios.

Task Dataset Base Model Bag Length mAP
Audio Classification FSDNoisy18k Distill-Hubert 10s 68.24
Audio Classification ESC-50 Hubert-Base 10s 87.25
Audio Classification AudioSet Hubert-Large 5s 25.2*
Sound Event Detection DESED Distill-Hubert 10s 58.17
Partial Label (SED) DESED Distill-Hubert 10s 44.2

Noisy Label (SED) DESED Distill-Hubert 10s
52.17 (10%)
49.42 (20%)
37.07 (50%)

Table 9.6: Summary of results on various audio tasks under imprecise labeling conditions.

9.10 Conclusion

We present the imprecise label learning (ILL) framework, a unified and consolidated
solution for learning from all types of imprecise labels. ILL effectively employs an
expectation-maximization (EM) algorithm for maximum likelihood estimation (MLE)
of the distribution over the latent ground truth labels Y , imprecise label information I,
and data X. It naturally extends and encompasses previous formulations for various
imprecise label settings, achieving promising results. Notably, in scenarios where mixed
configurations of imprecise labels coexist, our method exhibits substantial robustness
against diverse forms of label imprecision. The potential broader impact of the
ILL framework is substantial. It stands poised to transform domains where obtaining
precise labels poses a challenge, offering a simple, unified, and effective approach to
such contexts. Beyond the three imprecise label configurations we have demonstrated
in this study, the ILL framework shows promise for an extension to more intricate
scenarios such as multi-instance learning [210] and multi-label crowd-sourcing learning
[206]. However, it is also crucial to acknowledge the limitations of the ILL framework.
Although its effectiveness has been substantiated on relatively smaller-scale datasets,
additional empirical validation is necessary to assess its scalability to larger datasets.
Furthermore, our study only considers balanced datasets; thus, the performance of the
ILL framework when dealing with imbalanced data and open-set data still remains an
open area for future exploration. We hope that our study will constitute a significant
stride towards a comprehensive solution for imprecise label learning and catalyze further
research in this crucial field. 6

6Code is available at https://github.com/Hhhhhhao/General-Framework-Weak-Supervision

158

https://github.com/Hhhhhhao/General-Framework-Weak-Supervision

10
Future work and Discussion

The advancements presented in this thesis lay a solid foundation for addressing the
challenges of computational audition, particularly in scenarios involving weakly labeled
or noisy data. However, the rapidly evolving landscape of machine learning and audio
processing presents numerous opportunities to extend and enhance the methodologies
developed herein. This chapter outlines several promising directions for future research,
building upon the strategies and findings of this work. These avenues aim to further
improve the robustness, scalability, and applicability of computational audio systems in
diverse and complex environments.

10.1 Enhancing Learning from Weak and Imprecise Labels

10.1.1 Refining Weak Label Learning Strategies

Although weak labeling significantly reduces the human effort required to build large
datasets, there remains potential to further enhance learning from such labels. Future
research can focus on:

• Hierarchical Labeling Approaches: Exploring hierarchical labeling systems,
where sound events are organized into categories and subcategories, can pro-
vide richer supervisory signals. Hierarchical learning strategies can leverage the

159

relationships between different levels of labels to improve model performance,
especially in complex acoustic environments.

• Dynamic Label Refinement: Implementing dynamic label-refinement processes,
where model predictions iteratively refine the weak labels, can enhance label quality
over time. Techniques such as expectation-maximization (EM) and iterative self-
training can be applied to progressively improve label accuracy during training.

10.1.2 Integrating Additional Cues and Semi-Weak Labels

Incorporating easily obtainable additional information, such as event counts, durations,
or coarse temporal locations, can strengthen weak labels. Future work may involve:

• Exploiting Semi-Weak Labels: Developing models that can effectively utilize
semi-weak labels to bridge the gap between weak and strong labels without
significant annotation overhead.

• Multi-Instance Learning: Applying multi-instance learning frameworks to
handle bags of instances with associated labels, enabling the model to learn from
sets of audio segments labeled at a higher level of abstraction.

10.2 Leveraging Unlabeled Data

10.2.1 Advancing Unsupervised and Semi-Supervised Learning

Given the abundance of unlabeled audio data, future research can focus on methods to
exploit this resource:

• Self-Supervised Learning Paradigms: Investigate self-supervised learning
techniques that leverage inherent structures within audio data (e.g., contrastive
learning, masked audio modeling) to pre-train models that require minimal labeled
data for fine-tuning.

• Generative Models for Label Synthesis: Employ generative models, such as
Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs),
to synthesize realistic labels or augment existing datasets, thereby expanding the
training data available for supervised learning tasks.

10.3 Integration of Ontologies and Hierarchical Information

Ontologies provide valuable semantic relationships between sound events. Future work
can focus on:

160

• Ontology-Infused Model Architectures: Incorporate ontological knowledge
directly into model architectures, enabling the exploitation of hierarchical rela-
tionships between sound classes.

• Dynamic Ontology Construction: Develop methods for dynamic, data-driven
ontology construction that can adapt as new data or classes are encountered.

• Ontology-Guided Regularization: Implement regularization techniques that
penalize predictions violating known ontological relationships, improving model
consistency with domain knowledge.

10.4 Advanced Deep Learning Architectures

10.4.1 Exploring Transformer-Based Models and alternate ar-
chitectures

Transformers have shown great success in natural language processing and have shown
their potential in audio processing [260]. However, challenges remain in their application
to audio.

The primary challenges are High Computational Cost: The quadratic complexity
of self-attention with respect to sequence length makes Transformers resource-intensive
for long audio sequences. This is particularly problematic for real-time processing
or devices with limited computational capacity. Data Inefficiency: Transformers
typically require vast amounts of labeled data, which is often scarce in specialized
audio domains. Sequence Length Limitations: The fixed input size of Transformers
necessitates strategies like chunking or truncation, which can lead to loss of contextual
information in variable-length audio inputs. Inefficient Local Feature Extraction:
Unlike CNNs, Transformers do not inherently capture local patterns efficiently, which
are crucial for audio tasks where local features like timbre and transients are important.
Overhead of Positional Encoding: The temporal nature of audio is not as naturally
aligned with the positional encodings used in Transformers, compared to the recurrence
in RNNs or convolutions in CNNs.

• Efficient Transformer Architectures: Research into transformer architectures
optimized for audio, addressing issues such as high computational cost and
sequence length limitations, can make them more applicable to audio tasks.

• Hybrid Models: Develop hybrid architectures that combine transformers with
convolutional neural networks (CNNs) or recurrent neural networks (RNNs) to
capture both local and global patterns in audio data.

161

10.4.2 Adapting Models for Real-Time Processing

For applications requiring low latency:

• Model Optimization: Explore techniques for model compression and optimiza-
tion, such as quantization and pruning, to enable deployment on devices with
limited computational resources.

• Streaming Architectures: Design architectures that can process audio data in
a streaming fashion, allowing real-time analysis without the need to process the
entire input sequence at once.

10.5 Multimodal and Cross-Modal Learning

10.5.1 Integrating Multimodal Data

Sound perception often occurs alongside other sensory inputs. Future research can
focus on:

• Multimodal Representations: Develop unified representations that integrate
audio with visual and textual information, facilitating more comprehensive under-
standing.

• Cross-Modal Learning: Investigate learning techniques that leverage corre-
spondence between modalities, enhancing capabilities such as sound localization
and event recognition.

10.6 Real-World Applications and Ethical Considerations

10.6.1 Deployment in Diverse Environments

To ensure models generalize well across different settings:

• Domain Adaptation and Generalization: Develop methods to adapt models
to new domains with minimal retraining, possibly through domain-invariant
feature learning or transfer learning.

• Robustness to Environmental Variability: Enhance model robustness to
variations in recording conditions, noise levels, and device characteristics.

162

10.6.2 Ethical and Privacy Concerns

Models may reinforce biases or violate privacy, particularly in surveillance or healthcare.
As audio analysis systems become more pervasive:

• Privacy-Preserving Techniques: Implement methods such as federated learn-
ing and differential privacy to protect user data while maintaining model perfor-
mance for audio understanding systems and leveraging the power of imprecise
labels.

• Bias Mitigation: Ensure datasets and models are free from biases that could
lead to unfair or discriminatory outcomes.

Scalable and Generalizable Models

Challenges: Current models often lack scalability across diverse datasets and environ-
ments.

• Develop foundation models for audio, analogous to GPT models in NLP, capable
of generalizing across multiple audio tasks such as sound event detection and
audio classification.

• Invest in self-supervised learning techniques to utilize large-scale unlabeled datasets,
reducing dependence on annotated data.

• Explore domain generalization methods to create robust models for unseen condi-
tions without requiring domain-specific fine-tuning.

10.7 Conclusion

The future of computational audition is rich with potential, driven by advancements in
machine learning, data availability, and interdisciplinary collaboration. By addressing
the challenges outlined in this chapter, researchers can further enhance the ability
of machines to interpret and understand complex acoustic environments. The strate-
gies and frameworks developed in this thesis provide a stepping stone towards more
intelligent, resilient, and versatile audio processing systems. As the field progresses,
continued innovation and exploration will be essential to unlock the full capabilities
of computational audition, ultimately enabling machines to interact with the world of
sounds in ways that mirror, and even surpass, human auditory perception.

163

Appendix

164

A
Unsupervised Test Set Adaptation

Deep neural networks (DNNs) can achieve high accuracy when trained and tested on
data drawn from the same distribution. However, it is common for test data to differ
in subtle ways from the training data, leading to performance degradation. Domain
adaptation techniques often focus on bridging the distribution gap between source and
target domains, but these methods assume that the target domain data are available
during training. In contrast, we focus on a scenario where only unlabeled test data
are available at test time, and the test distribution itself may differ from that of the
training data.

Prior work such as Black Box Shift Estimation (BBSE) [261] tackles shift by
reweighting predictions at test time. In this chapter, we extend this concept by
introducing an affine transformation that adapts the network’s predictions or embeddings
to better fit the test data distribution. The transformation parameters are learned by
minimizing a divergence measure between the network’s predictions and pseudo-labels
derived from the test data, thus establishing a link between the distributions of the
train and test sets. Applying this affine transformation at test time makes our approach
model- and data-agnostic, enabling easy adoption across a wide range of tasks.

165

A.1 Using Affine Transformation for Test time adaptation

The generalization of a trained deep neural network (DNN) to a test dataset can be a
challenging problem due to the distribution shift between the training and test data.
To address this issue, domain adaptation methods have been developed to enable DNNs
to generalize from a source domain to a target domain. In this study, we focus on the
problem of unsupervised adaptation of DNNs to a test dataset with no labels. Our
model is based on the recent work of Varsavsky et al. [2020] and hypothesizes that the
train and test data sets form an affine transformation.

We propose two methods for applying an affine transformation to the DNN in
order to improve its generalization to the test data. In the first method, the affine
transformation is applied after the final linear layer, resulting in a transformed output
Ẑ. The transformation parameters A and b are learned by minimizing the average
divergence between σ(Ẑ) and y(Xi) for different batch sizes, as shown in Eq (1). The
range is from 1 to NT , where NT is the total number of test samples.

argmin
A,b

NT∑
i=1

div(σ(Ẑ)− y(Xi)) (A.1)

s.t Ẑ = AZ + b

In the second method, the affine transformation is applied before the final linear
layer on the latent features or embeddings R, resulting in a transformed output R̂.
The transformation parameters A and b are again learned by minimizing the average
divergence between σ(R̂)and y(Xi) for different batch sizes, as shown in Eq (2).

argmin
A,b

NT∑
i=1

div(σ(R̂)− y(Xi)) (A.2)

s.t R̂ = AR + b

We apply the affine transformation using two methodologies to align the distribution
of the test data with that of the train data, thereby enhancing the DNN’s generalization
ability to the test dataset. In both scenarios, the transformation parameters A and b

are acquired by minimizing the divergence between the transformed output and the
network’s predictions on the test data. This unsupervised adaptation technique is
both flexible and data-independent, permitting a broad range of potential mappings
between the train and test data distributions, and is readily applicable to any task. We
anticipate that our proposed techniques will markedly boost the DNN’s performance
on the test dataset.

166

A.2 Literature Review

A.2.1 Test-time Unsupervised Domain Adaptation

Varsavsky et al. [262] proposed an approach to unsupervised domain adaptation (UDA)
for transfer learning in medical imaging. They found that the misalignment between the
source and target domains led to a decision boundary that was not generalizable to the
target domain. To address this issue, they used test-time adaptation and adversarial
learning to align the source and target domains using a domain discriminator. This
transformed the decision boundary from the source domain to the target domain.

To address this issue, the authors proposed an evaluation framework for UDA
that performs test-time UDA on each subject separately, rather than measuring the
model’s ability to generalize to unseen data in the target domain. This approach, called
"one-shot UDA," is shown to outperform a UDA method that has seen more data from
the target domain but not the specific target subject. The authors also proposed a
UDA method based on adversarial learning and consistency under augmentation, which
is applied to multiple sclerosis lesion segmentation. This method is designed to be
applicable to other tasks in medical imaging.

Overall, the authors’ approach offers a promising way to improve the generalization
of CNNs in medical imaging, particularly when labeled data is not available in the
target domain. However, the authors did not consider that the test set itself may have
a different distribution than what the model was trained on, which is an important
factor in ensuring the model’s performance. Accounting for the distribution mismatch
at test time is important since even with domain adaptation from source to target, the
model itself has not adapted to the target’s test set.

A.2.2 Test Entropy Minimization: Tent

Wang et al. [263] propose test entropy minimization (Tent), a method for fully unsuper-
vised test-time adaptation. Tent reduces prediction uncertainty by minimizing entropy
on test predictions, thereby improving generalization. Their results on the ImageNet-C
dataset show substantial improvements over robust training baselines.

While Tent focuses on entropy minimization, our approach uses an affine transfor-
mation that can incorporate various divergence measures. Our method complements
ideas like Tent, as both aim to refine model outputs at test time without access to
labeled data.

167

A.2.3 Blackbox Shift Estimation (BBSE)

BBSE [261] addresses label shift by reweighting predictions to correct for distributional
differences between training and test sets. It relies on assumptions that the relationship
between features and labels remains stable. BBSE can achieve improved target accuracy
under label shift scenarios.

This corresponds to the task of anticausal learning, or predicting causes, which is
relevant in contexts such as disease diagnosis. The authors contribute to the development
of BBSE by analyzing its properties, including its consistency and error bounds, and by
demonstrating its use in statistical tests to detect label shift among distributions. They
also show how BBSE can be corrected through the use of important-weighted empirical
risk minimization (EMR) and provide empirical validation of the method. BBSE has
several advantages, including data dimensionality-independent accuracy, the ability to
work with a variety of predictors, including those that may be biased or inaccurate, low
sample complexity, and generalizability to arbitrary machine learning models.

The Black Box Shift Estimation (BBSE) method exhibits a decrease in the estimation
error and improved target accuracy as the concentration parameter α increases in the
simulations of the label shift using Dirichlet shift. The largest feasible value for the
KMM experiment was 8000 due to computational limitations. BBSE, along with
important weighted empirical risk minimization (EMR), offers a promising approach
for detecting and correcting distribution shift between training and test sets in order
to improve classification accuracy. The method involves estimating w(y), defined as
the product of the target distribution q(y) and the source distribution p(y), and using
it in the EMR framework for the correction of the change. This estimation relies
on the assumptions of label shift, that the training data include all relevant classes,
and that the confusion matrix is invertible (i.e. the outputs of each class are linearly
independent).

A.3 Dataset

We will utilize large-scale sound event datasets such as AudioSet [38] for our experiments.
While state-of-the-art deep learning models have achieved near-perfect accuracy (ap-
proximately 98–99%) on benchmark image datasets like MNIST [264] and CIFAR [177],
these results leave little room to discern the effectiveness of different learning strategies.
In contrast, AudioSet is considerably more challenging: despite recent advances, the
highest reported mean average precisions (mAP) remain relatively low, at 0.521 [265]
and 0.567 [260]. This performance gap makes it easier to observe meaningful differences
arising from various training methodologies.

168

In our work, we focus specifically on the balanced training subset of AudioSet. On
this subset, the Audio Spectrogram Transformer (AST) model achieves a 0.347 mAP
without weight averaging, which improves to 0.378 mAP when weight averaging is
employed. Thus, the differences in performance driven by different learning strategies
become more evident on this challenging dataset.

A.4 Baseline Model

We use the Audio Spectrogram Transformer (AST) architecture by Yuan Gong Gong et
al. [260] as our primary baseline (https://github.com/ YuanGongND/ast). This model
achieves new state-of-the-art results of 0.485 mAP on AudioSet, and easily allows us to
load pretrained weights before the final sigmoid activation layer.

Figure A.1: AST Baseline Model

Figure A.2: AST Adaptation on R Figure A.3: AST Adaptation on Z

We modify the architecture to obtain both the model outputs (Z) and embeddings
before the classification layer (R). Without the affine transformation, the mAP score
that was achieved from the pretrained model is 0.449 according to the paper. We
implemented the pipeline and got a mAP score of 0.445. This indicates that our
baseline implementation is correct.

169

A.5 Experiments

A.5.1 Learning Strategies

We experiment with the following strategies.

1. Type of Weight initialization (Identity vs Xavier).

2. Adaptation on Z vs Adaptation on R.

To perform adaptation, we freeze the AST model’s weights and define a wrapper
class that defines an affine Layer on top of the AST model. We pass the inputs
through the AST model with pre-trained weights to obtain Z or R depending on our
adaptation strategy, and then train the affine Layer with the test set pseudo-labels for
the unsupervised case. For the supervised case, we use the ground truth labels of the
test set to obtain an upper bound on generalization capability of the model to the test
set.

For each of these strategies, we try to learn the affine transformation for two types
of weight matrices - diagonal vs full matrix. For a N ×N matrix A where N refers to
the length of the embedding to which we apply the affine transformation, we have:

• If A is a diagonal matrix, we learn N parameters.

• If A is a full matrix, we learn N2 parameters.

We create pseudo-labels for the multi-label examples by using a comparison threshold
of 0.7 on the AST model’s logits, and used the top 8 resulting candidates as the pseudo-
labels for each example.

For the diagonal matrix case, we register a hook during the backward pass for the
affine layer’s weight matrix to be multiplied with an identity mask that preserves only
the diagonal entries of the weight matrix, thus forcing the weight matrix of the affine
layer to be diagonal throughout adaptation.

A.6 Results

We ran adaptation on both the true labels ytrue and predicted labels ypred. ypred is
obtained by passing the test set through the model, and taking the argmax of the output
logits from the model. By running adaptation on ytrue, we can get the mAP upper
bound, which we can compare with adaptation on ypred. We refer to the adaptation on
ytrue as Supervised Adaptation, and adaptation on ypred as Unsupervised Adaptation.

170

The acoustic context could be present both in the form of the acoustic background
acoustic textures (such as a noisy outdoor environment, an indoor recording environment,
or the background sound of a running car), long-duration acoustic backgrounds, e.g. the
sound of a prolonged boat horn, with definitive start and end times, and short-duration
sounds such as gunshots.

Learning to automatically detect sounds of this variety faces the following challenges:

• Diversity: The diversity of sound types to be recognized, which as discussed above
can range from continuous background textures to sharp, short-duration sounds,
represent very different characteristics, potentially requiring very different types
of analyses.

• Labelling: Traditional learning frameworks for AI models are based on “strong
labels” – annotations that explicitly identify if an “instance” belongs to a target
class or not. This runs into multiple problems in the audio setting. Firstly,
the very definition of “instance” is fuzzy – a 30 second recording could entirely
match a given background acoustic class (e.g. “indoors”), in which case the entire
recording is an instance of that class, whereas the same recording could also
contain a brief segment with a gunshot, where it is only reasonable to consider
that segment of the audio as an instance of “gunshot”, whereas the rest is clearly
not. Secondly, even where instances may be considered to be brief and clearly
demarcated, actually labelling the data at the requisite temporal resolution can
be challenging and imprecise and, not to mention, expensive.

• The number and variety of sound types that can occur in the world is very large,
and accordingly the number of sound types that must be detected in the context
of voice forensics too can be very large. Often the sound types of particular
interest in this setting are also rare. Thus, collecting sufficient training data to
model all of the well can be challenging or impossible.

To solve these problems, we used the following approach.

Class diversity

As the number of potential sound categories that must be recognized is very large, it is
not possible to obtain sufficient training data to model all of them accurately. Within
the forensic setting, although any single situation may require the identification of only
a few sound categories, the amount of training data for those categories is typically
small. Furthermore, even if a relatively significant amount of data were made available
for each of these classes, the counter classes – the sound types that do not belong

171

to the target classes, remains impossibly large. Effective detection of a class requires
knowledge not only of what the class does sound like, but also of what it does not sound
like, and hence these classes must also be represented during training.

To deal with this our framework uses as its preliminary stage a state-of-art universal
representation of sound, a feature representation that ideally captures the salient
characteristics of all sound types. This representation is derived by a neural network
that is trained on a sufficiently large number of sound categories, so that the features it
derives may be expected to generalize beyond the classes used to train it. The network
itself must specifically be trained for such generalization.

In order to fulfill these requirements, we use a state-of-art sound feature extraction
system trained on a large number of classes and data.In our work here we have specifically
used the embedding extraction framework from the AST by Yuan Gong Gong et al.
[260] and BEATS [266] models, the two leading architectures currently for sound feature
extraction and classification. The Audio Spectrogram Transformer (AST) architecture
was chosen as our primary baseline (https://github.com/YuanGongND/ast). This
model is trained on “AudioSet”. AST achieves state-of-the-art results of 0.485 mAP on
the testset of “AudioSet”. The BEATS model treats sound as a language comprised of
automatically derived subunits, and learns representations that best model it. BEATS
representations can achieve an mAP of 0.506 on the AudioSet.

For our work we treat these feature extractors as immutable, and focus on the
downstream task of detecting the target classes for our forensic setting.

Labelling ambiguity

The natural diversity of the sound types also introduces labelling ambiguity, as explained
above. A 10-second audio clip of wind blowing represents a single instance of that class
in its entirety. On the other hand, a 10-second clip with a gunshot in it includes one
instance of a gunshot, but also an undefined number of instances of audio that are not
gunshots. Yet another kind of ambiguity occur for semantic reasons – is a burst of
gunshots a single “burst” event, or multiple “shot” events?

Given the ambiguity, we realize we cannot expect to work with the traditional
“strong” label requirement. Instead we use the “training with weak labels” approach,
originally introduced in our research group [19, 30], where each recording is considered
to be a “bag” of instances, of arbitrary (and possibly even unknown) size. Any recording
that includes the target class is viewed as a “positive” bag, where it is only known
that at least one instance is positive. In maintaining the ambiguity, there is no further
indication of which of the instances in the positive bag is positive, or even the number
of positive instances in the bag. A recording that does not include the target class is a

172

“negative” bag, in which no instance is positive. The model must be learned from such
“weak” labels.

Weak labelling also brings about another ambiguity: we must also consider that
multiple sounds may occur in an audio recording. So we have a “multi-label” scenario
where a single recording may be weakly positive for multiple sound classes, even though
they are not coincident.

In order to classify a recording in this setting we use the following logic [19]: if a bag
of instances is positive, then at least one of the instances in the bag must be positive.
In order to apply this logic to audio recordings, they must be converted to bags, and
the above logic must be appropriately formalized.

Consequently a recording x(1 : T) (of length T) is segmented into a collection of
segments: xi((i− 1)∆t : i∆t), i = 1 : N , where ∆t is the length of the segments and
N = T/∆t. In practice, we set ∆t = 1 sec. A separate feature vector – also called an
“embedding” is derived for each of the N segments: E[i] = f(xi), where f() represents
the feature extraction network. The set of embeddings {Ei, i = 1 : N} now forms our
bag.

For a “vocabulary” of L, potentially co-occurring classes, we build L classifiers,
one per class. In our setup each classifier is a simple logistic classifier for reasons we
explain later. Thus, given any embedding E the classifier for the kth class computes
the posterior probability of the class as P (k|E) ≈ σ(WkE + bk), where Wk is a vector
of weights for the class, bk is a bias term that models its prior probability, and σ() is
the logistic function.

Given a recording that is labelled as positive for class k̂, we now know that at least
one of the segments in the recording must be positive, i.e. P (k̂|Ei) ≈ 1 for at least one
of the segment embeddings Ei. Alternately stated, the probability maxi P (k̂|Ei) ≈ 1.
Note that P̂ (k̂|X) = maxi P (k̂|Ei) is actually a lower bound on P (k̂|X), the true
probability that the recording includes at least one instance of k̂. We can now set up
both training and classification.

For training, consider a recording X = {Ei} (i.e. which has been converted to a bag
of embeddings), which has been labelled positive for classes k1, k2, k3, · · · , and negative
for classes l1, l2, l3, · · · . Training the model comprises estimating the parameters Wk

such that the cross entropy Xent(P̂ (ki|X); 1) is minimized for all the classes ki. In
principle we must also minimize Xent(P̂ (li|X); 0) for the classes that are not present
in the data.

Thus training takes the form:

Ŵ1, Ŵ2, · · · = arg max
W1,W2,···

∑
X

 ∑
k∈{k1,k2,··· }

Xent(P̂ (li|X); 1) +
∑

l∈{l1,l2,··· }

Xent(P̂ (li|X); 0)

173

(we have not explicitly mentioned the bias terms bi in the above equations, but they
too are estimated along with the weights Wk).

In practice, one may ignore or deweight the second term to indicate uncertainty of
the absence of untagged classes.

Data insufficiency and adaptation

When training a classifier for a forensic setting with specific classes, often for which we
do not have sufficient data samples, we must make some additional modifications to
the above approach. Instead of training models entirely on our small training set, we
must instead train the classifier on a larger wider dataset such as AudioSet, and adapt
it to our setting.

Also, note that in the previous section, classification was expected to be performed
on embeddings E that were obtained by the state-of-art model trained on large amounts
of data. The data that this network is trained on may not be representative of the data
obtained within the forensic application. Hence we must also account for this mismatch.

Thus, we use the following approach. Training follows a two-step procedure. In the
first step, we compose a classifier that uses the embeddings from the AudioSet model
directly as follows.

1. We first train a multi-label classifier for all the classes within a large dataset. In
our case we used AudioSet, with its 2 million recordings covering 537 classes. This
results in 537 parameters W1, · · · ,W537 (and the corresponding biases which are
not explicitly shown.

2. For each of the target classes c1, · · · , cL that are explicitly found among the 537
classes, we set the weight vector for the class to be the corresponding audioset
weight vector, to obtain Wc1 ,Wc2 , · · · . These represent the classifiers for these
classes.

3. For classes ĉ1, ĉ2, · · · , ĉL that are not represented in the Audioset classes, we
create L new weight vectors Wĉ1 ,Wĉ2 , · · · ,WĉL which are initialized with the
weights of closest classes to ĉ1, ĉ2, · · · , ĉL among the audioset classes.

4. All the weights are then fine tuned using the smaller training data available for
the task.

In the second step, we now adapt the embeddings to the new domain. We assume
that the domain mismatch between the universal (AudioSet) Embedding E and the
optimal Embeddings Ê for the forensic data can be modelled piecewise by an Affine

174

transform. Specifically, we assume that the Embedding space can be partitioned into a
number of convex voronoi regions. Within each region the domain mismatch can be
modelled by an Affine transform.

Specifically, for any embedding that falls within the jth Voronoi region we assume
that the relation between a “universal” embedding E and its corresponding domain-
mismatched forensic-data embedding Ê can be given by

Ê = AjE +Bj

where Aj and Bj are region-specific affine parameters. To deal with data insufficiency
we may assume a diagonal or tridiagonal matrix, rather than a full matrix. In order to
estimate Aj and Bj for each Voronoi region, we now use the following procedure:

1. We identify the set Xj of all training instances that fall into the jth Voronoi region.

2. We estimate the affine parameters for the region through the following optimiza-
tion:

Âj, B̂j = arg max
Aj ,Bj

∑
X∈Xj

 ∑
k∈{k1,k2,··· }

Xent(max
i

P (k̂|Êi); 1) +
∑

l∈{l1,l2,··· }

Xent(max
i

P (k̂|Êi); 0)

(A.3)

175

B
Learning without labels

Acoustic scene analysis is fast becoming a standard technology, expected in devices
such as smartphones. However, the latest solutions are limited by the availability of
labeled training data.

B.1 Significance of the work

In this work, we propose to automatically label a large quantity of audio data to
generate the largest dataset for the research community. This will, however, require
the development of algorithms that can iterate over such large amounts of data and
iteratively refine their automatically generated labels.

On traditional machine learning hardware such as Graphical Processing Units
(GPUs), we expect our approach to take several weeks or more of compute time for
a single pass through the dataset, leading to unreasonable latencies in research (and
development) time. We believe that the neocortex system can reduce the iteration time
by orders of magnitude and enable us to optimize our unsupervised inference algorithms
and put out labeled data resources that will be of high value to us and the research
community at large.

There is increasing expectation of the sensing and AI capabilities of modern personal
devices. Among the many abilities we expect of them, if not immediately, but in the near
future, is to be able to “listen” to their acoustic environment and make interpretations of

176

them. Indeed, several such capabilities are already present in your smartphone – some
apps can record bird sounds and inform us what bird it is; you can record a snippet of
a catchy song at the mall and find the actual song; other applications detect gunshots,
recognize the background noise, sounds like police and ambulance sirens, and can even
geolocate on the basis of sounds heard.

For complete “acoustic” capabilities, however, the “vocabulary” of sounds and sound
scenes a system must be able to recognize is very large. Pattern recognition models,
generally neural networks, must be trained to recognize these sounds, and that requires
labelled training data, which is still a very scarce commodity. Labeling data requires
copious manual labor. Although many attempts have been made at crowdsourcing the
labeling task, it remains labor intensive, and the largest corpora still only include a
limited vocabulary of sound classes. Additionally, current state-of-the-art approaches
for acoustic scene understanding rely on the availability of *strongly labeled data*, i.e.,
where the labels provide not only information about *which* sound classes are present
in a recording but also the timestamps between which they occur. Strong labels are
subjective to human bias, and the timestamp annotations are error-prone.

Our project aims to build up a vast corpus of automatically labeled audio. Members
of our research group have previously gathered (in collaboration with researchers from
various institutions), an enormous corpus of nearly a million audio recordings, comprising
many thousands of hours of audio, amounting to several terabytes [1]. The objective is
to automatically annotate each of these recordings with all the sound types present in
them at various temporal granularities.

B.2 Overall Approach

Our approach will consist of employing state-of-the-art sound classifiers to perform
preliminary classification of the recordings at various temporal granularities, followed
by iterative refinement of the labels through a combination of the following procedures:

• Verifying the consistency of the labels across acoustically similar segments of the
corpus. This will require both the comparison of the features and classification
outputs from each (of hundreds of millions of) segments of audio to those derived
from hundreds of millions of other similar segments, to establish consistency and
filter high-confidence labels.

• Imposing automatically derived (and refined) sequentiality constraints. Once
again, these will be derived and refined through analysis of label tags of tens or
hundreds of millions of audio recordings.

177

• Automatically verifying the accuracy of the automatically assigned labels by
training models with them and testing their performance on curated datasets
with known labels.

• Imposing multi-view consensus among diverse models trained from these auto-
matically derived labels. This is achieved by training several independent models
in parallel on these data, using as training objective, a combination of the con-
formance of the output of the model to automatically derived labels and mutual
conformance between the models themselves.

It is expected that a single experiment on the entire dataset, using conventional AWS-
based solutions (even using their highest-end hardware) would require several weeks
of computing times. Our proposed project requires iterated updates and refinements.
Furthermore, the algorithm is iterative, and it is expected that continued iterations will
improve the accuracy of the extracted labels continually. This will not be feasible on
conventional computing platforms such as GPUs as they are not optimized for deep
learning applications.

B.3 Overall Objective

Our objective is to release the outcome of our work, including the automatically derived
labels, along with all code, to researchers around the world, as a public resource. When
released, this will be the single largest tagged corpus of "data in the wild" made available
to the public. (Please note that the data are legally cleared to be released to the public,
and the unlabelled raw data are already in the public domain).

It is expected that the data will spur research on technologies for acoustic scene
analysis, on the use of automatically labeled data, and on the refinement of automatically
derived labels when large amounts of such data are available.

B.4 Approach

Data Processing: Data-preprocessing and feature extraction for the large-scale dataset
and feature extraction is complete. A pipeline is built in order to use AudioSet dataset
in order to analyze the AudioSet dataset using the PASST model and AST model.
Features for the AudioSet dataset are also extracted at various levels of granularity in
the temporal domain.

178

B.5 Notation and Setup

• Xl = {x(l)
1 , x

(l)
2 , . . . , x

(l)
Nl
}: A small labeled dataset with ground-truth labels L =

{L1, L2, . . . , LNl
}.

• Xu = {x1, x2, . . . , xNu}: A large unlabeled dataset (e.g., YFCC).

• fθ(x): A model (e.g., a neural network) parameterized by θ, which outputs class
probabilities or embeddings.

• L̂(t) = {L̂(t)
1 , L̂

(t)
2 , . . . , L̂

(t)
Nu
}: The set of pseudo-labels for the unlabeled data at

iteration t.

• Lsup(L, fθ(Xl)): A supervised loss computed on the small labeled set (e.g., cross-
entropy).

• Lunsup(L̂
(t), fθ(Xu)): An unsupervised loss that encourages the model predictions

on Xu to match the current pseudo-labels L̂(t).

We operate at multiple temporal granularities, denoted h1, h2, . . . , hK . For instance,
we may obtain labels at a fine resolution of 0.5 s with 0.1 s overlap, and then aggregate
these to coarser temporal scales (e.g., 1 s, 2 s).

B.6 Hierarchical and Multi-Model Constraints

B.6.1 Hierarchical Consistency

Define Hk(x) as a function that aggregates finer-grained predictions into coarser segments
at the temporal scale hk. We impose a hierarchical consistency loss Lhier that ensures
the model’s predictions are consistent across different temporal granularities:

Lhier(L̂
(t), fθ(Xu)) =

K∑
k=1

∑
x∈Xu

∥Hk(fθ(x))− fθ(x)∥2. (B.1)

B.6.2 Multi-View Consistency

To increase robustness, we train M models in parallel: fθ1 , fθ2 , . . . , fθM . A multi-view
consistency loss Lmv ensures these models produce similar predictions:

Lmv =
M∑

m=1

M∑
m′=m+1

∑
x∈Xu

D
(
fθm(x), fθm′ (x)

)
, (B.2)

where D(·, ·) measures divergence (e.g., KL divergence) between model outputs.

179

B.7 Overall Objective

At iteration t, we combine these objectives. Using the align environment helps break
the equation across multiple lines:

θt+1 = argmin
θ

[
λsupLsup(L, fθ(Xl))

+ λunsupLunsup(L̂
(t), fθ(Xu))

+ λhierLhier(L̂
(t), fθ(Xu))

+ λmvLmv

]
. (B.3)

Here, λsup, λunsup, λhier, and λmv are hyperparameters that balance the influence of
each loss component.

B.8 Iterative Refinement Procedure

B.8.1 Initialization

Start with a baseline model fθ0 , which may be pretrained or trained on a small labeled
set (e.g., the balanced AudioSet subset). Generate initial pseudo-labels:

L̂(0) = fθ0(Xu). (B.4)

B.8.2 Refinement Steps

At each iteration t:

1. Model Re-Training:
θt+1 = argmin

θ

[
λsupLsup(L, fθ(Xl))

+ λunsupLunsup(L̂
(t), fθ(Xu))

+ λhierLhier(L̂
(t), fθ(Xu))

+ λmvLmv

]
. (B.5)

2. Pseudo-Label Update:
L̂(t+1) = fθt+1(Xu). (B.6)

B.8.3 Stopping Criterion

Evaluate fθt on a holdout AudioSet test set. Let mAPAS(θt) be the mean Average
Precision on this test set, and let mAPAS

base be the performance of a model trained solely
on the balanced AudioSet subset.

We stop when:
mAPAS(θt) > mAPAS

base. (B.7)
If this condition is not met, we continue with another iteration.

180

B.8.4 Intuition and Outcome

This iterative procedure gradually improves the quality of pseudo-labels by enforcing
consistency across time, multiple models, and leveraging hierarchical constraints. Over
time, the unsupervised labels become more accurate, leading to models that surpass
the baseline performance achieved by using only the balanced AudioSet subset. This
large-scale labeling approach will enable the creation of massive, publicly available
labeled audio corpora, spurring further advances in acoustic scene analysis.

B.9 Results

We built a pipeline by performing analysis on the AudioSet test set as the evaluation set.
First, we will measure the performance of the model trained on the pseudo-labels for
the YFCC dataset with the YFCC dataset as training and obtain a baseline evaluation
performance. The labels will then be refined using the label consistency measure
developed by obtaining labels at different levels of temporal granularity. The labels
will also be refined based on the information obtained from multiple different types of
models and the consistency of the predicted labels. Our current results can improve
the performance of the 0.38 mAP score using the above approach.

181

C
Strengthening the labels: Semi-weak label

learning

C.1 Strengthening of Labels

Weak label represents the presence/absence of an event in the data when dealing with
weak labels for audio classification. Since weak labels are relatively easier to obtain than
strong labels for audio understanding has aided the rise in popularity of approaches
making use of weak labels. In weak label learning, the labels provided for the data
used for training are not completely accurate or reliable. This can occur for a variety of
reasons, such as incomplete or ambiguous labeling, or because the labels are generated
automatically based on certain criteria. Despite the relative ease of collecting weak
labels at a large scale, there still exists a significant performance gap between weak-label
learning approaches and strongly supervised learning methods. To address this gap,
we came up with semi-weak label learning as seen in Chapter 6. This approach uses
the count of the events as additional information over the weakly labeled annotations,
thereby making it possible to bridge the performance gap.

182

C.1.1 Speech Recognition as a weak label learning problem

Additional cues, however, still are unexplored in the community. For example, Speech
recognition is a field of artificial intelligence that deals with the ability of a machine to
understand and transcribe speech. For speech recognition, we are using the sequence of
phonemes, also known as the phonetic transcription, involving the transcription of the
spoken language into a sequence of phonemes, which are the smallest unit of sound that
can distinguish one word from another in a particular language. Here, in this case, we
know the weak labels are the phonemes that are present in the data but we also know
the sequence of weak labels in the data. Such information is a key driver to building
systems at a more granular level rather than using the sequence of words or characters.

There are several approaches that can be used to perform speech recognition using
the sequence of phonemes. One approach is to use a phonetic dictionary, which maps
words to their corresponding phonetic transcription. The speech recognition system can
then use this dictionary to transcribe the spoken language into a sequence of phonemes.
Another approach is to use a phonetic transcription model, which is trained to transcribe
spoken language into a sequence of phonemes based on a dataset of labeled speech data.
The model can be trained using supervised learning techniques, where the input is a
spoken utterance and the output is the corresponding sequence of phonemes. Once
the model is trained, it can be used to transcribe new spoken utterances into their
corresponding phonetic transcriptions. Overall, speech recognition using the sequence
of phonemes can be a useful approach for improving the accuracy of speech recognition
systems, particularly for languages with a large number of homophones (words that are
pronounced the same but have different meanings) or for tasks that require a high level
of accuracy in transcribing spoken language.

C.2 Use of additional cues - Label Strengthening

The additional cues can provide information by strengthening the information provided
by weak labels. For example, it is more informative to know that this picture contains
‘a car‘ and ‘a passenger was driving it‘ as opposed to only knowing that the picture
contains ‘car‘ in it. Here, in the first scenario, it is more probable that the situation
contains ‘a car with a person driving it‘ over ‘a toy car‘, thereby revealing contextual
information about the environment. Such types of additional cues are relatively less
exploited in the

Additional Cues can be used to strengthen the labels in the following ways.

183

Figure C.1: a) Figure depicting whether it is natural for humans to describe with
proportions or counts and b) Figure providing the comparison between learning with
proportions and learning with counts.

C.2.1 Counts: Semi-weak Label learning

Additional cues along with the weakly labeled data can be used to strengthen the
labels is in the form of counts information, proportion information, approximate counts,
bounds on the counts and utilizing the combination of the strongly and weakly labeled
data.

C.2.2 Learning using Proportions

Learning from Label Proportions (LLP) is a learning setting, where the training data is
provided in groups, or "bags", and only the proportion of each class in each bag is known.
The task is to learn a model to predict the class labels of the individual instances. In
this case, the learning is enabled using the label proportions of the instances present
in the bag. Learning with proportions may not be applicable in practical settings for
case of audio data for instance if one considers audio recording as a bag of individual
events since it is not natural to describe/label the data in the form of proportions. For
instance, say a recording has gunshot, dog barking and man shouting, then it is much
easier to label that there are two gunshots in the data than to mention the recording
has 10

C.2.3 Comparison between different types of count of events in
recording

184

Figure C.2: Comparison between the different types of counts of events in the recording

Figure C.3: Figure depicting the following a) Approximate counts, b) Upper and Lower
bounds on counts and c) Comparative counts

Figure C.4: Combining strongly and weakly labeled data

185

D
Appendix: Unified Formalism

D.1 Notation

We present the notation table for each symbol used in this appendix section in Table D.1.

D.2 Related Work

Many previous methods have been proposed for dealing with the specific types and
some combinations of imprecise label configurations. We revisit the relevant work in
this section, especially the state-of-the-art popular baselines for learning with individual
and mixture imprecise label configurations.

Partial label learning (PLL). The prior arts can be roughly divided into
identification-based for label disambiguation [268, 269, 270, 271] or average-based
for utilizing all candidate labels [238, 180, 225]. The traditional average-based meth-
ods usually treat all candidate labels equally, which may involve the misleading false
positive labels into training. To overcome these limitations, researchers have explored
identification-based methods, viewing the ground-truth label as a latent variable. They
seek to maximize its estimated probability using either the maximum margin criterion
[272, 273] or the maximum likelihood criterion [274]. Deep learning techniques have
recently been incorporated into identification-based methods, yielding promising results
across multiple datasets. For example, PRODEN [222] proposed a self-training strategy

186

Table D.1: Notation Table

Notation Definition

x A training instance
y A class index label
{xi}i∈[N] A set of data instances x of size N
{yi}i∈[N] A set of precise label indices y of size N
[ι] An imprecise label, which might contain multiple class indices
{[ι]i}i∈[N] A set of imprecise labels [ι] of size N
X Random variable of training instance
X Input space where x is drawn from
Y Random variable of ground-truth labels
Y Label space where y is drawn from
I Random variable of imprecise labels
f Model backbone
g Model classifier
h Model multi-layer perceptron
f ◦ g Model mapping X → Y
θ Learnable parameters of f ◦ g
p(y|x; θ) Output probability from model f ◦ g
f ◦ h Model mapping X → Z, where Z is a projected feature space
D Dataset
L Loss function
Aw Weak data augmentation, usually is HorizontalFlip
As Strong data augmentation, usually is RandAugment [267]
zw Projected features from f ◦ h on weakly-augmented data
zs Projected features from f ◦ h on strongly-augmented data
M Memory queue in MoCo [236]
s A partial label, with ground-truth label contained
{si}i∈[N] A set partial labels, with ground-truth label contained of size N
S Random variable of partial label
xl A labeled training example
yl A labeled class index
xu A unlabeled training example
yu A unknown class index for unlabeled data
XL A set of labeled data instances
Y L A set of labels for labeled data instances
XU A set of unlabeled data instances
Y U A set of unknown labels for unlabeled data instances
p̂u The maximum predicted probability on unlabeled data max(p(y|xu; θ))
ŷu The pseudo-label from the predicted probability on unlabeled data argmax(p(y|xu; θ))
τ The threshold for confidence thresholding
ŷ A corrupted/noisy label
ŷoh An one-hot version of the corrupted/noisy label
Ŷ Random variable of noisy labels
u,v,m Noise model related parameters in SOP [4]
T (ŷ|y;ω) The simplified noise transition model in ILL
ω The parameters in the simplified noise model

that disambiguates candidate labels using model outputs. CC [182] introduced classifier-
consistent and risk-consistent algorithms, assuming uniform candidate label generation.
LWS [184] relaxed this assumption and proposed a family of loss functions for label
disambiguation. More recently, Wangt et al. [2] incorporated contrastive learning into
PLL, enabling the model to learn discriminative representations and show promising
results under various levels of ambiguity. RCR involves consistency regularization into
PLL recently [185].

187

Semi-supervised learning (SSL). SSL is a paradigm for learning with a limited
labeled dataset supplemented by a much larger unlabeled dataset. Consistency regular-
ization and self-training, inspired by clusterness and smoothness assumptions, have been
proposed to encourage the network to generate similar predictions for inputs under vary-
ing perturbations [275, 187, 276]. Self-training [186, 239, 3] is a widely-used approach for
leveraging unlabeled data. Pseudo Label [186, 239], a well-known self-training technique,
iteratively creates pseudo labels that are then used within the same model. Recent
studies focus largely on generating high-quality pseudo-labels. MixMatch [188], for
instance, generates pseudo labels by averaging predictions from multiple augmentations.
Other methods like ReMixMatch [189], UDA [221], and FixMatch [3] adopt confidence
thresholds to generate pseudo labels for weakly augmented samples, which are then used
to annotate strongly augmented samples. Methods such as Dash [277], FlexMatch [191],
and FreeMatch [193] dynamically adjust these thresholds following a curriculum learn-
ing approach. SoftMatch [194] introduces a novel utilization of pseudo-labels through
Gaussian re-weighting. SSL has also seen improvements through the incorporation of
label propagation, contrastive loss, and meta learning [278, 279, 251, 252, 5].

Noisy label learning (NLL). Overfitting to the noisy labels could result in
poor generalization performance, even if the training error is optimized towards zero
[114, 280]. Several strategies to address the noisy labels have been proposed [281].
Designing loss functions that are robust to noise is a well-explored strategy for tackling
the label noise problem [199, 201, 282, 283]. Additionally, methods that re-weight loss
[284] have also been explored for learning with noisy labels. Another common strategy
to handle label noise involves assuming that the noisy label originates from a probability
distribution that depends on the actual label. Early works [112] incorporated these
transition probabilities into a noise adaptation layer that is stacked over a classification
network and trained in an end-to-end fashion. More recent work, such as Forward [256],
prefers to estimate these transition probabilities using separate procedures. However,
the success of this method is contingent upon the availability of clean validation data
[285] or additional assumptions about the data [286]. Noise correction has shown
promising results in noisy label learning recently [287, 288, 289, 4]. During the early
learning phase, the model can accurately predict a subset of the mislabeled examples
[202]. This observation suggests a potential strategy of correcting the corresponding
labels. This could be accomplished by generating new labels equivalent to soft or hard
pseudo-labels estimated by the model [111, 290]. Co-Teaching uses multiple differently
trained networks for correcting noisy labels [198]. SELFIE [291] corrects a subset of
labels by replacing them based on past model outputs. Another study in [292] uses
a two-component mixture model for sample selection, and then corrects labels using

188

a convex combination. Similarly, DivideMix [203] employs two networks for sample
selection using a mixture model and Mixup [255].

Mixture imprecise label settings. Various previous works have explored dealing
with distinct types of imprecise labels. However, they have yet to tackle a combination
of partial labels, limited labels, and noisy labels, which is a highly realistic scenario.
For instance, recent attention has been paid to the issue of partial noisy label learning.
PiCO+ [259], an extended version of PiCO [2], is tailored specifically for partial noisy
labels. IRNet [237] uses two modules: noisy sample detection and label correction,
transforming the scenario of noisy PLL into a more traditional PLL. DALI [218] is
another framework designed to reduce the negative impact of detection errors by
creating a balance between the initial candidate set and model outputs, with theoretical
assurances of its effectiveness. Additionally, some work has focused on semi-supervised
partial label learning [219, 220]. No existing research can effectively address the challenge
of handling a combination of partial, limited, and noisy labels simultaneously, which
underscores the novelty and significance of our work.

Previous attempts towards unification of learning from imprecise labels.
There are earlier attempts for the generalized solutions of different kinds of imprecise
labels/observations. Denœux [227] proposed an EM algorithm for the likelihood estima-
tion of fuzzy data and verified the algorithm on linear regression and uni-variate normal
mixture estimation. Van Rooyen et al. [230] developed an abstract framework that
generically tackles label corruption via the Markov transition. Quost et al. [229] further
extended the EM algorithm of fuzzy data on the finite mixture of Gaussians. Gong et al.
[231] proposed a general framework with centroid estimation for imprecise supervision.
A unified partial AUC optimization approach was also proposed earlier [234]. Zhang et
al. [213] and Wei. et al. [233] proposed generalized solutions for aggregate observations.
A unified solution based on dynamic programming for count-based weak supervision was
also proposed [293] While relating to these works on the surface, ILL does not require
any assumption on the imprecise information and generalizes well to more practical
settings with noisy labels. Some other works for individual settings also related EM
framework, but usually involved the approximation on the EM [294, 196, 2].

189

D.3 Methods

D.3.1 Derivation of Variational Lower Bound

Evidence lower bound (ELBO), or equivalently variational lower bound [226], is the
core quantity in EM. From Equation (9.27), to model logP (X, I; θ), we have:

logP (X, I; θ) =

∫
Q(Y) logP (X, I; θ)dY

=

∫
Q(Y) logP (X, I; θ)

P (Y |X, I; θ)

P (Y |X, I; θ)
dY

=

∫
Q(Y) log

P (X, I, Y ; θ)Q(Y)

P (Y |X, I; θ)Q(Y)
dY

=

∫
Q(Y) log

P (X, I, Y ; θ)

Q(Y)
dY −

∫
Q(Y) log

P (Y |X, I; θ)

Q(Y)
dY

(D.1)

where the first term is the ELBO and the second term is the KL divergenceDKL(Q(Y)||P (Y |X, I; θ)).
Replacing Q(Y) with P (Y |X, I; θt) at each iteration will obtain Equation (9.27).

D.3.2 Instantiations to Partial Label Learning

The imprecise label I for partial labels is defined as the label candidate sets S with
{si}i∈[N] containing the true labels. Now we can derive Equation (9.28) by replacing I

with S in Equation (9.27):
EY |X,I;θt [logP (Y |X; θ) + logP (I|X, Y ; θ)]

= EY |X,S;θt [logP (Y |X; θ) + logP (I|X, Y ; θ)]

=
∑
Y

P (Y |X,S; θt) [logP (Y |X; θ) + logP (I|X, Y ; θ)]

=
∑
Y

P (Y |X,S; θt) [logP (Y |X; θ)] + logP (I|X, Y ; θ)

(D.2)

Note that P (I|Y,X; θ) can be moved out of the expectation because it is a fixed quantity
to any Y . Now we replace Y , X, and S to y, x, and s for each instance, and converting
the maximization problem to negative log-likelihood minimization problem to drive the
loss function:

LPLL
ILL = − 1

N

N∑
i

p(yi|xi, si; θ
t) logp(yi|xi; θ)−

1

N

N∑
i

logp(si|xi, yi; θ). (D.3)

The first term is the Cross-Entropy loss we derived in Equation (9.28). If S is not
instance-dependent, then knowing Y also knows S, the second term thus can be ignored
in Equation (9.28). If S becomes instance-dependent, the second term can be maintained
as a supervised term as in [185] to optimize θ.

190

D.3.3 Instantiations to Semi-Supervised Learning

In SSL, the input X consists of the labeled data XL and the unlabeled data XU. The
imprecise label for SSL is realized as the limited number of full labels Y L for XL. The
labels Y U for unlabeled XU are unknown and become the latent variable. Thus we can
write:

EY |X,I;θt [logP (Y |X; θ) + logP (I|X, Y ; θ)]

= EY U|XU,XL,Y L;θt
[
logP (Y U|XU, XL; θ) + logP (Y L|XL, XU, Y U; θ)

]
=

∑
Y U

P (Y U|XU; θt)
[
logP (Y U|XU; θ)

]
+ logP (Y L|XL; θ).

(D.4)

The negative log-likelihood loss function for {xl
i, y

l
i}i∈[NL] and {xu}i∈[NU] thus becomes:

LSSL
ILL = LCE

(
p(y|xu; θ),p(y|xu; θt)

)
+ LCE

(
p(y|xL; θ), yL

)
(D.5)

D.3.4 Instantiations to Noisy Label Learning

We denote the given noisy labels as Ŷ . For noisy label learning, our method naturally
supports a noise transition model T (Ŷ |Y ;ω) with learnable parameter ω, as we will
show in the following:

EY |X,I;θt [logP (Y |X; θ) + logP (I|X, Y ; θ)]

= EY |X,Ŷ ;θt

[
logP (Y, Ŷ |X; θ)

]
= EY |X,Ŷ ;θt

[
logP (Y |Ŷ , X; θ) + logP (Ŷ |X; θ)

]
=

∑
Y

P (Y |Ŷ , X; θt) logP (Y |Ŷ , X; θ) + logP (Ŷ |X; θ).

(D.6)

The loss function is:

LNLL
ILL = LCE

(
p(y|x, ŷ; θ, ωt),p(y|x, ŷ; θt, ωt)

)
+ LCE (p(ŷ|x; θ, ω), ŷ) (D.7)

Note that both term is computed from the noise transition matrix as mentioned in
Equation (9.31).

D.3.5 Instantiations to Mixed Imprecise Label Learning

In this setting, we have both labeled data and unlabeled data, where the labels for
the labeled data are both partial and noisy. On the unlabeled data, the unsupervised
objective is the same as the unsupervised consistency regularization of semi-supervised
learning shown in Equation (9.29). On the labeled data, it mainly follows the Equa-
tion (9.31) of noisy label learning, with the noisy single label becoming the noisy partial
labels ŝ. For noisy partial labels, the noisy supervised objective in Eq. 8 becomes the
supervised consistency regularization as in Eq. 6 of partial label setting to train the
noise transition model, and the noisy unsupervised objective becomes the consistency

191

regularization of the prediction conditioned on noisy partial labels:
LCE

(
p
(
y | As(x), ŝ; θ, ω

t
)
,p

(
y | Aw(x), ŷ; θ

t, ωt
))
+LCE (p (ŷ | Aw(x); θ, ω) , ŝ) (D.8)

We can compute both quantity through the noise transition model:
p(y|x, ŝ; θ, ωt) ∝ p(y|x; θ)

∏
ŷ∈ŝ

T (y|ŷ;ωt), and p(ŷ|x; θ, ω) =
∑
y∈[C]

p(y|x; θ)T (ŷ|y;ω).

(D.9)

D.4 Experiments

D.4.1 Additional Training Details

We adopt two additional training strategies for the ILL framework. The first is the
“strong-weak” augmentation strategy [221]. Since there is a consistency regularization
term in each imprecise label formulation of ILL, we use the soft pseudo-targets of
the weakly-augmented data to train the strongly-augmented data. The second is the
entropy loss [241] for class balancing, which is also adopted in SOP [4] and FreeMatch
[193]. We set the loss weight for the entropy loss uniformly for all experiments as 0.1.

D.4.2 Partial Label Learning

D.4.2.1 Setup

Following previous work [295, 184, 2], we evaluate our method on partial label learning
setting using CIFAR-10, CIFAR-100, and CUB-200 [244]. We generate partially labeled
datasets by flipping negative labels to false positive labels with a probability q, which
is also denoted as a partial ratio. Specifically, the C − 1 negative labels are uniformly
aggregated into the ground truth label to form a set of label candidates. We consider
q ∈ {0.1, 0.3, 0.5} for CIFAR-10, q ∈ {0.01, 0.05, 0.1} for CIFAR-100, and q = 0.05 for
CUB-200. For CIFAR-10 and CIFAR-100, we use ResNet-18 [174] as backbone. We use
SGD as an optimizer with a learning rate of 0.01, a momentum of 0.9, and a weight
decay of 1e−3. For CUB-200, we initialize the ResNet-18 [174] with ImageNet-1K [296]
pre-trained weights. We train 800 epochs for CIFAR-10 and CIFAR-100 [243], and
300 epochs for CUB-200, with a cosine learning rate scheduler. For CIFAR-10 and
CIFAR-100, we use an input image size of 32. For CUB-200, we use an input image size
of 224. A batch size of 256 is used for all datasets. The choice of these parameters mainly
follows PiCO [2]. We present the full hyper-parameters systematically in Table D.2.

D.4.2.2 Discussion

We additionally compare our method with R-CR [185], which uses a different architecture
as the results in Table 9.1. R-CR uses Wide-ResNet34x10 as backbone, and adopts

192

Table D.2: Hyper-parameters for partial label learning used in experiments.

Hyper-parameter CIFAR-10 CIFAR-100 CUB-200

Image Size 32 32 224

Model ResNet-18 ResNet-18 ResNet-18
(ImageNet-1K Pretrained)

Batch Size 256 256 256
Learning Rate 0.01 0.01 0.01
Weight Decay 1e-3 1e-3 1e-5
LR Scheduler Cosine Cosine Cosine

Training Epochs 800 800 300
Classes 10 100 200

multiple strong data augmentations. It also adjusts the loss weight along training. For
fair comparison, we use the same architecture without multiple augmentation and the
curriculum adjust on loss. The results are shown in Table D.3, where our method
outperforms R-CR on CIFAR-10 and is comparable on CIFAR-100.

Table D.3: Comparison with R-CR in partial label learning

Method CIFAR-10 CIFAR-100
0.3 0.5 0.05 0.10

R-CR 97.28±0.02 97.05±0.05 82.77±0.10 82.24±0.07

Ours 97.55±0.07 97.17±0.11 82.46±0.08 82.22±0.05

We also provide the comparison of our method on instance-dependent partial label
learning as proposed by Xu et al. [247, 295]. Due to the nature of instance-dependence,
we maintain the term P (S|Y,X; θ) from Equation (9.27) as a supervised term for
optimization. We compare our method with VALEN [247], RCR [185], PiCO [2], and
POP [295] on MNIST, Kuzushiji-MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100,
with synthetic instance-dependent partial labels generated according to Xu et al. [295].
From the results in Table D.4, we proposed method demonstrate the best performance
across different datasets evaluated.

Table D.4: Comparison on instance-dependent partial label learning

MNIST Kuzushiji-MNIST Fashion-MNIST CIFAR-10 CIFAR-100

VALEN [247] 99.03 90.15 96.31 92.01 71.48
RCR [185] 98.81 90.62 96.64 86.11 71.07
PiCO [2] 98.76 88.87 94.83 89.35 66.30

POP [295] 99.28 91.09 96.93 93.00 71.82

Ours 99.19 91.35 97.01 93.86 72.43

A recent work on PLL discussed and analyzed the robustness performance of different
loss functions, especially the average-based methods [225]. We perform a similar analysis
here for the derived loss function in ILL. Following the notation in [225], let s denote
the candidate label set, x as the training instance, g as the probability score from the

193

model, and f as the classifier f(x) = argmax
i∈Y

gi(x), the average-based PLL can be

formulated as:
Lavg−PLL(f(x), s) =

1

|s|
∑
i∈s

ℓ(f(x), i) (D.10)

Lv et al. [225] compared different loss functions ℓ on both noise-free and noisy PLL
settings, where they find both theoretically and empirically that average-based PLL
with bounded loss are robust under mild assumptions. Empirical study in [225] suggests
that both Mean Absolute Error and Generalized Cross-Entropy loss [199] that proposed
for noisy label learning achieves the best performance and robustness for average-based
PLL.

Our solution for PLL can be viewed as an instantiation of the average-based PLL
as in [225] with:

ℓ(f(x), i) = −ḡi(x) log gi(x) (D.11)
where ḡ is normalized probability over s with detached gradient. We can further

show that the above loss function is bounded for 0 < ℓ ≤ 1
e

and thus bounded for
summation of all classes, which demonstrates robustness, as we show in Table 9.4.

D.4.3 Semi-Supervised Learning

D.4.3.1 Setup

For experiments of SSL, we follow the training and evaluation protocols of USB [5]
on image and text classification. To construct the labeled dataset for semi-supervised
learning, we uniformly select l/C samples from each class and treat the remaining
samples as the unlabeled dataset. For image classification tasks, ImageNet-1K [296]
Vision Transformers [177] are used, including CIFAR-100 [243], EuroSAT [297], STL-10
[298], TissueMNIST [299, 300], Semi-Aves [301]. For text classification tasks, we adopt
BERT [176] as backbone, including IMDB [248], Amazon Review [249], Yelp Review
[302], AG News [303] , Yahoo Answer [304]. The hyper-parameters strictly follow USB,
and are shown in Table D.5 and Table D.6.

D.4.3.2 Results

In the chapter, we only provide the comparison on CIFAR-100, STL-10, IMDB, and
Amazon Review. Here we provide the full comparison in Table D.7 and Table D.8.
From the full results, similar conclusion can be drawn as in the chapter. Our ILL
framework demonstrates comparable performance as previous methods.

194

Table D.5: Hyper-parameters of semi-supervised learning used in vision experiments
of USB.

Hyper-parameter CIFAR-100 STL-10 Euro-SAT TissueMNIST Semi-Aves

Image Size 32 96 32 32 224
Model ViT-S-P4-32 ViT-B-P16-96 ViT-S-P4-32 ViT-T-P4-32 ViT-S-P16-224

Labeled Batch size 16
Unlabeled Batch size 16

Learning Rate 5e-4 1e-4 5e-5 5e-5 1e-3
Weight Decay 5e-4

Layer Decay Rate 0.5 0.95 1.0 0.95 0.65
LR Scheduler η = η0 cos(

7πk
16K

)
Training epochs 20

Classes 100 10 10 10 200
Model EMA Momentum 0.0

Prediction EMA Momentum 0.999
Weak Augmentation Random Crop, Random Horizontal Flip
Strong Augmentation RandAugment [267]

Table D.6: Hyper-parameters of semi-supervised learning NLP experiments in USB.

Hyper-parameter AG News Yahoo! Answer IMDB Amazom-5 Yelp-5

Max Length 512
Model Bert-Base

Labeled Batch size 4
Unlabeled Batch size 4

Learning Rate 5e-5 1e-4 5e-5 1e-5 5e-5
Weight Decay 1e-4

Layer Decay Rate 0.65 0.65 0.75 0.75 0.75
LR Scheduler η = η0 cos(

7πk
16K

)
Training epochs 10

Classes 4 10 2 5 5
Model EMA Momentum 0.0

Prediction EMA Momentum 0.999
Weak Augmentation None
Strong Augmentation Back-Translation [221]

195

Table D.7: Error rate comparison of different number of labels on CIFAR-100, STL-10,
EuroSAT, TissueMNIST, and SemiAves for semi-supervised learning. We use USB
[5] image classification task results. The best results are indicated in bold. Our results
are averaged over 3 independent runs.

Datasets CIFAR-100 STL-10 EuroSat TissueMNIST SemiAves

Labels 200 400 40 100 20 40 80 400 3959

Pseudo-Label [186] 33.99±0.95 25.32±0.29 19.14±1.33 10.77±0.60 25.46±1.36 15.70±2.12 56.92±4.54 50.86±1.79 40.35±0.30

Mean-Teacher [275] 35.47±0.40 26.03±0.30 18.67±1.69 24.19±10.15 26.83±1.46 15.85±1.66 62.06±3.43 55.12±2.53 38.55±0.21

VAT [276] 31.49±1.33 21.34±0.50 18.45±1.47 10.69±0.51 26.16±0.96 10.09±0.94 57.49±5.47 51.30±1.73 38.82±0.04

MixMatch [188] 38.22±0.71 26.72±0.72 58.77±1.98 36.74±1.24 24.85±4.85 17.28±2.67 55.53±1.51 49.64±2.28 37.25±0.08

ReMixMatch [189] 22.21±2.21 16.86±0.57 13.08±3.34 7.21±0.39 5.05±1.05 5.07±0.56 58.77±4.43 49.82±1.18 30.20±0.03

AdaMatch [250] 22.32±1.73 16.66±0.62 13.64±2.49 7.62±1.90 7.02±0.79 4.75±1.10 58.35±4.87 52.40±2.08 31.75±0.13

FixMatch [3] 29.60±0.90 19.56±0.52 16.15±1.89 8.11±0.68 13.44±3.53 5.91±2.02 55.37±4.50 51.24±1.56 31.90±0.06

FlexMatch [191] 26.76±1.12 18.24±0.36 14.40±3.11 8.17±0.78 5.17±0.57 5.58±0.81 58.36±3.80 51.89±3.21 32.48±0.15

Dash [277] 30.61±0.98 19.38±0.10 16.22±5.95 7.85±0.74 11.19±0.90 6.96±0.87 56.98±2.93 51.97±1.55 32.38±0.16

CoMatch [251] 35.08±0.69 25.35±0.50 15.12±1.88 9.56±1.35 5.75±0.43 4.81±1.05 59.04±4.90 52.92±1.04 38.65±0.18

SimMatch [252] 23.78±1.08 17.06±0.78 11.77±3.20 7.55±1.86 7.66±0.60 5.27±0.89 60.88±4.31 52.93±1.56 33.85±0.08

FreeMatch [193] 21.40±0.30 15.65±0.26 12.73±3.22 8.52±0.53 6.50±0.78 5.78±0.51 58.24±3.08 52.19±1.35 32.85±0.31

SoftMatch [194] 22.67±1.32 16.84±0.66 13.55±3.16 7.84±1.72 5.75±0.62 5.90±1.42 57.98±3.66 51.73±2.84 31.80±0.22

Ours 22.06±1.06 17.40±1.04 11.09±0.71 8.10±1.02 5.86±1.06 5.74±1.13 57.99±2.16 50.95±2.03 33.08±0.26

Table D.8: Error rate comparison of different number of labels on IMDB, AG News,
Amazon Review, Yahoo Answers, and Yelp Review for semi-supervised learning.
We use USB [5] text classification task results. Best results are indicated in bold. Our
results are averaged over 3 independent runs.

Datasets IMDB AG News Amazon Review Yahoo Answers Yelp Review

Labels 20 100 40 200 250 1000 500 2000 250 1000

Pseudo-Label [186] 45.45±4.43 19.67±1.01 19.49±3.07 14.69±1.88 53.45±1.9 47.00±0.79 37.70±0.65 32.72±0.31 54.51±0.82 47.33±0.20

Mean-Teacher [275] 20.06±2.51 13.97±1.49 15.17±1.21 13.93±0.65 52.14±0.52 47.66±0.84 37.09±0.18 33.43±0.28 50.60±0.62 47.21±0.31

VAT [276] 25.93±2.58 11.61±1.79 14.70±1.19 11.71±0.84 49.83±0.46 46.54±0.31 34.87±0.41 31.50±0.35 52.97±1.41 45.30±0.32

MixMatch [188] 26.12±6.13 15.47±0.65 13.50±1.51 11.75±0.60 59.54±0.67 61.69±3.32 35.75±0.71 33.62±0.14 53.98±0.59 51.70±0.68

AdaMatch [250] 8.09±0.99 7.11±0.20 11.73±0.17 11.22±0.95 46.72±0.72 42.27±0.25 32.75±0.35 30.44±0.31 45.40±0.96 40.16±0.49

FixMatch [3] 7.72±0.33 7.33±0.13 30.17±1.87 11.71±1.95 47.61±0.83 43.05±0.54 33.03±0.49 30.51±0.53 46.52±0.94 40.65±0.46

FlexMatch [191] 7.82±0.77 7.41±0.38 16.38±3.94 12.08±0.73 45.73±1.60 42.25±0.33 35.61±1.08 31.13±0.18 43.35±0.69 40.51±0.34

Dash [277] 8.34±0.86 7.55±0.35 17.67±3.19 13.76±1.67 47.10±0.74 43.09±0.60 35.26±0.33 31.19±0.29 45.24±2.02 40.14±0.79

CoMatch [251] 7.44±0.30 7.72±1.14 11.95±0.76 10.75±0.35 48.76±0.90 43.36±0.21 33.48±0.51 30.25±0.35 45.40±1.12 40.27±0.51

SimMatch [252] 7.93±0.55 7.08±0.33 14.26±1.51 12.45±1.37 45.91±0.95 42.21±0.30 33.06±0.20 30.16±0.21 46.12±0.48 40.26±0.62

FreeMatch [193] 8.94±0.21 7.95±0.45 12.98±0.58 11.73±0.63 46.41±0.60 42.64±0.06 32.77±0.26 30.32±0.18 47.95±1.45 40.37±1.00

SoftMatch [194] 7.76±0.58 7.97±0.72 11.90±0.27 11.72±1.58 45.29±0.95 42.21±0.20 33.07±0.31 30.44±0.62 44.09±0.50 39.76±0.13

Ours 7.32±0.12 7.64±0.67 14.77±1.59 12.21±0.82 43.96±0.32 42.32±0.02 33.80±0.25 30.86±0.17 44.82±0.17 39.67±0.71

D.4.4 Noisy Label Learning

D.4.4.1 Setup

We conduct experiments of noisy label learning following SOP [4]. We evaluate the
proposed method on both synthetic symmetric/asymmetric noise on CIFAR-10 and
CIFAR-100, and more realistic and larger-scale instance noise on Clothing1M and
WebVision. To introduce the synthetic symmetric noise to CIFAR-10 and CIFAR-100,
we uniformly flip labels for a probability η into other classes. For asymmetric noise,
we only randomly flip the labels for particular pairs of classes. For CIFAR-10 and
CIFAR-100, we train PreAct-ResNet-18 with SGD using a learning rate of 0.02, a weight
decay of 1e− 3, and a momentum of 0.9. We train for 300 epochs with a cosine learning
rate schedule and a batch size of 128. For WebVision, we use InceptionResNet-v2 as

196

the backbone and set the batch size to 32. Other settings are similar to CIFAR-10. For
Clothing1M, we use ImageNet-1K pre trained ResNet-50 as the backbone. We train it
using SGD with an initial learning rate of 2e-3 for a total of 10 epochs, where the learning
rate is reduced by 10 after 5 epochs. In addition, we also conducted experiments on
CIFAR-10N and CIFAR-100N. We present the detailed hyper-parameters in Table D.9.

Table D.9: Hyper-parameters for noisy label learning used in experiments.

Hyper-parameter CIFAR-10 (CIFAR-10N) CIFAR-100 (CIFAR-100N) Clothing1M WebVision

Image Size 32 32 224 299

Model PreAct-ResNet-18 (ResNet-34) PreAct-ResNet-18 (ResNet-34) ResNet-50
(ImageNet-1K Pretrained) Inception-ResNet-v2

Batch Size 128 128 64 32
Learning Rate 0.02 0.02 0.002 0.02
Weight Decay 1e-3 1e-3 1e-3 5e-4
LR Scheduler Cosine Cosine MultiStep MultiStep

Training Epochs 300 300 10 100
Classes 10 100 14 50

Noisy Matrix Scale 1.0 2.0 0.5 2.5

D.4.4.2 Results

In addition to the results regarding noisy label learning provided in Chapter 9, we
also present comparison results on CIFAR-10N and CIFAR-100N [257] in Table D.10.
We include a full comparison on Clothing1M and WebVision, incorporating methods
like Co-Teaching, Forward, and CORES, in Table D.11. As shown in Table D.10,
the proposed ILL framework achieves performance comparable to the previous best
method, SOP [4]. On CIFAR-10N, our method yields results very close to SOP in
the Random and Aggregate case noise scenarios and surpasses SOP in the Worst case
noise scenario. However, on CIFAR-100N, our method slightly underperforms previous
methods, possibly due to the oversimplified noise model utilized in ILL. We believe that
a more realistic noise transition model and further tuning of our method could lead to
improved performance.

Table D.10: Test accuracy comparison of instance independent label noise on CIFAR-
10N and CIFAR-100N for noisy label learning. The best results are indicated in
bold, and the second best results are indicated in underline. Our results are averaged
over three independent runs with ResNet34 as the backbone.

Dataset CIFAR-10N CIFAR-100N

Noisy Type Clean Random 1 Random 2 Random 3 Aggregate Worst Clean Noisy

CE 92.92±0.11 85.02±0.65 86.46±1.79 85.16±0.61 87.77±0.38 77.69±1.55 76.70±0.74 55.50±0.66

Forward [256] 93.02±0.12 86.88±0.50 86.14±0.24 87.04±0.35 88.24±0.22 79.79±0.46 76.18±0.37 57.01±1.03

Co-teaching [198] 93.35±0.14 90.33±0.13 90.30±0.17 90.15±0.18 91.20±0.13 83.83±0.13 73.46±0.09 60.37±0.27

DivideMix [203] - 95.16±0.19 95.23±0.07 95.21±0.14 95.01±0.71 92.56±0.42 - 71.13±0.48

ELR [202] 95.39±0.05 94.43±0.41 94.20±0.24 94.34±0.22 94.83±0.10 91.09±1.60 78.57±0.12 66.72±0.07

CORES [305] 94.16±0.11 94.45±0.14 94.88±0.31 94.74±0.03 95.25±0.09 91.66±0.09 73.87±0.16 55.72±0.42

SOP [4] 96.38±0.31 95.28±0.13 95.31±0.10 95.39±0.11 95.61±0.13 93.24±0.21 78.91±0.43 67.81±0.23

Ours 96.21±0.29 96.06±0.07 95.98±0.12 96.10±0.05 96.40±0.03 93.55±0.14 78.53±0.21 68.07±0.33

197

Table D.11: Test accuracy comparison of realistic noisy labels on Clothing1M and
WebVision for noisy label learning. The best results are indicated in bold and
the second best results are indicated in underline. Our results are averaged over 3
independent runs. For Clothing1M, we use ImageNet-1K pre trained ResNet50 as the
backbone. For WebVision, InceptionResNetv2 is used as the backbone.

Dataset Clothing1M WebVision

CE 69.10 -
Forward [256] 69.80 61.10
MentorNet [258] 66.17 63.00
Co-Teaching [198] 69.20 63.60
DivideMix [203] 74.76 77.32
ELR [202] 72.90 76.20
CORES [305] 73.20 -
SOP [4] 73.50 76.60

Ours 74.02±0.12 79.37±0.09

D.4.5 Mixed Imprecise Label Learning

D.4.5.1 Setup

To create a mixture of various imprecise label configurations, we select CIFAR-10 and
CIFAR-100 as base datasets. We first uniformly sample l/C labeled samples from each
class to form the labeled dataset and treat the remaining samples as the unlabeled
dataset. Based on the labeled dataset, we generate partially labeled datasets by flipping
negative labels to false positive labels with the partial ratio q. After obtaining the
partial labels, we randomly select η percentage of samples from each class, and recreate
the partial labels for them by flipping the ground truth label uniformly to another
class. In this setting, unlabeled data, partially labeled data, and noisy labeled data
exist simultaneously, which is very challenging and more closely resembles realistic
situations. For CIFAR-10, we set l ∈ {1000, 5000, 50000}, and for CIFAR-100, we set
l ∈ {5000, 10000, 50000}. Similarly in the partial label setting, we set q ∈ {0.1, 0.3, 0.5}
for CIFAR-10, and q ∈ {0.01, 0.05, 0.1} for CIFAR-100. For noisy labels, we set
η ∈ {0.1, 0.2, 0.3} for both datasets.

D.4.5.2 Results

We provide a more complete version of Table 9.4 in Table D.12. On partial noisy
labels of CIFAR-10 with partial ratio 0.5 and of CIFAR-100 with partial ratio 0.1, most
baseline methods are more robust or even fail to perform. However, our ILL still shows
very robust performance with minor performance degradation as increase of noise ratios.

198

Table D.12: Test accuracy comparison of mixture of different imprecise labels.
We report results of full labels, partial ratio q of {0.1, 0.3, 0.5} for CIFAR-10 and
{0.01, 0.05, 0.1} for CIFAR-100, and noise ratio η of {0.1, 0.2, 0.3} for CIFAR-10 and
CIFAR-100.

Dataset # Labels Partial Ratio q Noise Ratio η 0 0.1 0.2 0.3

PiCO+ [259] 95.99±0.03 93.64 93.13 92.18
IRNet [237] - 93.44 92.57 92.38
DALI [218] - 94.15 94.04 93.77
PiCO+ w/ Mixup [218] - 94.58 94.74 94.43
DALI w/ Mixup [218] - 95.83 95.86 95.75

0.1

Ours 96.55±0.08 96.47±0.11 96.09±0.20 95.83±0.05

PiCO+ [259] 95.73±0.10 92.32 92.22 89.95
IRNet [237] - 92.81 92.18 91.35
DALI [218] - 93.44 93.25 92.42
PiCO+ w/ Mixup [218] - 94.02 94.03 92.94
DALI w/ Mixup [218] - 95.52 95.41 94.67

0.3

Ours 96.52±0.12 96.2±0.02 95.87±0.14 95.22±0.06

PiCO+ [259] 95.33±0.06 91.07 89.68 84.08
IRNet [237] - 91.51 90.76 86.19
DALI [218] - 92.67 91.83 89.8
PiCO+ w/ Mixup [218] - 93.56 92.65 88.21
DALI w/ Mixup [218] - 95.19 93.89 92.26

CIFAR-10 50,000

0.5

Ours 96.28±0.13 95.82±0.07 95.28±0.08 94.35±0.08

PiCO+ [259] 76.29±0.42 71.42 70.22 66.14
IRNet [237] - 71.17 70.10 68.77
DALI [218] - 72.26 71.98 71.04
PiCO+ w/ Mixup [218] - 75.04 74.31 71.79
DALI w/ Mixup [218] - 76.52 76.55 76.09

0.01

Ours 78.08±0.26 77.53±0.24 76.96±0.02 76.43±0.27

PiCO+ [259] 76.17±0.18 69.40 66.67 62.24
IRNet [237] - 70.73 69.33 68.09
DALI [218] - 72.28 71.35 70.05
PiCO+ w/ Mixup [218] - 73.06 71.37 67.56
DALI w/ Mixup [218] - 76.87 75.23 74.49

0.05

Ours 76.95±0.46 77.07±0.16 76.34±0.08 75.13±0.63

PiCO+ [259] 75.55±0.21 - - -
IRNet [237] - - - -
DALI [218] - - - -
PiCO+ w/ Mixup [218] - - - -
DALI w/ Mixup [218] - - - -

CIFAR-100 50,000

0.1

Ours 76.41±1.02 75.50±0.54 74.67±0.30 73.88±0.60

D.4.6 Ablation on Strong-Augmentation and Entropy Loss

We provide the ablation study on the strong-augmentation and entropy loss components
here, which are common techniques in each setting [3, 2, 4]. For example, in SSL,
strong-weak augmentation is an important strategy for SSL algorithms widely used in
existing works such as FixMatch [3] and FlexMatch [191]. Thus, it is important to adopt
strong-weak augmentation to achieve better performance in SSL [193, 194, 5]. This is
similar in PLL settings [2, 185]. PiCO [2, 185] also used strong augmentation). Strong-
weak augmentation and entropy loss are also adopted in SOP [4] of NLL. However, we
found these techniques are less important for our formulation of NLL. We provide an

199

ablation study on the entropy loss of SSL, and both techniques for NLL and PLL here
to demonstrate our discussions.

Table D.13: SSL ab-
lation

CIFAR100
l=200

STL10
l=40

Ours 22.06 11.09
Ours
w/o
ent.

22.41 11.23

Table D.14: PLL ab-
lation

CIFAR10
q = 0.5

CIFAR100
q = 0.1

PiCO 93.58 69.91
Ours 95.91 74.00
PiCO
w/o
s. a.

91.78 66.43

Ours
w/o
s. a.

94.53 72.69

Ours
w/o
ent.

95.87 73.75

Table D.15: NLL ab-
lation

CIFAR10
η = 0.5

CIFAR100
η = 0.1

SOP 94.00 63.30
Ours 94.31 66.46
SOP
w/o
s. a.

66.85 36.60

Ours
w/o
s. a.

93.56 65.89

SOP
w/o
ent.

93.04 62.85

Ours
w/o
ent.

94.16 66.12

Table D.16: Runtime
Analysis on CIFAR-
100

Setting Algorithm CIFAR-100 Avg.
Runtime (s/iter)

SSL FreeMatch 0.2157
SSL Ours 0.1146

PLL PiCO 0.3249
PLL Ours 0.2919

NLL SOP 0.1176
NLL Ours 0.1021

D.4.7 Runtime Analysis

We provide the runtime analysis on CIFAR-100 of our method in different settings,
compared with the SOTA baselines. We compute the average runtime from all training
iterations on CIFAR-100. The results are shown in Table D.16. Our method in general
present faster runtime without complex design such as contrastive loss.

200

Bibliography

[1] Irene Martín-Morató, Toni Heittola, Annamaria Mesaros, and Tuomas Virtanen.
Low-complexity acoustic scene classification for multi-device audio: Analysis of
dcase 2021 challenge systems. arXiv preprint arXiv:2105.13734, 2021.

[2] Haobo Wang, Ruixuan Xiao, Yixuan Li, Lei Feng, Gang Niu, Gang Chen, and
Junbo Zhao. PiCO: Contrastive label disambiguation for partial label learning.
In International Conference on Learning Representations (ICLR), 2022.

[3] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang,
Colin A Raffel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch:
Simplifying semi-supervised learning with consistency and confidence. Advances
in Neural Information Processing Systems (NeurIPS), 33, 2020.

[4] Sheng Liu, Zhihui Zhu, Qing Qu, and Chong You. Robust training under
label noise by over-parameterization. In Kamalika Chaudhuri, Stefanie Jegelka,
Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings
of the International Conference on Machine Learning (ICML), volume 162 of
Proceedings of Machine Learning Research, pages 14153–14172. PMLR, 17–23 Jul
2022.

[5] Yidong Wang, Hao Chen, Yue Fan, Wang Sun, Ran Tao, Wenxin Hou, Renjie
Wang, Linyi Yang, Zhi Zhou, Lan-Zhe Guo, Heli Qi, Zhen Wu, Yu-Feng Li, Satoshi
Nakamura, Wei Ye, Marios Savvides, Bhiksha Raj, Takahiro Shinozaki, Bernt
Schiele, Jindong Wang, Xing Xie, and Yue Zhang. Usb: A unified semi-supervised
learning benchmark. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[6] J. P. Bello, C. Silva, O. Nov, R. L. DuBois, A. Arora, J. Salamon, C. Mydlarz, and
H. Doraiswamy. SONYC: A system for the monitoring, analysis and mitigation
of urban noise pollution. Communications of the ACM, In press, 2018.

201

[7] Juan Pablo Bello, Charlie Mydlarz, and Justin Salamon. Sound analysis in smart
cities. In Computational Analysis of Sound Scenes and Events, pages 373–397.
Springer, 2018.

[8] Regunathan Radhakrishnan, Ajay Divakaran, and A Smaragdis. Audio analysis
for surveillance applications. In Proc. WASPAA, pages 158–161. IEEE, 2005.

[9] Erling Wold, Thom Blum, Douglas Keislar, and James Wheaten. Content-based
classification, search, and retrieval of audio. IEEE multimedia, 3(3):27–36, 1996.

[10] Qin Jin, Peter Schulam, Shourabh Rawat, Susanne Burger, Duo Ding, and Florian
Metze. Event-based video retrieval using audio. In Proc. Interspeech, 2012.

[11] Romain Serizel, Nicolas Turpault, Hamid Eghbal-Zadeh, and Ankit Parag Shah.
Large-scale weakly labeled semi-supervised sound event detection in domestic
environments. arXiv preprint arXiv:1807.10501, 2018.

[12] Christian Debes, Andreas Merentitis, Sergey Sukhanov, Maria Niessen, Nikolaos
Frangiadakis, and Alexander Bauer. Monitoring activities of daily living in
smart homes: Understanding human behavior. IEEE Signal Processing Magazine,
33(2):81–94, 2016.

[13] Yaniv Zigel, Dima Litvak, and Israel Gannot. A method for automatic fall
detection of elderly people using floor vibrations and sound—proof of concept
on human mimicking doll falls. IEEE Transactions on Biomedical Engineering,
56(12):2858–2867, 2009.

[14] Maximin Coavoux, Shashi Narayan, and Shay B. Cohen. Privacy-preserving
neural representations of text, 2018.

[15] Thore Graepel, Kristin Lauter, and Michael Naehrig. Ml confidential: Machine
learning on encrypted data. In Taekyoung Kwon, Mun-Kyu Lee, and Daesung
Kwon, editors, Information Security and Cryptology – ICISC 2012, pages 1–21,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[16] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade
Lawrence, R. Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set: An
ontology and human-labeled dataset for audio events. In Proc. IEEE ICASSP
2017, New Orleans, LA, 2017.

[17] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici,
Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan. Youtube-8m: A
large-scale video classification benchmark, 2016.

202

[18] Lu Jiang, Di Huang, Mason Liu, and Weilong Yang. Beyond synthetic noise:
Deep learning on controlled noisy labels, 2020.

[19] Sourish Chaudhuri. Structured Models for Semantic Analysis of Audio Content.
PhD thesis, PhD thesis, Carnegie Mellon University. 46, 47, 2013.

[20] Anurag Kumar and Bhiksha Raj. Weakly supervised scalable audio content
analysis. In Multimedia and Expo (ICME), 2016 IEEE International Conference
on, pages 1–6. IEEE, 2016.

[21] Ankit Shah, Anurag Kumar, Alexander G Hauptmann, and Bhiksha Raj. A closer
look at weak label learning for audio events. arXiv preprint arXiv:1804.09288,
2018.

[22] Cisco Systems Inc. Cisco visual networking index: Forecast and
methodology, 2016–2021. https://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/
complete-white-paper-c11-481360.html, –.

[23] Dimitrios Giannoulis, Emmanouil Benetos, Dan Stowell, Mathias Rossignol,
Mathieu Lagrange, and Mark D Plumbley. Detection and classification of acoustic
scenes and events: an IEEE AASP challenge. In 2013 IEEE WASPAA, pages
1–4. IEEE, 2013.

[24] Tuomas Virtanen, Annamaria Mesaros, Toni Heittola, Mark D. Plumbley, Peter
Foster, Emmanouil Benetos, and Mathieu Lagrange. Proceedings of the Detection
and Classification of Acoustic Scenes and Events 2016 Workshop (DCASE2016).
Tampere University of Technology. Department of Signal Processing, 2016.

[25] A. Mesaros, T. Heittola, A. Diment, B. Elizalde, A. Shah, E. Vincent, B. Raj,
and T. Virtanen. DCASE 2017 challenge setup: Tasks, datasets and baseline
system. In Proceedings of the Detection and Classification of Acoustic Scenes and
Events 2017 Workshop (DCASE2017), pages 85–92, November 2017.

[26] J. Salamon, C. Jacoby, and J. P. Bello. A dataset and taxonomy for urban sound
research. In 22st ACM International Conference on Multimedia (ACM-MM’14),
Orlando, FL, USA, Nov. 2014.

[27] Tom M Mitchell, William W Cohen, Estevam R Hruschka Jr, Partha Pratim
Talukdar, Justin Betteridge, Andrew Carlson, Bhavana Dalvi Mishra, Matthew
Gardner, Bryan Kisiel, Jayant Krishnamurthy, et al. Never ending learning. In
AAAI, pages 2302–2310, 2015.

203

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html

[28] Xinlei Chen, Abhinav Shrivastava, and Abhinav Gupta. Neil: Extracting visual
knowledge from web data. In The IEEE International Conference on Computer
Vision (ICCV), December 2013.

[29] Richard F Lyon. Machine hearing: An emerging field [exploratory dsp]. Ieee
signal processing magazine, 27(5):131–139, 2010.

[30] Anurag Kumar and Bhiksha Raj. Audio event detection using weakly labeled
data. In 24th ACM International Conference on Multimedia. ACM Multimedia,
2016.

[31] Benjamin Elizalde, Guan-Lin Chao, Ming Zeng, and Ian Lane. City-identification
of flickr videos using semantic acoustic features. In Multimedia Big Data (BigMM),
2016 IEEE Second International Conference on, pages 303–306. IEEE, 2016.

[32] Sebastian Sager, Damian Borth, Benjamin Elizalde, Christian Schulze, Bhik-
sha Raj, Ian Lane, and Andreas Dengel. Audiosentibank: Large-scale seman-
tic ontology of acoustic concepts for audio content analysis. arXiv preprint
arXiv:1607.03766, 2016.

[33] Anurag Kumar, Bhiksha Raj, and Ndapandula Nakashole. Discovering sound
concepts and acoustic relations in text. arXiv preprint arXiv:1609.07384, 2016.

[34] PAFY: retrieve YouTube content and metadata.
https://pypi.python.org/pypi/pafy.

[35] Dan Ellis, Tuomas Virtanen, Mark D. Plumbley, and Bhiksha Raj. Future
Perspective. Springer International Publishing, 2018.

[36] Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. TUT database for
acoustic scene classification and sound event detection. In 24th European Signal
Processing Conference 2016 (EUSIPCO 2016), Budapest, Hungary, 2016.

[37] Karol J Piczak. Environmental sound classification with convolutional neural
networks. In Machine Learning for Signal Processing (MLSP), 2015 IEEE 25th
International Workshop on, pages 1–6. IEEE, 2015.

[38] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade
Lawrence, R. Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set: An
ontology and human-labeled dataset for audio events. In Proc. IEEE ICASSP
2017, New Orleans, LA, 2017.

204

[39] Wenjing Han, Eduardo Coutinho, Huabin Ruan, Haifeng Li, Björn Schuller,
Xiaojie Yu, and Xuan Zhu. Semi-supervised active learning for sound classification
in hybrid learning environments. PloS one, 11(9):e0162075, 2016.

[40] Ankit Shah, Rohan Badlani, Anurag Kumar, Benjamin Elizalde, and Bhiksha
Raj. An approach for self-training audio event detectors using web data. arXiv
preprint arXiv:1609.06026, 2016.

[41] Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, and Huaming Wang.
Clap learning audio concepts from natural language supervision. In ICASSP 2023-
2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1–5. IEEE, 2023.

[42] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119, 2013.

[43] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543, 2014.

[44] Justin Salamon, Duncan MacConnell, Mark Cartwright, Peter Li, and Juan Pablo
Bello. Scaper: A library for soundscape synthesis and augmentation. In IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA).
New Paltz, NY, USA, 2017.

[45] Rohan Badlani, Ankit Shah, Benjamin Elizalde, Anurag Kumar, and Bhiksha Raj.
Framework for evaluation of sound event detection in web videos. In 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 3096–3100. IEEE, 2018.

[46] Benjamin Elizalde, Anurag Kumar, Ankit Shah, Rohan Badlani, Emmanuel
Vincent, Bhiksha Raj, and Ian Lane. Experiments on the DCASE Challenge 2016:
Acoustic scene classification and sound event detection in real life recording. In
DCASE2016 Workshop on Detection and Classification of Acoustic Scenes and
Events, 2016.

[47] Romain Serizel, Nicolas Turpault, Hamid Eghbal-Zadeh, and Ankit Parag Shah.
Large-scale weakly labeled semi-supervised sound event detection in domestic
environments. In Proceedings of the Detection and Classification of Acoustic
Scenes and Events 2018 Workshop (DCASE2018), pages 19–23, November 2018.

205

[48] Nicolas Turpault, Romain Serizel, Ankit Parag Shah, and Justin Salamon. Sound
event detection in domestic environments with weakly labeled data and soundscape
synthesis. Technical report, Université de Lorraine, CNRS, Inria, Loria, France,
June 2019. working paper or preprint.

[49] Ines Nolasco, Shubhr Singh, E Vidana-Villa, Emily Grout, J Morford, M Emmer-
son, F Jensens, Helen Whitehead, Ivan Kiskin, Ariana Strandburg-Peshkin, et al.
Few-shot bioacoustic event detection at the dcase 2022 challenge. arXiv preprint
arXiv:2207.07911, 2022.

[50] John Martinsson, Martin Willbo, Aleksis Pirinen, Olof Mogren, and Maria Sand-
sten. Few-shot bioacoustic event detection using an event-length adapted ensemble
of prototypical networks. In DCASE, 2022.

[51] Haohe Liu, Xubo Liu, Xinhao Mei, Qiuqiang Kong, Wenwu Wang, and Mark D
Plumbley. Surrey system for dcase 2022 task 5: Few-shot bioacoustic event
detection with segment-level metric learning. arXiv preprint arXiv:2207.10547,
2022.

[52] Fei-Fei Li and P. Perona. The perceived position of moving objects: Transcranial
magnetic stimulation of area MT+ reduces the flash-lag effect. In IEEE CVPR,
volume 2, 2005.

[53] J Gauvain and C Lee. Maximum a posteriori estimation for multivariate gaussian
mixture observations of markov chains. Speech and audio processing, IEEE Trans.
on, 1994.

[54] Benjamin Elizalde and Gerald Friedland. Lost in segmentation: Three approaches
for speech/non-speech detection in consumer-produced videos. In 2013 IEEE
International Conference on Multimedia and Expo (ICME), pages 1–6. IEEE,
2013.

[55] Benjamin Elizalde, Gerald Friedland, Howard Lei, and Ajay Divakaran. There is
No Data Like Less Data: Percepts for Video Concept Detection on Consumer-
Produced Media. In ACM International Workshop on Audio and Multimedia
Methods for Large-Scale Video Analysis at ACM Multimedia, 2012.

[56] Randal S. Olson, Ryan J. Urbanowicz, Peter C. Andrews, et al. Automating
biomedical data science through tree-based pipeline optimization. In Proceedings
of the 18th European Conference on the Applications of Evolutionary and Bio-
inspired Computation, Lecture Notes in Computer Science. Springer-Verlag, 2016.

206

[57] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, and others. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[58] Jitong Chen, Yuxuan Wang, and DeLiang Wang. Noise perturbation improves
supervised speech separation. In International Conference on Latent Variable
Analysis and Signal Separation, pages 83–90. Springer, 2015.

[59] Romain Serizel, Nicolas Turpault, Hamid Eghbal-Zadeh, and Ankit Parag Shah.
Large-Scale Weakly Labeled Semi-Supervised Sound Event Detection in Domestic
Environments. Proc. DCASE Workshop, July 2018.

[60] Romain Serizel and Nicolas Turpault. Sound Event Detection from Partially
Annotated Data: Trends and Challenges. In IcETRAN conference, Srebrno Jezero,
Serbia, June 2019.

[61] Frederic Font, Gerard Roma, and Xavier Serra. Freesound technical demo. In
Proceedings of the 21st ACM international conference on Multimedia, pages
411–412. ACM, 2013.

[62] Eduardo Fonseca, Jordi Pons Puig, Xavier Favory, Frederic Font Corbera, Dmitry
Bogdanov, Andres Ferraro, Sergio Oramas, Alastair Porter, and Xavier Serra.
Freesound datasets: a platform for the creation of open audio datasets. In Hu
X, Cunningham SJ, Turnbull D, Duan Z, editors. Proceedings of the 18th ISMIR
Conference; 2017 oct 23-27; Suzhou, China.[Canada]: International Society for
Music Information Retrieval; 2017. p. 486-93., 2017.

[63] Gert Dekkers, Steven Lauwereins, Bart Thoen, Mulu Weldegebreal Adhana, Henk
Brouckxon, Toon van Waterschoot, Bart Vanrumste, Marian Verhelst, and Peter
Karsmakers. The SINS database for detection of daily activities in a home
environment using an acoustic sensor network. In Proc. DCASE Workshop, pages
32–36, November 2017.

[64] E. J. Humphrey, J. Salamon, O. Nieto, J. Forsyth, R. Bittner, and J. P. Bello.
JAMS: A JSON annotated music specification for reproducible MIR research. In
15th Int. Soc. for Music Info. Retrieval Conf., pages 591–596, Taipei, Taiwan,
Oct. 2014.

[65] David Snyder, Guoguo Chen, and Daniel Povey. MUSAN: A Music, Speech, and
Noise Corpus, 2015. arXiv:1510.08484v1.

207

[66] Matthias Mauch and Sebastian Ewert. The audio degradation toolbox and its
application to robustness evaluation. In Proc. ISMIR, pages 83–88, 2013.

[67] Lu JiaKai. Mean teacher convolution system for dcase 2018 task 4. Technical
report, DCASE2018 Challenge, September 2018.

[68] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results. In
Proc. NeurIPS, page 10, 2017.

[69] Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. Metrics for polyphonic
sound event detection. Applied Sciences, 6(6):162, May 2016.

[70] Liwei Lin and Xiangdong Wang. Guided learning convolution system for dcase
2019 task 4. Technical report, Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China, June 2019.

[71] Lionel Delphin-Poulat and Cyril Plapous. Mean teacher with data augmentation
for dcase 2019 task 4. Technical report, Orange Labs Lannion, France, June 2019.

[72] Ziqiang Shi. Hodgepodge: Sound event detection based on ensemble of semi-
supervised learning methods. Technical report, Fujitsu Research and Development
Center, Beijing, China, June 2019.

[73] Liwei Lin, Xiangdong Wang, Hong Liu, and Yueliang Qian. What you need is a
more professional teacher. arXiv preprint arXiv:1906.02517, 2019.

[74] Léo Cances, Thomas Pellegrini, and Patrice Guyot. Multi task learning and
post processing optimization for sound event detection. Technical report, IRIT,
Université de Toulouse, CNRS, Toulouse, France, June 2019.

[75] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[76] Sandeep Kothinti, Gregory Sell, Shinji Watanabe, and Mounya Elhilali. Integrated
bottom-up and top-down inference for sound event detection. Technical report,
Department of Electrical and Computer Engineering, Johns Hopkins University,
Baltimore, USA, June 2019.

[77] Justin Salamon and Juan Pablo Bello. Feature learning with deep scattering
for urban sound analysis. In 2015 23rd European Signal Processing Conference
(EUSIPCO), pages 724–728. IEEE, 2015.

208

[78] Anthony Agnone and Umair Altaf. Virtual adversarial training system for dcase
2019 task 4. Technical report, Pindrop, Audio Research department, Atlanta,
United States, June 2019.

[79] Teck Kai Chan, Cheng Siong Chin, and Ye Li. Non-negative matrix factorization-
convolution neural network (nmf-cnn) for sound event detection. Technical report,
Newcastle University, Singapore, June 2019.

[80] Yu Kiyokawa, Sakiko Mishima, Takahiro Toizumi, Kazutoshi Sagi, Reishi Kondo,
and Toshiyuki Nomura. Sound event detection with resnet and self-mask module
for dcase 2019 task 4. Technical report, Data Science Research Laboratories, NEC
Corporation, Japan, June 2019.

[81] Wootaek Lim, Sangwon Suh, Sooyoung Park, and Youngho Jeong. Sound event
detection in domestic environments using ensemble of convolutional recurrent
neural networks. Technical report, Realistic AV Research Group, Electronics and
Telecommunications Research Institute, Daejeon, Korea, June 2019.

[82] Jie Yan and Yan Song. Weakly labeled sound event detection with resdual
crnn using semi-supervised method. Technical report, University of Science and
Technology of China, National Engineering Laboratory for Speech and Language
Information Processing, Hefei, China, June 2019.

[83] Zhenyuan Zhang Zhang, Mingxue Yang, and Li Liu. An improved system for
dcase 2019 challenge task 4. Technical report, University of Electronic Science
and Technology of China ence and Technology of China, School of Information
and Communication Engineering, Chengdu, China, June 2019.

[84] Nicolas Turpault, Romain Serizel, Ankit Parag Shah, and Justin Salamon. Sound
event detection in domestic environments with weakly labeled data and soundscape
synthesis. working paper or preprint, July 2019.

[85] Annamaria Mesaros, Toni Heittola, and Tuomas Virtanen. Tut database for
acoustic scene classification and sound event detection. In Signal Processing
Conference (EUSIPCO), 2016 24th European, pages 1128–1132. IEEE, 2016.

[86] Christian Zieger and Maurizio Omologo. Acoustic event detection-itc-irst aed
database. Internal ITC report, 2005.

[87] Karol J Piczak. Esc: Dataset for environmental sound classification. In Proceedings
of the 23rd ACM international conference on Multimedia, pages 1015–1018. ACM,
2015.

209

[88] Justin Salamon, Christopher Jacoby, and Juan Pablo Bello. A dataset and
taxonomy for urban sound research. In Proceedings of the 22nd ACM international
conference on Multimedia, pages 1041–1044. ACM, 2014.

[89] Anurag Kumar and Bhiksha Raj. Audio event detection using weakly labeled
data. In Proceedings of the 2016 ACM on Multimedia Conference, MM ’16, pages
1038–1047, New York, NY, USA, 2016. ACM.

[90] Zhiwu Lu, Zhenyong Fu, Tao Xiang, Peng Han, Liwei Wang, and Xin Gao.
Learning from weak and noisy labels for semantic segmentation. IEEE transactions
on pattern analysis and machine intelligence, 39(3):486–500, 2017.

[91] Jinhui Tang, Shuicheng Yan, Richang Hong, Guo-Jun Qi, and Tat-Seng Chua.
Inferring semantic concepts from community-contributed images and noisy tags.
In Proceedings of the 17th ACM international conference on Multimedia, pages
223–232. ACM, 2009.

[92] Zheyun Feng, Songhe Feng, Rong Jin, and Anil K Jain. Image tag completion
by noisy matrix recovery. In European Conference on Computer Vision, pages
424–438. Springer, 2014.

[93] Anurag Kumar and Bhiksha Raj. Audio event and scene recognition: A unified
approach using strongly and weakly labeled data. In Neural Networks (IJCNN),
2017 International Joint Conference on, pages 3475–3482. IEEE, 2017.

[94] Szu-Yu Chou, Jyh-Shing Roger Jang, and Yi-Hsuan Yang. Learning to recognize
transient sound events using attentional supervision. In IJCAI, pages 3336–3342,
2018.

[95] Anurag Kumar, Maksim Khadkevich, and Christian Fügen. Knowledge transfer
from weakly labeled audio using convolutional neural network for sound events
and scenes. In 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 326–330. IEEE, 2018.

[96] Shawn Hershey, Sourish Chaudhuri, Daniel PW Ellis, Jort F Gemmeke, Aren
Jansen, R Channing Moore, Manoj Plakal, Devin Platt, Rif A Saurous, Bryan
Seybold, et al. Cnn architectures for large-scale audio classification. In Acoustics,
Speech and Signal Processing (ICASSP), 2017 IEEE International Conference on,
pages 131–135. IEEE, 2017.

[97] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

210

[98] C. Buckley and E. Voorhees. Retrieval evaluation with incomplete information. In
Proceedings of the 27th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 25–32. ACM, 2004.

[99] Tom Fawcett. Roc graphs: Notes and practical considerations for researchers.
Machine learning, 31(1):1–38, 2004.

[100] Y. Wu and T. Lee. Reducing Model Complexity for DNN Based Large-Scale
Audio Classification. ArXiv e-prints, November 2017.

[101] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence,
R Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and
human-labeled dataset for audio events. In 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 776–780. IEEE,
2017.

[102] Dawei Zhu, Xiaoyu Shen, Marius Mosbach, Andreas Stephan, and Dietrich Klakow.
Weaker than you think: A critical look at weakly supervised learning. arXiv
preprint arXiv:2305.17442, 2023.

[103] Xinlei Chen and Abhinav Gupta. Webly supervised learning of convolutional
networks. In Proceedings of the IEEE International Conference on Computer
Vision, 2015.

[104] Junwei Liang, Lu Jiang, Deyu Meng, and Alexander Hauptmann. Learning to
detect concepts from webly-labeled video data. IJCAI, 2016.

[105] Santosh K Divvala, Ali Farhadi, and Carlos Guestrin. Learning everything about
anything: Webly-supervised visual concept learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3270–3277, 2014.

[106] Rob Fergus, Li Fei-Fei, Pietro Perona, and Andrew Zisserman. Learning object
categories from internet image searches. Proceedings of the IEEE, 98(8):1453–1466,
2010.

[107] Yan Xia, Xudong Cao, Fang Wen, and Jian Sun. Well begun is half done:
Generating high-quality seeds for automatic image dataset construction from web.
In European Conference on Computer Vision, pages 387–400. Springer, 2014.

[108] Anurag Kumar. Acoustic Intelligence in Machines. PhD thesis, Carnegie Mellon
University, 2018.

211

[109] Benoît Frénay and Michel Verleysen. Classification in the presence of label noise:
a survey. IEEE transactions on neural networks and learning systems, 2014.

[110] Anurag Kumar, Bhiksha Raj, and Ndapandula Nakashole. Discovering sound
concepts and acoustic relations in text. submitted IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2017.

[111] Daiki Tanaka, Daiki Ikami, Toshihiko Yamasaki, and Kiyoharu Aizawa.
Joint optimization framework for learning with noisy labels. arXiv preprint
arXiv:1803.11364, 2018.

[112] Jacob Goldberger and Ehud Ben-Reuven. Training deep neural-networks using a
noise adaptation layer. In International Conference on Learning Representations
(ICLR), 2016.

[113] Scott Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan,
and Andrew Rabinovich. Training deep neural networks on noisy labels with
bootstrapping. arXiv preprint arXiv:1412.6596, 2014.

[114] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization, 2016.

[115] Eran Malach and Shai Shalev-Shwartz. Decoupling" when to update" from"
how to update". In Advances in Neural Information Processing Systems, pages
960–970, 2017.

[116] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang,
and Masashi Sugiyama. Co-teaching: robust training deep neural networks with
extremely noisy labels. 2018.

[117] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with
co-training. In Proceedings of the eleventh annual conference on Computational
learning theory, pages 92–100. ACM, 1998.

[118] Shiliang Sun. A survey of multi-view machine learning. Neural Computing and
Applications, 23(7-8):2031–2038, 2013.

[119] Anurag Kumar, M. Khadkevich, and C. Fugen. Knowledge transfer from weakly
labeled audio using convolutional neural network for sound events and scenes.
In Acoustics, Speech and Signal Processing (ICASSP), 2018 IEEE International
Conference on. IEEE, 2018.

212

[120] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167,
2015.

[121] Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh.
Clustering with bregman divergences. Journal of machine learning research,
6(Oct), 2005.

[122] Han Zhang, Tao Xu, Mohamed Elhoseiny, Xiaolei Huang, Shaoting Zhang, Ahmed
Elgammal, and Dimitris Metaxas. Spda-cnn: Unifying semantic part detection and
abstraction for fine-grained recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1143–1152, 2016.

[123] Yong Xu, Qiuqiang Kong, Qiang Huang, Wenwu Wang, and Mark D Plumbley.
Attention and localization based on a deep convolutional recurrent model for
weakly supervised audio tagging. arXiv preprint arXiv:1703.06052, 2017.

[124] Marc-André Carbonneau, Veronika Cheplygina, Eric Granger, and Ghyslain
Gagnon. Multiple instance learning: A survey of problem characteristics and
applications. Pattern Recognition, 77:329–353, 2018.

[125] Thomas G Dietterich, Richard H Lathrop, and Tomás Lozano-Pérez. Solving
the multiple instance problem with axis-parallel rectangles. Artificial intelligence,
89(1-2):31–71, 1997.

[126] James Richard Foulds and Eibe Frank. A review of multi-instance learning
assumptions. 2010.

[127] Qingping Tao, Stephen Scott, NV Vinodchandran, Thomas Takeo Osugi, and
Brandon Mueller. An extended kernel for generalized multiple-instance learning.
In 16th IEEE International Conference on Tools with Artificial Intelligence, pages
272–277. IEEE, 2004.

[128] Qingping Tao, Stephen Scott, NV Vinodchandran, and Thomas Takeo Osugi.
Svm-based generalized multiple-instance learning via approximate box counting.
In Proceedings of the twenty-first international conference on Machine learning,
page 101, 2004.

[129] Nikolaos Pappas and Andrei Popescu-Belis. Explaining the stars: Weighted
multiple-instance learning for aspect-based sentiment analysis. In Proceedings
of the 2014 Conference on Empirical Methods In Natural Language Processing
(EMNLP), pages 455–466, 2014.

213

[130] Kiri L Wagstaff and Terran Lane. Salience assignment for multiple-instance
regression. 2007.

[131] Nikolaos Pappas and Andrei Popescu-Belis. Explicit document modeling through
weighted multiple-instance learning. Journal of Artificial Intelligence Research,
58:591–626, 2017.

[132] Saravanan Subramanian, Santu Rana, Sunil Gupta, P Bagavathi Sivakumar,
C Shunmuga Velayutham, and Svetha Venkateshc. Bayesian nonparametric
multiple instance regression. In 2016 23rd International Conference on Pattern
Recognition (ICPR), pages 3661–3666. IEEE, 2016.

[133] Oded Maron and Tomás Lozano-Pérez. A framework for multiple-instance learning.
Advances in neural information processing systems, 10:570–576, 1997.

[134] Stuart Andrews, Ioannis Tsochantaridis, and Thomas Hofmann. Support vector
machines for multiple-instance learning. In Advances in neural information
processing systems, pages 577–584, 2003.

[135] Boris Babenko, Piotr Dollár, Zhuowen Tu, and Serge Belongie. Simultaneous
learning and alignment: Multi-instance and multi-pose learning. 2008.

[136] Gary Doran and Soumya Ray. A theoretical and empirical analysis of support
vector machine methods for multiple-instance classification. Machine learning,
97(1-2):79–102, 2014.

[137] Gitte Vanwinckelen, Daan Fierens, Hendrik Blockeel, et al. Instance-level accuracy
versus bag-level accuracy in multi-instance learning. Data mining and knowledge
discovery, 30(2):313–341, 2016.

[138] Gabriel Dulac-Arnold, Neil Zeghidour, Marco Cuturi, Lucas Beyer, and Jean-
Philippe Vert. Deep multi-class learning from label proportions. arXiv preprint
arXiv:1905.12909, 2019.

[139] Felix X Yu, Dong Liu, Sanjiv Kumar, Tony Jebara, and Shih-Fu Chang. Svm for
learning with label proportions. arXiv preprint arXiv:1306.0886, 2013.

[140] David R Musicant, Janara M Christensen, and Jamie F Olson. Supervised learning
by training on aggregate outputs. In Seventh IEEE International Conference on
Data Mining (ICDM 2007), pages 252–261. IEEE, 2007.

214

[141] Novi Quadrianto, Alex J Smola, Tiberio S Caetano, and Quoc V Le. Estimating
labels from label proportions. Journal of Machine Learning Research, 10(10),
2009.

[142] Kai Fan, Hongyi Zhang, Songbai Yan, Liwei Wang, Wensheng Zhang, and Jufu
Feng. Learning a generative classifier from label proportions. Neurocomputing,
139:47–55, 2014.

[143] Giorgio Patrini, Richard Nock, Paul Rivera, and Tiberio Caetano. (almost)
no label no cry. In Advances in Neural Information Processing Systems, pages
190–198, 2014.

[144] Felix X Yu, Liangliang Cao, Michele Merler, Noel Codella, Tao Chen, John R
Smith, and Shih-Fu Chang. Modeling attributes from category-attribute propor-
tions. In Proceedings of the 22nd ACM international conference on Multimedia,
pages 977–980, 2014.

[145] Ehsan Mohammady Ardehaly and Aron Culotta. Co-training for demographic
classification using deep learning from label proportions. In 2017 IEEE Interna-
tional Conference on Data Mining Workshops (ICDMW), pages 1017–1024. IEEE,
2017.

[146] Gerda Bortsova, Florian Dubost, Silas Ørting, Ioannis Katramados, Laurens
Hogeweg, Laura Thomsen, Mathilde Wille, and Marleen de Bruijne. Deep learning
from label proportions for emphysema quantification. In International Conference
on Medical Image Computing and Computer-Assisted Intervention, pages 768–776.
Springer, 2018.

[147] Jerzy Letkowski. Applications of the poisson probability distribution. In Proc.
Acad. Business Res. Inst. Conf, pages 1–11, 2012.

[148] Kuen Han Tsai and Hsuan Tien Lin. Learning from Label Proportions with
Consistency Regularization. arXiv, pages 1–16, 2019.

[149] Sanath Narayan, Hisham Cholakkal, Fahad Shahbaz Khan, and Ling Shao. 3c-net:
Category count and center loss for weakly-supervised action localization. In
Proceedings of the IEEE International Conference on Computer Vision, pages
8679–8687, 2019.

[150] D. Crouse. On implementing 2d rectangular assignment algorithms. IEEE
Transactions on Aerospace and Electronic Systems, 52:1679–1696, 2016.

215

[151] Alireza Ghasemi, Hamid R Rabiee, Mohsen Fadaee, Mohammad T Manzuri, and
Mohammad H Rohban. Active learning from positive and unlabeled data. In 2011
IEEE 11th International Conference on Data Mining Workshops, pages 244–250.
IEEE, 2011.

[152] Shuang Ma, Zhaoyang Zeng, Daniel McDuff, and Yale Song. Active contrastive
learning of audio-visual video representations. arXiv preprint arXiv:2009.09805,
2020.

[153] Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and
Alekh Agarwal. Deep batch active learning by diverse, uncertain gradient lower
bounds. arXiv preprint arXiv:1906.03671, 2019.

[154] Yukun Chen and Subramani Mani. Active learning for unbalanced data in the
challenge with multiple models and biasing. In Active Learning and Experimental
Design workshop In conjunction with AISTATS 2010, pages 113–126. JMLR
Workshop and Conference Proceedings, 2011.

[155] Weishi Shi and Qi Yu. Integrating bayesian and discriminative sparse kernel
machines for multi-class active learning. Advances in neural information processing
systems, 2019.

[156] Jingyu Shao, Qing Wang, and Fangbing Liu. Learning to sample: an active
learning framework. In 2019 IEEE International Conference on Data Mining
(ICDM), pages 538–547. IEEE, 2019.

[157] Anxiang Zhang, Ankit Shah, and Bhiksha Raj. Training image classifiers using
semi-weak label data, 2021.

[158] Yongqi Zhang, Quanming Yao, Yingxia Shao, and Lei Chen. Nscaching: simple
and efficient negative sampling for knowledge graph embedding. In 2019 IEEE
35th International Conference on Data Engineering (ICDE), pages 614–625. IEEE,
2019.

[159] Zhen Yang, Ming Ding, Chang Zhou, Hongxia Yang, Jingren Zhou, and Jie Tang.
Understanding negative sampling in graph representation learning. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 1666–1676, 2020.

[160] Kian Ahrabian, Aarash Feizi, Yasmin Salehi, William L Hamilton, and
Avishek Joey Bose. Structure aware negative sampling in knowledge graphs.
arXiv preprint arXiv:2009.11355, 2020.

216

[161] Yuan Gong, Yu-An Chung, and James Glass. Psla: Improving audio event
classification with pretraining, sampling, labeling, and aggregation. arXiv preprint
arXiv:2102.01243, 2021.

[162] Konstantinos Sikelis, George E. Tsekouras, and Konstantinos Kotis. Ontology-
based feature selection: A survey. Future Internet, 13(6), 2021.

[163] Yuxia Geng, Jiaoyan Chen, Zhuo Chen 007, Jeff Z. Pan, Zhiquan Ye, Zonggang
Yuan, Yantao Jia, and Huajun Chen. Ontozsl: Ontology-enhanced zero-shot
learning. In WWW ’21: The Web Conference 2021, Virtual Event / Ljubljana,
Slovenia, April 19-23, 2021. ACM / IW3C2, 2021.

[164] George A. Miller. Wordnet: A lexical database for english. Commun. ACM,
38(11):39–41, November 1995.

[165] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson,
B. Dalvi, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mo-
hamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang,
D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, and J. Welling. Never-
ending learning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence (AAAI-15), 2015.

[166] M. Sheraz Anjum Kamran Munir. The use of ontologies for effective knowledge
modelling and information retrieval. Applied Computing and Informatics 14
(2018), 2018.

[167] Gordon Wichern, Brandon Mechtley, Alex Fink, Harvey Thornburg, and Andreas
Spanias. An ontological framework for retrieving environmental sounds using
semantics and acoustic content. EURASIP J. Audio Speech Music Process.,
2010(1), December 2010.

[168] Jort F. Gemmeke, Daniel P. W. Ellis, Dylan Freedman, Aren Jansen, Wade
Lawrence, R. Channing Moore, Manoj Plakal, and Marvin Ritter. Audio set: An
ontology and human-labeled dataset for audio events. In Proc. IEEE ICASSP
2017, New Orleans, LA, 2017.

[169] Shawn Hershey, Sourish Chaudhuri, Daniel P. W. Ellis, Jort F. Gemmeke, Aren
Jansen, Channing Moore, Manoj Plakal, Devin Platt, Rif A. Saurous, Bryan
Seybold, Malcolm Slaney, Ron Weiss, and Kevin Wilson. CNN architectures for
large-scale audio classification. In International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2017.

217

[170] Bhiksha Raj Abelino Jimenez, Benjamin Elizalde. Sound event classification
using ontology-based neural networks. NIPS 2018 Workshop, 2018.

[171] Harsh Shrivastava, Yfang Yin, Rajiv Ratn Shah, and Roger Zimmermann. Mt-gcn
for multi-label audio-tagging with noisy labels. In ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 136–140, 2020.

[172] Zhao-Min Chen, Xiu-Shen Wei, Peng Wang, and Yanwen Guo. Multi-label image
recognition with graph convolutional networks, 2019.

[173] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks, 2017.

[174] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

[175] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.
In Proc. NeurIPS, pages 5998–6008, December 2017.

[176] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[177] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiao-
hua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[178] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. Learning transferable visual models from natural language supervision. In
Proceedings of the International Conference on Machine Learning (ICML), pages
8748–8763. PMLR, 2021.

[179] OpenAI. Gpt-4 technical report. 2023.

[180] Timothee Cour, Ben Sapp, and Ben Taskar. Learning from partial labels. The
Journal of Machine Learning Research, 12:1501–1536, 2011.

218

[181] Jie Luo and Francesco Orabona. Learning from candidate labeling sets. Advances
in Neural Information Processing Systems (NeurIPS), 2010.

[182] Lei Feng, Jiaqi Lv, Bo Han, Miao Xu, Gang Niu, Xin Geng, Bo An, and Masashi
Sugiyama. Provably consistent partial-label learning. ArXiv, abs/2007.08929,
2020.

[183] Dengbao Wang, Min-Ling Zhang, and Li Li. Adaptive graph guided disambiguation
for partial label learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 44:8796–8811, 2019.

[184] Hongwei Wen, Jingyi Cui, Hanyuan Hang, Jiabin Liu, Yisen Wang, and Zhouchen
Lin. Leveraged weighted loss for partial label learning. In Proceedings of the In-
ternational Conference on Machine Learning (ICML), pages 11091–11100. PMLR,
2021.

[185] Dong-Dong Wu, Deng-Bao Wang, and Min-Ling Zhang. Revisiting consistency
regularization for deep partial label learning. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Pro-
ceedings of the International Conference on Machine Learning (ICML), volume
162 of Proceedings of Machine Learning Research, pages 24212–24225. PMLR,
17–23 Jul 2022.

[186] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learn-
ing method for deep neural networks. In Workshop on challenges in representation
learning, ICML, page 896, 2013.

[187] Laine Samuli and Aila Timo. Temporal ensembling for semi-supervised learning.
In International Conference on Learning Representations (ICLR), page 6, 2017.

[188] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital
Oliver, and Colin A Raffel. Mixmatch: A holistic approach to semi-supervised
learning. Advances in Neural Information Processing Systems (NeurIPS), 32,
2019.

[189] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Kihyuk Sohn,
Han Zhang, and Colin Raffel. Remixmatch: Semi-supervised learning with
distribution matching and augmentation anchoring. In International Conference
on Learning Representations (ICLR), 2019.

[190] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. Self-training with
noisy student improves imagenet classification. In Proceedings of the IEEE/CVF

219

Conference on Computer Vision and Pattern Recognition (CVPR), pages 10687–
10698, 2020.

[191] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao Wu, Jindong Wang, Manabu
Okumura, and Takahiro Shinozaki. Flexmatch: Boosting semi-supervised learning
with curriculum pseudo labeling. Advances in Neural Information Processing
Systems (NeurIPS), 34, 2021.

[192] Xudong Wang, Zhirong Wu, Long Lian, and Stella X Yu. Debiased learning
from naturally imbalanced pseudo-labels. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (CVPR), pages 14647–14657, 2022.

[193] Yidong Wang, Hao Chen, Qiang Heng, Wenxin Hou, Yue Fan, , Zhen Wu, Jindong
Wang, Marios Savvides, Takahiro Shinozaki, Bhiksha Raj, Bernt Schiele, and
Xing Xie. Freematch: Self-adaptive thresholding for semi-supervised learning. In
International Conference on Learning Representations (ICLR), 2023.

[194] Hao Chen, Ran Tao, Yue Fan, Yidong Wang, Jindong Wang, Bernt Schiele, Xing
Xie, Bhiksha Raj, and Marios Savvides. Softmatch: Addressing the quantity-
quality trade-off in semi-supervised learning. In International Conference on
Learning Representations (ICLR), 2023.

[195] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning
from massive noisy labeled data for image classification. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2691–2699, 2015.

[196] Alan Joseph Bekker and Jacob Goldberger. Training deep neural-networks based
on unreliable labels. In 2016 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 2682–2686, 2016.

[197] Aritra Ghosh, Himanshu Kumar, and P. Shanti Sastry. Robust loss functions
under label noise for deep neural networks. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), 2017.

[198] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor
Wai-Hung Tsang, and Masashi Sugiyama. Co-teaching: Robust training of deep
neural networks with extremely noisy labels. Advances in Neural Information
Processing Systems (NeurIPS), 2018.

220

[199] Zhilu Zhang and Mert Sabuncu. Generalized cross entropy loss for training deep
neural networks with noisy labels. Advances in Neural Information Processing
Systems (NeurIPS), 31, 2018.

[200] Junnan Li, Yongkang Wong, Qi Zhao, and M. Kankanhalli. Learning to learn from
noisy labeled data. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5046–5054, 2018.

[201] Yisen Wang, Xingjun Ma, Zaiyi Chen, Yuan Luo, Jinfeng Yi, and James Bailey.
Symmetric cross entropy for robust learning with noisy labels. Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV), pages
322–330, 2019.

[202] Sheng Liu, Jonathan Niles-Weed, Narges Razavian, and Carlos Fernandez-Granda.
Early-learning regularization prevents memorization of noisy labels. Advances in
Neural Information Processing Systems (NeurIPS), 33, 2020.

[203] Junnan Li, Richard Socher, and Steven C.H. Hoi. Dividemix: Learning with
noisy labels as semi-supervised learning. In International Conference on Learning
Representations (ICLR), 2020.

[204] Xingjun Ma, Hanxun Huang, Yisen Wang, Simone Romano, Sarah Monazam
Erfani, and James Bailey. Normalized loss functions for deep learning with noisy
labels. In Proceedings of the International Conference on Machine Learning
(ICML), 2020.

[205] Yivan Zhang, Gang Niu, and Masashi Sugiyama. Learning noise transition matrix
from only noisy labels via total variation regularization. In Proceedings of the
International Conference on Machine Learning (ICML), 2021.

[206] Shahana Ibrahim, Tri Nguyen, and Xiao Fu. Deep learning from crowdsourced
labels: Coupled cross-entropy minimization, identifiability, and regularization. In
International Conference on Learning Representations (ICLR), 2023.

[207] Jiaheng Wei, Zhaowei Zhu, Tianyi Luo, Ehsan Amid, Abhishek Kumar, and Yang
Liu. To aggregate or not? learning with separate noisy labels. Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Aug
2023.

[208] Jieyu Zhang, Cheng-Yu Hsieh, Yue Yu, Chao Zhang, and Alexander Ratner. A
survey on programmatic weak supervision, 2022.

221

[209] Renzhi Wu, Shen-En Chen, Jieyu Zhang, and Xu Chu. Learning hyper label model
for programmatic weak supervision. In International Conference on Learning
Representations (ICLR), 2023.

[210] Maximilian Ilse, Jakub Tomczak, and Max Welling. Attention-based deep multiple
instance learning. In International Conference on Machine Learning (ICML),
pages 2127–2136. PMLR, 2018.

[211] Nan Lu, Gang Niu, Aditya Krishna Menon, and Masashi Sugiyama. On the
minimal supervision for training any binary classifier from only unlabeled data.
arXiv preprint arXiv:1808.10585, 2018.

[212] Clayton Scott and Jianxin Zhang. Learning from label proportions: A mutual
contamination framework. Advances in Neural Information Processing Systems
(NeurIPS), 33:22256–22267, 2020.

[213] Y. Zhang, N. Charoenphakdee, Z. Wu, and M. Sugiyama. Learning from aggregate
observations. pages 7993–8005, 2020.

[214] Saurabh Garg, Yifan Wu, Alex Smola, Sivaraman Balakrishnan, and Zachary C.
Lipton. Mixture proportion estimation and pu learning: A modern approach,
2021.

[215] Lei Feng, Senlin Shu, Nan Lu, Bo Han, Miao Xu, Gang Niu, Bo An, and Masashi
Sugiyama. Pointwise binary classification with pairwise confidence comparisons.
In International Conference on Machine Learning, pages 3252–3262. PMLR, 2021.

[216] Andrea Campagner. Learnability in “learning from fuzzy labels”. In 2021 IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE), pages 1–6. IEEE, 2021.

[217] Zheng Lian, Mingyu Xu, Lan Chen, Licai Sun, Bin Liu, and Jianhua Tao. Arnet:
Automatic refinement network for noisy partial label learning. arXiv preprint
arXiv:2211.04774, 2022.

[218] Mingyu Xu, Zheng Lian, Lei Feng, Bin Liu, and Jianhua Tao. Dali: Dynamically
adjusted label importance for noisy partial label learning, 2023.

[219] Qian-Wei Wang, Yu-Feng Li, and Zhi-Hua Zhou. Partial label learning with
unlabeled data. In IJCAI, pages 3755–3761, 2019.

[220] Wei Wang and Min-Ling Zhang. Semi-supervised partial label learning via
confidence-rated margin maximization. Advances in Neural Information Processing
Systems (NeurIPS), 33:6982–6993, 2020.

222

[221] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised
data augmentation for consistency training. Advances in Neural Information
Processing Systems (NeurIPS), 33, 2020.

[222] Jiaqi Lv, Miao Xu, Lei Feng, Gang Niu, Xin Geng, and Masashi Sugiyama.
Progressive identification of true labels for partial-label learning. In Proceedings
of the International Conference on Machine Learning (ICML), pages 6500–6510.
PMLR, 2020.

[223] Chidubem Arachie and Bert Huang. Constrained labeling for weakly supervised
learning. In Uncertainty in Artificial Intelligence, pages 236–246. PMLR, 2021.

[224] Eyke Hüllermeier and Weiwei Cheng. Superset learning based on generalized
loss minimization. In Machine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015,
Proceedings, Part II 15, pages 260–275. Springer, 2015.

[225] Jiaqi Lv, Biao Liu, Lei Feng, Ning Xu, Miao Xu, Bo An, Gang Niu, Xin Geng,
and Masashi Sugiyama. On the robustness of average losses for partial-label
learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, page
1–15, 2023.

[226] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the royal statistical society:
series B (methodological), 39(1):1–22, 1977.

[227] Thierry Denœux. Maximum likelihood estimation from fuzzy data using the em
algorithm. Fuzzy sets and systems, 183(1):72–91, 2011.

[228] Eyke Hüllermeier. Learning from imprecise and fuzzy observations: Data dis-
ambiguation through generalized loss minimization. International Journal of
Approximate Reasoning, 55(7):1519–1534, 2014.

[229] Benjamin Quost and Thierry Denoeux. Clustering and classification of fuzzy data
using the fuzzy em algorithm. Fuzzy Sets and Systems, 286:134–156, 2016.

[230] Brendan Van Rooyen and Robert C Williamson. A theory of learning with
corrupted labels. J. Mach. Learn. Res., 18(1):8501–8550, 2017.

[231] Chen Gong, Jian Yang, Jane You, and Masashi Sugiyama. Centroid estimation
with guaranteed efficiency: A general framework for weakly supervised learning.

223

IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(6):2841–
2855, 2020.

[232] Chao-Kai Chiang and Masashi Sugiyama. Unified risk analysis for weakly super-
vised learning. arXiv preprint arXiv:2309.08216, 2023.

[233] Zixi Wei, Lei Feng, Bo Han, Tongliang Liu, Gang Niu, Xiaofeng Zhu, and Heng Tao
Shen. A universal unbiased method for classification from aggregate observations.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pages 36804–36820. PMLR, 23–29 Jul 2023.

[234] Zheng Xie, Yu Liu, Hao-Yuan He, Ming Li, and Zhi-Hua Zhou. Weakly supervised
auc optimization: A unified partial auc approach. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2024.

[235] Andrea Campagner. Learning from fuzzy labels: Theoretical issues and algorithmic
solutions. International Journal of Approximate Reasoning, page 108969, 2023.

[236] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momen-
tum contrast for unsupervised visual representation learning. Proceedings of
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Jun 2020.

[237] Zheng Lian, Mingyu Xu, Lan Chen, Licai Sun, Bin Liu, and Jianhua Tao. Irnet:
Iterative refinement network for noisy partial label learning, 2022.

[238] Eyke Hüllermeier and Jürgen Beringer. Learning from ambiguously labeled
examples. Intelligent Data Analysis, 10(5):419–439, 2006.

[239] Eric Arazo, Diego Ortego, Paul Albert, Noel E O’Connor, and Kevin McGuinness.
Pseudo-labeling and confirmation bias in deep semi-supervised learning. In 2020
International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE,
2020.

[240] Baixu Chen, Junguang Jiang, Ximei Wang, Jianmin Wang, and Mingsheng Long.
Debiased pseudo labeling in self-training. arXiv preprint arXiv:2202.07136, 2022.

[241] David MacKay John Bridle, Anthony Heading. Unsupervised classifiers, mutual
information and ’phantom targets. Advances in Neural Information Processing
Systems (NeurIPS), 1991.

224

[242] Armand Joulin and Francis Bach. A convex relaxation for weakly supervised
classifiers. In Proceedings of the International Conference on Machine Learning
(ICML). PMLR, 2012.

[243] Alex Krizhevsky et al. Learning multiple layers of features from tiny images.
2009.

[244] Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff,
Serge Belongie, and Pietro Perona. Caltech-ucsd birds 200. 2010.

[245] Lei Feng, Takuo Kaneko, Bo Han, Gang Niu, Bo An, and Masashi Sugiyama.
Learning with multiple complementary labels. In Proceedings of the International
Conference on Machine Learning (ICML), pages 3072–3081. PMLR, 2020.

[246] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British
Machine Vision Conference (BMVC). British Machine Vision Association, 2016.

[247] Ning Xu, Congyu Qiao, Xin Geng, and Min-Ling Zhang. Instance-dependent par-
tial label learning. Advances in Neural Information Processing Systems, 34:27119–
27130, 2021.

[248] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and
Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings of
the 49th annual meeting of the association for computational linguistics: Human
language technologies, pages 142–150, 2011.

[249] Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: under-
standing rating dimensions with review text. In Proceedings of the 7th ACM
conference on Recommender systems, pages 165–172, 2013.

[250] David Berthelot, Rebecca Roelofs, Kihyuk Sohn, Nicholas Carlini, and Alex
Kurakin. Adamatch: A unified approach to semi-supervised learning and domain
adaptation. International Conference on Learning Representations (ICLR), 2021.

[251] Junnan Li, Caiming Xiong, and Steven CH Hoi. Comatch: Semi-supervised
learning with contrastive graph regularization. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (CVPR), pages 9475–9484, 2021.

[252] Mingkai Zheng, Shan You, Lang Huang, Fei Wang, Chen Qian, and Chang Xu.
Simmatch: Semi-supervised learning with similarity matching. arXiv preprint
arXiv:2203.06915, 2022.

225

[253] Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xiaogang Wang. Learning
from massive noisy labeled data for image classification. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2691–2699,
2015.

[254] Wen Li, Limin Wang, Wei Li, Eirikur Agustsson, and Luc Van Gool. Webvision
database: Visual learning and understanding from web data, 2017.

[255] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup:
Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

[256] Giorgio Patrini, Alessandro Rozza, Aditya Krishna Menon, Richard Nock, and
Lizhen Qu. Making deep neural networks robust to label noise: A loss correction
approach. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2233–2241, 2016.

[257] Jiaheng Wei, Zhaowei Zhu, Hao Cheng, Tongliang Liu, Gang Niu, and Yang Liu.
Learning with noisy labels revisited: A study using real-world human annotations.
arXiv preprint arXiv:2110.12088, 2021.

[258] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. Mentornet:
Learning data-driven curriculum for very deep neural networks on corrupted
labels. In International conference on machine learning, pages 2304–2313. PMLR,
2018.

[259] Haobo Wang, Ruixuan Xiao, Yixuan Li, Lei Feng, Gang Niu, Gang Chen, and
Junbo Zhao. Pico+: Contrastive label disambiguation for robust partial label
learning, 2022.

[260] Yuan Gong, Yu-An Chung, and James Glass. Ast: Audio spectrogram transformer.
arXiv preprint arXiv:2104.01778, 2021.

[261] Zachary Lipton, Yu-Xiang Wang, and Alexander Smola. Detecting and correcting
for label shift with black box predictors. In International conference on machine
learning, pages 3122–3130. PMLR, 2018.

[262] Thomas Varsavsky, Mauricio Orbes-Arteaga, Carole H Sudre, Mark S Graham,
Parashkev Nachev, and M Jorge Cardoso. Test-time unsupervised domain adapta-
tion. In Medical Image Computing and Computer Assisted Intervention–MICCAI
2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings,
Part I 23, pages 428–436. Springer, 2020.

226

[263] Chen Wang, Zhenjiang Miao, and Xiao Meng. Differential mfcc and vector
quantization used for real-time speaker recognition system. In Image and Signal
Processing, 2008. CISP’08. Congress on, volume 5, pages 319–323. IEEE, 2008.

[264] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[265] Arsha Nagrani, Shan Yang, Anurag Arnab, Aren Jansen, Cordelia Schmid, and
Chen Sun. Attention bottlenecks for multimodal fusion. Advances in neural
information processing systems, 34:14200–14213, 2021.

[266] Sanyuan Chen, Yu Wu, Chengyi Wang, Shujie Liu, Daniel Tompkins, Zhuo Chen,
and Furu Wei. Beats: Audio pre-training with acoustic tokenizers. arXiv preprint
arXiv:2212.09058, 2022.

[267] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment:
Practical automated data augmentation with a reduced search space. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops (CVPR), pages 702–703, 2020.

[268] Min-Ling Zhang and Fei Yu. Solving the partial label learning problem: An
instance-based approach. In IJCAI, pages 4048–4054, 2015.

[269] Chen Gong, Tongliang Liu, Yuanyan Tang, Jian Yang, Jie Yang, and Dacheng
Tao. A regularization approach for instance-based superset label learning. IEEE
transactions on cybernetics, 48(3):967–978, 2017.

[270] Ning Xu, Jiaqi Lv, and Xin Geng. Partial label learning via label enhancement. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
5557–5564, 2019.

[271] Zhenguo Wu, Jiaqi Lv, and Masashi Sugiyama. Learning with proper partial
labels. Neural Computation, 35(1):58–81, Jan 2023.

[272] Nam Nguyen and Rich Caruana. Classification with partial labels. In Proceedings
of the 14th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 551–559, 2008.

[273] Min-Ling Zhang, Bin-Bin Zhou, and Xu-Ying Liu. Partial label learning via feature-
aware disambiguation. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1335–1344, 2016.

227

[274] Liping Liu and Thomas Dietterich. A conditional multinomial mixture model
for superset label learning. Advances in Neural Information Processing Systems
(NeurIPS), 25, 2012.

[275] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results. In
Advances in neural information processing systems, pages 1195–1204, 2017.

[276] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual
adversarial training: a regularization method for supervised and semi-supervised
learning. IEEE transactions on Pattern Analysis and Machine Intelligence,
41(8):1979–1993, 2018.

[277] Yi Xu, Lei Shang, Jinxing Ye, Qi Qian, Yu-Feng Li, Baigui Sun, Hao Li, and Rong
Jin. Dash: Semi-supervised learning with dynamic thresholding. In Proceedings of
the International Conference on Machine Learning (ICML), pages 11525–11536.
PMLR, 2021.

[278] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej Chum. Label prop-
agation for deep semi-supervised learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPR),
2019.

[279] Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta pseudo labels. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 11557–11568, 2021.

[280] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning (still) requires rethinking generalization. Communi-
cations of the ACM, 64(3):107–115, 2021.

[281] Hwanjun Song, Minseok Kim, Dongmin Park, Yooju Shin, and Jae-Gil Lee. Learn-
ing from noisy labels with deep neural networks: A survey. IEEE Transactions
on Neural Networks and Learning Systems, page 1–19, 2022.

[282] Xingjun Ma, Hanxun Huang, Yisen Wang, Simone Romano, Sarah Erfani, and
James Bailey. Normalized loss functions for deep learning with noisy labels. In
Proceedings of the International Conference on Machine Learning (ICML), 2020.

[283] Yaodong Yu, Kwan Ho Ryan Chan, Chong You, Chaobing Song, and Yi Ma.
Learning diverse and discriminative representations via the principle of maximal
coding rate reduction, 2020.

228

[284] Tongliang Liu and Dacheng Tao. Classification with noisy labels by importance
reweighting. In IEEE Transactions on pattern analysis and machine intelligence,
pages 447–461, 2016.

[285] Curtis Northcutt, Lu Jiang, and Isaac Chuang. Confident learning: Estimat-
ing uncertainty in dataset labels. Journal of Artificial Intelligence Research,
70:1373–1411, Apr 2021.

[286] Yivan Zhang, Gang Niu, and Masashi Sugiyama. Learning noise transition
matrix from only noisy labels via total variation regularization. In Proceedings of
the International Conference on Machine Learning (ICML), pages 12501–12512.
PMLR, 2021.

[287] Yingbin Bai, Erkun Yang, Bo Han, Yanhua Yang, Jiatong Li, Yinian Mao, Gang
Niu, and Tongliang Liu. Understanding and improving early stopping for learning
with noisy labels, 2021.

[288] Junnan Li, Caiming Xiong, and Steven CH Hoi. Learning from noisy data with
robust representation learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (CVPR), pages 9485–9494, 2021.

[289] Shikun Li, Xiaobo Xia, Shiming Ge, and Tongliang Liu. Selective-supervised
contrastive learning with noisy labels. 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Jun 2022.

[290] Kun Yi and Jianxin Wu. Probabilistic end-to-end noise correction for learning
with noisy labels. 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Jun 2019.

[291] Hwanjun Song, Minseok Kim, and Jae-Gil Lee. SELFIE: Refurbishing unclean
samples for robust deep learning. In Kamalika Chaudhuri and Ruslan Salakhutdi-
nov, editors, Proceedings of the International Conference on Machine Learning
(ICML), volume 97 of Proceedings of Machine Learning Research, pages 5907–5915.
PMLR, 09–15 Jun 2019.

[292] Eric Arazo, Diego Ortego, Paul Albert, Noel E. O’Connor, and Kevin McGuinness.
Unsupervised label noise modeling and loss correction, 2019.

[293] Vinay Shukla, Zhe Zeng, Kareem Ahmed, and Guy Van den Broeck. A unified
approach to count-based weakly-supervised learning. In ICML 2023 Workshop on
Differentiable Almost Everything: Differentiable Relaxations, Algorithms, Opera-
tors, and Simulators, jul 2023.

229

[294] Massih-Reza Amini and Patrick Gallinari. Semi-supervised logistic regression. In
ECAI, volume 2, page 11, 2002.

[295] Ning Xu, Jiaqi Lv, Biao Liu, Congyu Qiao, and Xin Geng. Progressive purification
for instance-dependent partial label learning, 2022.

[296] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In Computer Vision and Pattern
Recognition, 2009. CVPR 2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[297] Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat:
A novel dataset and deep learning benchmark for land use and land cover clas-
sification. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 2019.

[298] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks
in unsupervised feature learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pages 215–223. JMLR Workshop
and Conference Proceedings, 2011.

[299] Jiancheng Yang, Rui Shi, and Bingbing Ni. Medmnist classification decathlon:
A lightweight automl benchmark for medical image analysis. In IEEE 18th
International Symposium on Biomedical Imaging (ISBI), pages 191–195, 2021.

[300] Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter
Pfister, and Bingbing Ni. Medmnist v2: A large-scale lightweight benchmark for
2d and 3d biomedical image classification. arXiv preprint arXiv:2110.14795, 2021.

[301] Jong-Chyi Su and Subhransu Maji. The semi-supervised inaturalist-aves challenge
at fgvc7 workshop. arXiv preprint arXiv:2103.06937, 2021.

[302] Yelp dataset: http://www.yelp.com/dataset_challenge.

[303] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional
networks for text classification. Advances in Neural Information Processing
Systems (NeurIPS), 28:649–657, 2015.

[304] Ming-Wei Chang, Lev-Arie Ratinov, Dan Roth, and Vivek Srikumar. Importance
of semantic representation: Dataless classification. In AAAI, volume 2, pages
830–835, 2008.

230

[305] Hao Cheng, Zhaowei Zhu, Xingyu Li, Yifei Gong, Xing Sun, and Yang Liu.
Learning with instance-dependent label noise: A sample sieve approach. arXiv
preprint arXiv:2010.02347, 2020.

231

	Acknowledgement
	Abstract
	Introduction
	Organization of the Thesis

	Section II: NELS and DCASE
	Never Ending Learner of Sound
	Prior work on sound recognition and understanding
	Learning associations between sounds and language
	Relation between sounds and language

	Continuously growing acoustic vocabularies
	Improving the robustness of sound recognizers
	Continuous semi-supervised learning of sounds.

	NELS Framework
	Crawl
	Hear & Learn

	Evaluation in the absence of prior knowledge
	Search
	Evaluation of the learning quality

	Discussion
	Key Discoveries during building NELS

	DCASE: Detecting Scenes and Events
	Tasks in DCASE Challenge
	Task 1: Acoustic Scene Classification
	Task 2: Unsupervised Anomalous Sound Detection for Machine Condition Monitoring Applying Domain Generalization Techniques
	Task 3: Sound Event Localization and Detection Evaluated in Real Spatial Sound Scenes
	Task 4: Sound Event Detection in Domestic Environments
	Task 5: Few-shot Bioacoustic Event Detection
	Task 6: Automated Audio Captioning and Language-Based Audio Retrieval
	Automated Audio Captioning
	Language Based Audio Retrieval

	Contribution to DCASE Challenge: Task 1 – Acoustic Scene Classification
	Feature Representations
	Classification
	Results

	Contribution to DCASE Challenge: Task 3 – Sound Event Detection in Real-Life Recordings
	Features and Classifiers Optimization
	Inclusion of Generic Sound Event Class
	Generation of data through perturbation
	Sound event detection and submission systems
	Conclusion from Acoustic scene classification

	Contribution to DCASE Task 4: Sound event detection using weak labels
	Task description
	DESED development dataset
	Synthetic soundscape generation procedure

	DESED evaluation dataset
	Real recordings
	Synthetic soundscapes
	Varying foreground-to-background SNR
	Audio degradation
	Varying onset time
	Long sound events vs. short sound events

	Baseline
	Submission evaluation
	Evaluation metrics
	System performance
	Conclusion from DCASE Task 4 Analysis

	Data augmentation: Additional experiments
	Varying foreground-to-background SNR
	Audio degradation
	Varying onset time
	Long sound events vs. short sound events

	Evaluation metrics
	Robustness to noise and degradations
	Simulated degradations
	Foreground-to-background Signal-to-noise ratio

	Segmentation
	Key insights

	Section III: Training models with weak labels
	Learning from weak labels
	Background - Importance of Weak labels
	CNN for Weakly labeled audio
	Characteristics of WalNet

	Label Noise, Label Density, and Corresponding Experimental Designs
	Labels Density
	Corrupted Labels and Noise
	Weakly Labeled Audio In the Wild

	Experiments and Results
	Dataset
	Acoustic Features, Implementation and Evaluation Metrics
	Audioset Performance
	Analysis of Label Density
	Analysis of Labels Corruption
	Weakly Labeled Audio in the Wild

	Conclusion
	Appendix
	CNN Architecture
	Multi-Label Training for WAL-Net

	Datasets
	Audioset
	YouTube-Wild

	Learning from noisy and web data
	Motivation: Why deal with noisy and web data
	Challenges in Webly Labeled Learning

	Webly Labeled Learning of Sounds
	Webly Labeled Training Data
	Obtaining Webly Labeled Data
	Analysis of the Dataset

	Our Approach: WeblyNet
	Two Views of the Data
	Network Architectures: N1 and N2
	Training WeblyNet

	Experiments and Results
	Full AudioSet performance
	Evaluation of Webly Supervised Learning
	Comparison with manual labeling.
	Class specific results.
	Effect of divergence measure.

	Conclusions

	Semi weak label learning
	Exploiting Additional Cues with weak labels
	Related Work
	Multiple Instance Learning
	Learning from Proportions

	Problem Statement
	A General Loss Function

	Preliminary: DLLP Approach
	Proposed Methods: Two-Stage Framework
	Stage-1: Estimating Class Count
	Poisson Loss and Expected Count
	Estimating Class Count

	Stage-2: Estimation of the Instance Label (Decoder)
	Algorithm: Greedy algorithm to obtain exact count and Semi-Weak Label Classification System

	Experiments and Results
	Datasets
	Architecture
	Baselines
	Evaluation
	Baseline Results
	Ablation Study for the Decoder
	Variation with the Number of Training Samples
	Variation with the Batch Sizes and Architectures
	Effectiveness of Different Regression Losses
	Effect of Regularizer with Sparse Bags
	Performances over Different Bag Sizes
	Comparison with Different Distribution
	Example of Count assignment optimization

	Using Semi Weak labels for Sound event detection
	Thresholding the Event Presence Map
	Median Filtering
	Counting Event Occurrences
	Incorporating the Count Loss
	Results

	Conclusion

	Section IV: Enriching Weakly Supervised Learning
	Importance of sampling negative in weak labels
	Problem: Sampling of negatives in weak labels
	Related work on Negative Sampling
	Active Learning
	Weak Label Learning
	Negative Sampling

	Baseline Selection
	Image Bag Classification
	Audio Classification

	Experiments Results
	Image Bag Classification
	Audio Classification

	Conclusion

	Learning with Ontologies
	Importance of Utilizing Ontologies
	Methods
	Dataset and Ontology
	Framework
	MLP Network without Ontology Information
	Twin Neural Network Model with Ontology-based embeddings and Ontological layer
	Graph Convolutional Network
	Correlation Matrix

	Siamese Network with Graph Convolutional Network

	Experiments
	Evaluation Metrics
	Performance of MLP Model with no Ontology Information
	Performance of Siamese Network with Ontological Layer
	Performance of Siamese-GCN Model
	Performance of MLP-GCN Model

	Hyperparameters
	MLP Model with no Ontology Information
	Siamese with Ontology Layer
	Siamese-GCN
	MLP-GCN
	Overall Observations

	Conclusions

	Section V: Unified Formalism
	Imprecise Label Learning
	Introduction
	Labeling scenarios and their distribution
	Illustrative Example
	Positive Bag (Weak Label)
	Bag with a Given Positive Instance Count
	Key Insight

	Labels With Uncertainty (Probabilistic Confidence Scores)
	Scenario
	Distribution Over Label Configurations
	Benefits

	Labels With Noise
	Scenario
	Modeling Noise
	Inference With a Noise Model

	Strong Labels (Perfect Information)
	Scenario

	Basic EM formulation
	IID observations
	Generalizing
	Baselines solutions from different imprecise label settings
	Imprecise Label Learning
	A Unified Framework for Learning with Imprecise Labels
	Instantiating the Unified EM Formulation

	Experiments
	Partial Label Learning
	Semi-Supervised Learning
	Noisy Label Learning
	Mixed Imprecise Label Learning

	Results for Imprecise Label Learning on Audio Analysis
	Conclusion

	Section VI: Future directions in Computational Audition
	Future work and Discussion
	Enhancing Learning from Weak and Imprecise Labels
	Refining Weak Label Learning Strategies
	Integrating Additional Cues and Semi-Weak Labels

	Leveraging Unlabeled Data
	Advancing Unsupervised and Semi-Supervised Learning

	Integration of Ontologies and Hierarchical Information
	Advanced Deep Learning Architectures
	Exploring Transformer-Based Models and alternate architectures
	Adapting Models for Real-Time Processing

	Multimodal and Cross-Modal Learning
	Integrating Multimodal Data

	Real-World Applications and Ethical Considerations
	Deployment in Diverse Environments
	Ethical and Privacy Concerns

	Conclusion

	Appendix
	 Unsupervised Test Set Adaptation
	Using Affine Transformation for Test time adaptation
	Literature Review
	Test-time Unsupervised Domain Adaptation
	Test Entropy Minimization: Tent
	Blackbox Shift Estimation (BBSE)

	Dataset
	Baseline Model
	Experiments
	Learning Strategies

	Results

	Learning without labels
	Significance of the work
	Overall Approach
	Overall Objective
	Approach
	Notation and Setup
	Hierarchical and Multi-Model Constraints
	Hierarchical Consistency
	Multi-View Consistency

	Overall Objective
	Iterative Refinement Procedure
	Initialization
	Refinement Steps
	Stopping Criterion
	Intuition and Outcome

	Results

	Strengthening the labels: Semi-weak label learning
	Strengthening of Labels
	Speech Recognition as a weak label learning problem

	Use of additional cues - Label Strengthening
	Counts: Semi-weak Label learning
	Learning using Proportions
	Comparison between different types of count of events in recording

	Appendix: Unified Formalism
	Notation
	Related Work
	Methods
	Derivation of Variational Lower Bound
	Instantiations to Partial Label Learning
	Instantiations to Semi-Supervised Learning
	Instantiations to Noisy Label Learning
	Instantiations to Mixed Imprecise Label Learning

	Experiments
	Additional Training Details
	Partial Label Learning
	Setup
	Discussion

	Semi-Supervised Learning
	Setup
	Results

	Noisy Label Learning
	Setup
	Results

	Mixed Imprecise Label Learning
	Setup
	Results

	Ablation on Strong-Augmentation and Entropy Loss
	Runtime Analysis

