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Abstract

Speech carries information about the speaker’s psychological traits, including their behavioral

tendencies, leadership, emotions, and personality. The process of communication of these traits

through speech can be thought of as a combination of an encoding process and a decoding

process. The speaker, who expresses these traits, encodes them into low-dimensional char-

acteristics of speech signals, and the listener, who perceives them, decodes the speech signal

to make inferences about the state of the speaker. The encoding of psychological traits into

speech is influenced by multiple factors, such as the context of the utterance, the speaker’s

personality traits, the environment, and more. It is well known that psychological traits are

encoded in different aspects of speech, i.e. not only in ‘what’ is said but also in ‘how’ it is said.

Thus while decoding, the listener must consider not only the linguistic content, but also the

acoustic, prosodic, and other non-linguistic cues in the speech.

In this thesis, we develop computational models that attempt to emulate the human
decoding process for two types of psychological traits: emotion and personality.

This thesis is accordingly divided into two parts. In the first part, we focus on emotion. We

study how emotions are encoded and decoded in speech, and how they are affected by factors

such as context, the naturalness of expression including real (spontaneous and involuntary)

vs. enacted (prompted and voluntary), and other nuances of speech production. In our study

of emotion and its representation in speech, we also take the lexical and phonotactic content

of speech into consideration. A speech signal contains words and phonemes, each of which

can be thought of as a stream or modality of information that exhibits unique characteristics

that encode emotion, including intensity, cadence, rhythm, and more. We hypothesize that in

order to decode emotion from speech, computational models must capture the characteristic

variations within each modality. In this thesis, we objectively show how important this approach

is for the computational analysis of emotion.

In devising better methodologies for emotion detection, we also focus on the intra-emotion range

and absolute intensity (or degree) of emotional expression. Humans are able to decode emotions

at very fine granularities. However, state-of-the-art techniques for automatic emotion detection

(or decoding) work with predefined sets of discrete emotions, extended into a three-dimensional

continuous space denoting the valence, arousal, and dominance of each discrete emotion. Any

decoding technique that is learned from data is clearly restricted by the discretization of labels

assigned to emotions by human annotators. In this thesis, we work on techniques that are

agnostic to such restrictions. We hypothesize that for efficient decoding, it would be effective

to utilize discrete and continuous information simultaneously, in a hierarchical framework.
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Expanding this work, we propose a second approach, which is inspired by the fact that humans

inherently use natural language to describe the emotions that they perceive. We contend that

while the labels that humans assign to each emotion are restricted by the descriptors available

in their language, the diversity of emotions can nevertheless be captured by the flexibility that

natural language provides – namely by the affective language that is often casually used to

describe an emotion. Such affective language can often have measurable acoustic correlates.

For example: an angry man ‘shouting loudly’ is describing the emotion by directly referring to

the loudness or intensity of the speech. We show that when the labeling is done with natural

language descriptions, guided by acoustic properties of speech, the computational process of

emotion decoding is significantly improved. In an extension of this work, we add a learnable

‘prompt’, with the hope that more textual information is incorporated automatically by the

model, that helps the model towards better emotion decoding.

In the second part of this thesis, we focus on personality. We study how personality is

encoded in speech. We specifically explore utterance-level voice signal characteristics such as

pitch, loudness, and many others., and many relevant utterance-level voice quality features that

have been observed to correlate with personality traits in scientific literature.

In order to better understand personality decoding, we revisit the widely accepted OCEAN

traits. OCEAN forms the 5 bases across which every individual is rated, and is the result of the

psycholexical hypothesis, which assumes that our usage of language and words to describe

humans would reveal the underlying bases of the personality. We hypothesize that these bases,

or in fact different bases, would reveal themselves when the same language and words are

analyzed with newer techniques, i.e. word representations learned from large language models.

In this work, we show how the newer techniques reveal the most informative number of bases

as two, and the next most informative as five, which in fact are on average aligned with the

OCEAN traits.

In summary, this work fills the gap in our current understanding of computational ways to

process psychological traits from speech signals. The potential uses of such technologies in

applications that involve human-computer interaction are many. Such technologies can also aid

in the assessment and monitoring of mental illnesses and psychological problems in humans,

helping all involved – healthcare providers and affected people – in positive ways. They can

also help predict the long-term susceptibility of individuals to specific types of work, social

situations, and other factors. Looking into the future, we believe this work is important in

the inevitable rise of speech-based Artificial Intelligence systems, which will carry their own

emotions and personalities and also understand those of their human users.
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Chapter 1

Introduction

1.1 Human Voice as a Biometric

1.1.1 Information carried by Human Voice

The goal of this section is to give a broad overview of the human voice production mechanism.

In order to analyze how speech is influenced by different psychological factors, it is important

to understand how voice is produced, and what body parts are involved.

Voice is produced in the vocal tract. The vocal tract consists of numerous components including

the trachea, vocal folds, larynx, glottis, and pharynx. The vocal folds are soft tissue structures

contained within the larynx and act as the primary source of sound for vowels and as well

as pressure controllers for many consonants. Speech sounds are produced when we inhale

or exhale air; as air is expelled from the lungs and passes through the vocal folds, the vocal

folds vibrate at about the rate of hundreds of vibrations per second. With these vibrations, the

vocal folds convert the steady airflow from the lungs into a series of flow pulses by periodically

opening and closing the air space between the vocal folds, providing the excitation of the vocal

tract. The vocal tract including the oral and nasal cavities, the pharynx, and the larynx, then

acts as a filter. This is the widely used linear system of voice production (source-filter model)

where excitation signals from the vocal folds are modified by the vocal tract which acts as a

filter.

Figure 1.1 shows the movement of the vocal folds; the first half of the complete cycle, where

the vocal folds are initially closed and then they are opening to let the air out. The charts below

the vocal folds represent the glottal area (the area of the vocal folds in contact with each other).

The subsequent charts show the glottal flow (airflow from the vocal folds), and the derivative of

the glottal flow; which is what is used in the source filter model to identify the glottal flow.

Given the voice production mechanism, we can identify innumerable factors that would in-

fluence the final signal that comes out of the mouth. The vocal folds are the source of the

1
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Figure 1.1: Top: Speech signal.

Middle: Contact between vocal folds as a function of time. When the.

Bottom: Glottal airflow volume as a function of time. When the vocal folds are closed, i.e. the vocal fold

contact area is maximum, there is zero glottal airflow. When the vocal folds are open, i.e. the vocal fold

contact is zero, there is maximum glottal airflow.

vibrations and hence the voice; we can identify some of the factors that determine the workings

of the vocal folds in an individual. Such factors include the vocal fold tension, vocal fold length,

viscosity of the vocal folds, and the involved muscles’ movements. All these factors in turn are

dependent on many others for example vocal fold tension is affected by the age of the speaker

(1) and the health of the speaker [CITE]. The involved muscles’ movements are affected by the

age of the speaker (1), vocal fold length is affected by the gender of the speaker [CITE], and

the viscosity of the vocal folds is affected by the health of the speaker [CITE]. These are some

among many others which are interconnected and affect the voice signal, tension, the mass of

the vocal cords, and the sub-glottal pressure. It carries information regarding the prosody or

rhythm, speaking style, accent, emotion, and personality among many other

We divide these factors into three different macro-factors, including (1) bio-physical factors,
(2) social and demographic factors, and (3) psychological factors. Within each of these

macro-factors, there are multiple other micro-factors. Figure 1.2 shows some of these micro-

factors. We present this model as a multiple hub and spoke model in order to keep the diagram

simple. The micro-factors are directly connected with each other as well for example, age

under social and demographic factors directly affects the facial and body structure under the

bio-physical factors. Instead, we connect all the micro-factors through genetics. Genetics

connects all the macro-factors together and affects each of the micro-factors except for the

social factors.

This thesis explores some of the micro-factors under the psychological factor that affect voice.

Specifically, we aim to understand how emotion and personality affect voice. Let us look into

details and background work that study how the voice production mechanism is affected by

psychological traits.
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Figure 1.2: Multiple Hub and Spoke Model listing all the factors that affect the human voice.

1.1.1.1 Effect of Emotions on Speech

Each emotion individually has an effect on different components in the voice production

mechanism, which ultimately show up in various aspects of speech. It has been found that the

articulators act differently in emotions vs. neutral speech, i.e. (2) found that in emotional speech

there are more peripheral or advanced tongue positions than in neutral speech articulation,

specifically (3) found this for the vowel /i/. Parts of the vocal tract act differently under various

emotions, i.e. for high arousal emotions like happiness and anger, (4) found that the vocal

tract opening is greater compared to neutral speech. Studies like (2; 5) show that the vocal

tract length tends to be shorter for happiness than for anger or sadness. (6) also finds that

lip spreading and larynx elevation are important factors contributing to the decrease of the

vocal tract length for happy speech. Furthermore, (7) found that lip spreading and laryngeal

elevation often affect perceived emotional quality in the dominance dimension. (2) observed

that the tongue tip, jaw, and lip positioning become more advanced when emotionally charged.

In anger, the movement range of the jaw is larger compared to other emotions. (2) also found

that angry speech was characterized by greater ranges of displacement and velocity, while

it was the opposite for sad speech. Happy speech was comparable in articulation to neutral

speech but showed the widest range of pitch variation.

Under different emotions, the different physiological changes have an impact on the voice being

produced. For example, the shorter vocal tract length in happiness in comparison to that of

anger or sadness will lead to higher pitch speech. Such acoustic and prosodic correlates of the
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physiological changes in the body can be associated with all the changes listed earlier. These

changes help humans express different emotions, and therefore, they ought to help distinguish

between the different emotions as well.

1.1.1.2 Effects of Personality on Speech

Studies show that different personality traits have an impact on the various low-level speech

features and are observable in voice quality, acoustic, and prosodic features. For example,

extroverts speak with higher fundamental frequency (8), high loudness (8; 9; 10), higher speech

rate (9), with higher frequency range than introverts (9; 11). Introversion is negatively related

to loudness, low pitch, and resonance.

(12) found that there exists a positive association between submissiveness and rapid rate of

speech. Dominance is negatively correlated with pitch and loudness (12) and is positively

correlated with formant dispersion (13; 14) and not found correlated in others (15). In another

study (9), it is also found that dominance is negatively correlated with intensity, intensity

variation, speech rate, F0 variation, and sound silence ratio, and positively correlated with F0.

Intensity is negatively correlated with energetic personality (9). Intensity variation is positively

correlated with self-doubting personality (9) and negatively correlated with extraversion.

Observations have been made on various voice quality features that are perceived as certain

personalities (16). For example, varying tempo and varying rhythm are indicative of high

openness. Straight rhythm is indicative of low openness, and agreeableness. Many long pauses

in speech are related to openness and neuroticism. Overall calm voice is associated with

conscientiousness, low extroversion, and high agreeableness. Monotonous speech is associated

with low agreeableness and high neuroticism. An extroverted voice is described as livelier.

Apart from the speech features, lexical usage also gives clues about personality traits. For

example, agreeableness was negatively related to the use of swear words and positively corre-

lated with the use of first-person singular pronouns (I, me, my) (17) Talking was considered an

indicator of extroversion, cursing an expression of a lack of agreeableness, and laughing a sign

of emotional stability. (17)

1.1.1.3 Connecting Emotion and Personality

Emotion and personality are two views of the human psychological state, but not independent

views. Personalities are linked with certain kinds of emotions and the expression of emotion

varies depending on the individual’s personality. Many previous research studies have linked

the two. Neuroticism is likened to high emotionality and is related to anxiety, depression,

tension, and emotional characteristics, and high neuroticism people tend to be emotionally

unstable, worried, or highly reactive to environmental stimuli (18). Individuals with higher

extroversion are more energetic and social, characterized by active emotion coping styles,
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more positive affect, and less anxiety, which possibly renders them with less negative feelings

(19). Highly agreeable people are less likely to demonstrate high emotion (20). Extroverts are

typically characterized as talkative, bold, and assertive (21). Those high in neuroticism tend to

be discontented, emotional, and angry (21). These individuals do not adapt well to change in

the workplace and tend to get emotional during conflicts (22).

The relationship between emotion and personality types leads to the belief that emotion expres-

sion varies based on the personality of the individual, and therefore this relationship can be

exploited when computationally modeling emotions.

1.2 About This Thesis

Speech carries an immense amount of information about the speaker, including the speaker’s

psychological traits, i.e. emotion, and personality. These psychological traits are very com-

plex and any computational analysis of speech for these traits poses a lot of challenges. We

tackle some of the challenges for emotion and personality analysis from speech. For speech

emotion analysis, some of the challenges arise from the manner in which the context affects

the expression of the trait. Such context includes whether the emotion is expressed voluntarily

or if it is acted out. In addition, there are multiple aspects of speech in which these traits are

expressed and in order for any computational analysis, all these aspects need to be analyzed in

conjunction with each other. Further, representations of emotion in ways that can be computa-

tionally processed are quite limited and therefore cause hindrances in computational analysis

of emotions. We tackle these listed challenges, individually, in each chapter under part one of

this thesis.

In part two of this thesis, we tackle some of the challenges in personality analysis from speech.

One of the biggest challenges comes from data scarcity and the the noisy labels for personality.

Instead of proposing data intensive modeling approaches, we present a more knowledge based

approach. We study the low-level speech features and voice quality features that are correlated

with the different personalities from prior scientific literature. We extract OCEAN traits using the

proposed formulae and show how they perform better than data based methods. Furthermore,

representation of personalities have focused heavily on the Big-5 OCEAN traits. These five

traits are a result of psycholexical studies, done in the early 1900’s. Using these same bases in

today’s computational methods proves to be challenging. We delve deeper into these listed

challenges, individually, in each chapter under part two of this thesis.

This thesis aims to computationalize the analysis of the psychological traits from
speech by explicitly taking into consideration the above-mentioned challenges.
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1.3 Challenges Addressed

In this regard, we address the following challenges:

• What are Emotions and Personality and how can they be computationally represented:

In the psychological literature, there is no single, definitive way of describing these psy-

chological traits (23). This causes significant challenges when performing computational

decoding of the traits. Computationally representing the traits requires quantifying them

in some way. However, in the absence of a holistic understanding of these psycholog-

ical traits, this process becomes suboptimal. We address this challenge by proposing

methodologies to combine the already existing representation strategies. Furthermore,

we propose new ways of representing emotions using natural language descriptors, and

delve deeper into understanding the personality representations that are widely accepted.

• Contextual subjectivity: The expression of emotion and personality is impacted by the

context in which they are expressed. Taking the example of emotions: the way an

emotion is acted out is quite different from when it is naturally expressed. This is

because when naturally experienced, the traits cause physiological changes in the speaker,

which ultimately manifest in the speech. In contrast, when emotions are acted, these

physiological changes are absent, leading to differences in vocal characteristics. We

quantify the differences between acted and natural expression of emotion.

• Multi-modality: Emotion and personality can be expressed through various modalities,

including facial expression, body language, gestures, and vocal expression. Taking the

example of emotions, sometimes they are better conveyed through facial movements

than through speech. For instance, an individual’s facial expression may convey anger

even when the tone of voice is monotonous. Therefore, for a holistic understanding of

emotion, all sources of information may need to be considered. This makes the task an

even more challenging since oftentimes, the available modalities are limited. To tackle

this challenge, we use the speech signal, and extract other modalities from the signal like

the word sequence (transcript) and the phoneme sequence. We show that these modalities

provide additional information beyond just the speech when modeled efficiently.

• Lack of labeled datasets for emotion and personality. One of the widely used benchmark

datasets for emotion is IEMOCAP (24), which is 12 hours of data. Compared to other

speech tasks, such as ASR, for which datasets contain thousands of hours of data, progress

in ASR has steadily increased as a function of dataset sie. Similarly, for personality, there

are very few datasets for speech personality analysis. For instance, one of the widely used

datasets, SSP-Net (25), has only 1.7 hours of data, makes it difficult to make generalizable

models. To address this challenge, we propose knowledge-intensive approaches that

do not rely on labeled data. We also show how the approach performs on personality

prediction task.
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Chapter 2

Prior Work

2.1 Theoretical Emotion Models

‘Emotions’ have garnered a lot of interest from scientists from various fields, including neuro-

science, psychology, philosophy, social and behavioral sciences, biology, and computer science.

Emotions are described as reactions to events deemed relevant to the needs, goals, or con-

cerns of an individual. Emotions encompass physiological, affective, behavioral, and cognitive

components.

Throughout history, psychologists have been troubled with the definition of emotions and what

exactly they are. There have been a number of monumental works to describe emotions as early

as Darwin’s The Expression of the Emotions in Man and Animals, published in 1872 (26). Many

theoretical models of emotions have been developed henceforth, a summary of which can be

found here (27).

Scholars traditionally define emotions as consisting of a set number of basic emotions and

others that build over these basic ones. Basic emotions are defined as those emotions that

fulfill the following requirements: (1) they are also exhibited by other animals, (2) they have a

specific, innately determined biological basis in brain organization, (3) they develop very early

in life, (4) they are irreducible, not composed of 2 or more simpler emotions, (5), they have

distinctive neuro-muscular expressive pattern manifested in facial expression (26). Building on

this definition, different scholars have come up with different lists of basic emotions. Therefore

even the notion of what are basic emotions has not been agreed upon by scholars. In 1962,

Tomkins (28) lists down 8 basic emotions including fear, anger, anguish, joy, surprise, interest,

and shame. In 1980, Plutchik (29) also said that emotions can be boiled down to 8 basic ones, but

different from Tomkin’s list. Plutchik’s list includes fear, anger, sorrow, joy, disgust, surprise,

acceptance, and anticipation. In 1992, Paul Ekman (30) defined basic emotion as those emotions

that have distinct facial emotions and said that there are only 6 basic emotions including fear,

anger, sadness, happiness, disgust, and surprise.

8
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Other scholars like Schlosbery (31) said that instead of basic emotions, emotions should be

explained on continuous-valued dimensions. Initially, these dimensions only included valence

and arousal; whereby valence means the positive or negative nature of the emotions, i.e. the

sentiment, and arousal means the energy exerted in the expression of the emotion, e.g. happy is

lower arousal than ecstatic. Later a third dimension was also introduced, i.e. dominance, which

represents the degree of control over a social situation

The lack of knowledge on what is emotion, and how to quantify and represent them are

hindrances for computationally processing emotions. However, this hasn’t limited researchers

to continuing research on emotions, specifically speech emotion research. Below we present

some of the background work in the field of speech emotion.

2.2 Computational Emotion Models

The task of computationally detecting emotion from small speech samples, which often have

expressions of only one emotion, has been a popular task. The performance of the task has been

shown to depend heavily on the kind of features that are extracted from speech. We will only

list speech-based features, but there is a plethora of work on other modalities as well like visual,

facial, and textual features. Some works directly use pitch (32; 33; 34), energy (32; 35; 36), ZCR

(zero crossing rate) (36), spectral features like MFCC, LPCC (36; 37; 38; 39; 40; 35; 41), prosodic

features (34; 42).

Earlier works have used a variety of models for computationally detecting emotions including

models like SVM (36; 43; 44; 37; 45; 38), GMMs (33; 46; 47), HMM (48; 49; 50), MLPs (51; 52; 34).

A whole of research on the topic has been done using Deep Neural Networks, specifically

using models like CNN (53; 54; 55; 56; 57), recurrent neural networks like LSTM, RNN (58; 59),

encoder-decode style models (60; 61; 62), models taking context into consideration (63). There

have been comprehensive reviews done on the background work on speech emotion, some of

the recent ones are (64; 65).

Below we list prior work directly related to the work we have completed and also highlight the

missing science.

2.2.1 Natural vs Acted Emotion

Differences in emotion expression under natural and acted emotion have been studied before,

with contradicting findings. Studies like (66), which analyze acted and natural emotional speech

with the help of human listeners conclude that the listeners are not able to distinguish between

the two categories. The problem is also studied in the domain of false expression, where human

listeners are asked to identify the truthfulness of the speech. It also reaches the conclusion that

humans are less likely to differentiate between the two. On the other hand, studies like (67),

which also use human listeners, conclude that about 78% of listeners were able to differentiate
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between the natural and acted emotion with only audio clues, and even more could differentiate

when provided with audio-visual cues. Studies have observed that acted and natural expression

of speech innately differ based on voice quality (68) and on prosodic properties (69). Acted

speech is considered to be delivered in a more emotionally intense fashion and acted speech

affects the vocal expression in a more general way, without the nuances of the changes caused

by the natural emotion (70).

Challenges Remaining: The above studies primarily analyze the effect of acted emotion on

the listener, however, a listener is not always a valid discriminator between the two types of

emotional expression. We hypothesize that instead the factors that comprise natural and acted

emotion differ significantly at a more basic level which a listener may not be able to identify

and perceive. Therefore, a computational framework is needed to study the innate differences

between the two types of expression, which can lead to a more comprehensive understanding

of the differences between the two different expressions of emotions.

2.2.2 Cadence in Emotion

Emotion expression is manifested in multiple modalities, which include the speech signal, the

spoken words, and the phoneme sequence in addition to the facial expression and video modality.

Several works have explored using computational models to combine multiple modalities for the

task of emotion recognition; the most recent ones being transformer architecture (71; 72). Vocal

expression of emotions has a rhythm unique to each emotion, and unique to each modality as

well. Rhythm in speech refers to a number of quantities like the time taken for speaking a unit

of sound, the intensity of the unit of sound, the voice quality metrics for the unit of sound, etc.

Psychological literature has identified the uniqueness of rhythm in each emotion (73; 74), and

how important it is for the expression of emotional speech.

Challenges Remaining Although speech cadence is important for the task of emotion ex-

pression. The quantities that refer to cadence, like the time, intensity, pitch, voice quality per

unit sound, etc, are difficult to quantify and use in the automatic analysis of speech emotion.

Therefore, no computational way has been proposed so far to capture and utilize cadence for

emotion expression. We propose a methodology using deep neural models like transformers

and show the importance of the cadence of different modalities for speech emotions.

2.2.3 Representing Emotions: Unifying Discrete and Continuous Views

Automatic methods of emotion detection from speech require emotions to be represented in

a way that can be computationally processed. Traditionally, emotions have been represented

as a discrete set, consisting of a handful of emotion classes or they have been represented

as a continuous vector in multiple dimensions (75) comprising of Valence (V), Arousal (A),

and Dominance (D) (from Russell (76)). Translating between these two forms of emotion

representations has been of interest (77; 78; 79; 80), both with audio and textual input. Though
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there appear to be conflicting views (78; 80), many works have established different extents of

correlations between the continuous and discrete emotions- like anger has a lower valence that

is high in arousal (81; 82).

Challenges Remaining Traditionally, for the task of speech emotion recognition, researchers

have used either discrete (83) or continuous emotions (84) for the automatic detection of

emotions. Some have exploited the relationship between discrete and continuous emotion

representations, by combining them together, however, it has not been explored in depth. We

propose a model that uses both these representations simultaneously and exhibits the usefulness

and the relationship between the two representations.

2.2.4 Representing Emotions: Natural Language Acoustic Prompts

Emotions are very complex and require an equally complex representation strategy. In the

previous section, we looked at how the currently used emotion representations could be utilized

together for the automatic detection of the task. In the current scenario, we want to expand to

new ways of representing emotions. We take inspiration from computer vision, where there

has been work using natural language descriptions of images in a deep learning framework.

For example, CLIP (85) is trained on image-text pairs where these pairs are collected from the

internet. The learned model associates image captions (textual descriptions) with the images.

Applying the learned model to various downstream tasks like zero-shot image classification

and text retrieval, results in SoTA performance. A similar approach has recently been applied

to the audio-text pairs in CLAP (86). This model is trained on audio captioning datasets where

descriptions for each audio are already present. AudioClip (87) is an extension of CLIP, where

three modalities are used, audio in addition to image and text. This model is trained on AudioSet

(88) (contains images, audio, and text) where the labels of the audio are used as the textual

descriptions. UrbanSound8k (89) and ESC50 (90) are used to train the audio and text models.

SimEmotion (91) performs image emotion recognition, in a similar fashion to CLIP. The textual

descriptions for the images are made by extracting emotion and entity-level information. The

entities in the images are recognized using the Detectron2 library and labelled emotion for the

images are expanded using the Plutchik chart.

Challenges Remaining Although textual descriptions have been used in relation to image

tasks and audio tasks, they have not yet been explored for speech tasks like speech emotion.

The challenge is how to form the textual descriptions of the speech, whether to use the content

of the speech or to use the acoustic, prosodic qualities of speech. In our work, we hypothesize

that acoustic properties of speech carry information about emotions and would be helpful in

learning more fine-grained emotion representations. Therefore, we use the acoustic properties

of speech to form textual descriptions.
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Natural vs Enacted Emotions

3.1 Introduction

Can vocal emotions be emulated? This question has led to long-standing debates in the speech

community regarding natural versus acted emotions, in the context of emotion classification

and emotion categorization tasks. To conduct any speech-based emotion research, an important

factor is the nature of the speech samples or the vocal stimuli, and whether those samples

are representative of natural emotions. Natural emotions can best be defined as emotions

that are spontaneous and involuntary. Acted emotions, on the other hand, are prompted and

voluntary. Because acted emotions are volitional, researchers argue that the physiological and

psychological responses that natural emotions induce are absent from acted emotions (92; 93).

Nevertheless, research on emotion perception uses acted emotions as convenient proxies for

natural emotions. While many past studies have focused on presenting perception tests for

natural versus acted emotions with mixed conclusions (93; 94; 67), there is a lack of an at-scale

systematic framework to study the differences and similarities in those classes.

The distinction is, perhaps, best illustrated by the study, “The President’s Speech”, narrated by

well-known neurologist Oliver Sacks (95), in which two types of patients, aphasic, and tonal
agnostic, both find a presidential candidate’s posturing on TV to be screamingly implausible,

although normal viewers have no problem with it. Aphasic patients are highly sensitive to

expression and tone, but cannot interpret the words. On the other hand, tonal agnostic patients

lack any sense of expression and tone, and pay attention to exactness of words and word use

to capture the emotion. The skilled actor, in this case, the presidential candidate, attempts to

convey feelings and emotions through a combination of affect that is given a pass by normal

viewers. Neither of these patients can grasp the totality of the natural emotion. However, both

types of patients who, unlike normal people, only perceive some of these factors, find them

sufficiently implausible as to cause them distress. Simply by their inability to consider the

totality of affect that normal people can perceive, the patients cannot be lied to or deceived.

12
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3.2 Proposed Theoretical NAO Model

In order to develop a systematic framework to study the differences and similarities in acted

and natural emotions, we must recognize that there are, in fact three entities to be considered.

The communication of vocal emotions is, at its essence, a combination of an encoding and a

decoding process. The subject expressing the emotion encodes their emotional state into the

low-dimensional speech signal. The subject perceiving the signal decodes it to make inferences

about the state of the speaker. We will distinguish between two types of encoders: the non-actor
who actually experiences the emotion, and the actor who may not. In all cases, the decoder is

an observer, whose only cue in terms of vocal emotions is the vocal stimuli. Based on these,

we propose the non-actor, actor, and observer (NAO) model (Figure ??), which represents all

three entities and the relation between them. The actor aims to encode synthetic emotion

in a manner that the observer cannot distinguish from the genuine emotion encoded by the

non-actor. This enables us to formulate a hypothesis that can be formally tested – that there

nevertheless remain identifiable fundamental differences in the encoded signals in the two cases.

If the test fails, that would mean natural emotions can be emulated, and that acted emotions can

be used as proxies for natural emotions. If the test passes, however, that would signal towards

dichotomy between acted and natural emotions, leading to a low validity and value in using

acted stimuli. We note that the non-actor and the actor differ in their encoding of emotions.

Because natural emotions are, for the most part, involuntary, they include physiological and

psychological responses as concomitants, such as heart rate, breathing rate, muscle tension,

and mood. These physiological changes manifest in the voice by changing the spectro-temporal

structure of individual sounds (96; 97). For example, (98; 99) argue that vowels and consonants

produced in fear are often more precisely articulated than they are in neutral situations. The

physiological changes along with the psychological factors also define the choice of phonemes

(i.e. the lexical content) and prosodic cues (100; 101). As an example, words of aggressive nature

are more likely to be used by an individual in an aggressive mood (102).

The encoding of emotion is hence an aggregate, or perceptual sum of these acoustic, phonetic,

and linguistic influences, or factors. The observer decodes the perceptual sum of these factors

to make an inference about the emotional state of the speaker. In emulating an emotion, the

actor attempts to produce a somewhat similar aggregate of these factors as the non-actor, i.e. a

combination of factors that he expects the observer to decode into a near identical perceptual

sum. If the actor succeeds, he conveys the target emotion to the observer. We hypothesize that

in doing so, the individual factors that the actor produces will, however, still be incorrect or

even implausible, even though the perceptual sum may be plausible.

Vocal (or indeed any) expression of emotion is, of course, a complex phenomenon, and the

complete set of acoustic, phonetic, linguistic and prosodic factors used in expressing it is still

not fully understood. To test our hypothesis, we must nevertheless identify one or more of these

factors that can be statistically quantified. As mentioned earlier, physiological and psychological

changes concomitant with emotion are known to affect the choice of phonemes and their manner



Introduction 14

of delivery. We will refer to these as the phonetic bases of vocal emotions. By our hypothesis,

there will be a statistically measurable difference in these between the actor and non-actor.

To verify our hypothesis, we require a mechanism to quantifiably extract these bases from the

speech signal. To do so, we train a neural network model for emotion classification tasks on

two datasets, one of natural speech and the other of acted emotional speech, using an attention
mechanism. The attention aims to identify the most important phonemes in an utterance in

order to classify its emotion. We compare the statistical patterns of the most attented phonemes

across actor and non-actor. As we will see in the final sections of our paper, these factors do

indeed differ in a statistically significant manner, bringing the validity of conclusions drawn

from acted emotional speech as a proxy for natural emotion into question.

3.3 Experimental Validation

3.3.1 Dataset

We use two types of datasets; acted and natural. We run our experiments for only four emotions:

angry, happy, sad and neutral.

3.3.2 Acted Data

The acted dataset used in the experiment is IEMOCAP (24). It consists of ten sessions, each

of which is a conversation between two actors. The conversations are divided into labeled

sentences. We implement a 10-fold cross-validation training setup. In each fold, data from

9 speakers is used for training the model, and data from 1 speaker is used for testing. The

data consists of 1103 angry, 1636 happy, 1708 neutral and 1084 sad utterances. The average

duration of utterances in this dataset is 4 seconds.

3.3.3 Natural Data

For natural speech, we used the CMU-SER data (103). This dataset has been collected from NPR

podcasts (104), and television programs hosted by the Internet Archive (105). The dataset is

annotated using the Amazon Mechanical Turk (106). It has 6000 utterances in the training set

and 2571 utterances in the test set, with a total of 1099 angry, 3028 happy, 1262 neutral, and

611 sad utterances. The average duration of utterances in this dataset is 5 seconds. Further

details of the CMU-SER dataset can be found in (103).
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3.3.4 Alleviating speaker-dependent bias

Because we compare acted versus natural emotions based on the two datasets with differences

in speakers, it is possible for our phonemic content and, hence, phoneme distributions and the

attended phonemes to be influenced by the word choices of different speakers. To ensure that

our analyses only reflect the differences in the emotional content rather than the differences in

speakers, we eliminate speaker dependencies at the time of training our model. Because the

natural dataset is collected from a diverse set of online sources, it is reasonable to assume that

there are fewer cases of a speaker represented more than once in the data. On the other hand,

the acted dataset consists of 10 speakers only. Hence, we perform leave-one-out cross-validation

to alleviate speaker dependencies in the results. These steps ensure that our models and analyses

are robust to the difference of speakers.

3.3.5 Characterizing content-dependent bias

It is possible for our analyses to be influenced by the differences in the content of the two

datasets. To ensure that the difference in content is not a confounding factor, we study the

phoneme distributions of the two datasets. Figure 3.1 presents the phoneme distributions of

both datasets. To determine if the difference between the distributions is statistically significant,

we run a Wilcoxon rank test (107). The Wilcoxon rank test is a non-parametric test, used to

compare two related samples. In this case, the null hypothesis H0 is that there is no difference in

the distributions of the phonemes under the two datasets, and the alternative hypothesis H1 is

that there is a difference between the distributions of the two datasets. We obtain a p-value of .3,

therefore with α = .05, we fail to reject the H0. This ensures that the difference in the phonemic

content of the two datasets is unlikely to affect the distribution of the attended-phonemes.

Figure 3.1: Total phoneme distributions under both natural and acted dataset
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3.3.6 Neural Model

In order to extract the phonetic bases of vocal emotion, we propose a neural network model.

We design the model to take into consideration both the lexical and acoustic aspects of the

utterance and also the relationship between the two, to capture the phonetic bases of emotion.

The linguistics should guide the model about the important parts of the acoustic. To create a

vector representation of the linguistic part of the input, we pass it through an LSTM which

captures the contextual information of the linguistics. This forms a context-sensitive lexical

vector.

To capture the relationship between the two modalities, we utilize an attention-based mechanism.

This enables the context-sensitive lexical vector to put attention on some parts of the audio,

forming importance weights. The weights, when applied back to the input audio, make the

output high in parts that the lexical vector points to and others become low in value. A feature

vector is created from this weighted output, which thereafter goes into the classification layer

for emotion. Training the model maximizes the classification accuracy, but in doing so, it teaches

the model to create feature vectors which would be differentiable for the emotion classes. This,

in turn, optimizes the attention mechanism, thereby allowing the lexical vector to focus only

on those parts of the audio which would lead to the highest classification accuracy. This lays

the basis of the model we have used, as shown in Figure 3.2.

Figure 3.2: Neural network model used for the emotion classification with attention mechanism

Since we need both the acoustic and lexical content of an utterance, to train the model, we

require the transcription of the recording. To get the transcription, the recording is passed

through ASR. We used Google API (108) to extract the transcription. Each word in the transcript

is represented as a BERT (109) contextualized word embedding. These embeddings are passed

through an LSTM layer (shown in blue). For the attention layer we represent the keys as the

output of the convolutional layer; a 3-dimensional output. The query is the last hidden state of

the LSTM passed through a linear projection.
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The network is optimized using the Cross-Entropy loss, with weights for individual labels due

to the class imbalance in the datasets. The ASR based transcript of the utterance is segmented

into different phonemes using an HMM based phoneme segmentor (110). Once the model is

trained, the attended-phoneme outputs are inspected.

3.4 Result

We base our results on the output of the attention mechanism from the neural model described

earlier. Since the model is trained for emotion classification over four emotions, it is useful to

note the classification accuracies achieved by the model over the two datasets. On the acted data,

we achieve a classification accuracy of 72% and on the natural data, we achieve a classification

accuracy of 52.4%.

To perform analysis on the attended phonemes, for each emotion we aggregate the phonemes

with the highest attention output. We normalize their frequencies by the total frequency of the

phoneme in the data. Figures 3.3 and 3.4 show the distributions of these attended-phonemes for

acted and natural conditions (from the corresponding datasets) respectively, for each emotion.

We note several differences between the two distributions. The frequency of fricatives and stops

is higher in natural speech than in acted speech.

We also observe that the frequency of vowels is higher in acted speech than in natural speech.

Specifically, the phonemes /AA/, /B/ and /IH/ occur more frequently in acted speech. Moreover,

an overall higher percentage of nasal phonemes occurs in natural speech.

We also study the attended-phoneme distribution under different test subsets created for the

10-fold cross-validation procedure to ensure consistency of the attended-phoneme distribution

within the dataset. Variations of the phoneme frequency from the 10 different cross-validation

results are shown in the box plots in figure 3.5 for both datasets. It can be observed that the

results have lower variation in natural speech than in acted speech. In general, the same

variation trends hold for other phonemes as well.

The box plots also illustrate the difference in the frequencies of each phoneme in the two

datasets. In particular, we observe the frequencies of the vowels like /IY/, nasal phonemes

/M/, /N/, stop phonemes /T/, and fricatives like /DH/ (figure 3.5) to be different among the two

datasets. To calculate the significance of these differences for all emotions, we run a standard

t-test. We find a statistically significant result for all four emotions (p < .05).

Therefore, in the context of natural versus acted classes, our analysis concludes that there

are significant differences between the phonetic bases of the two classes. Consequently, we

conclude moderate to low validity and value in using acted emotions as proxies for natural

emotions, suggesting that researchers should be wary of arriving at conclusions about natural

emotions using acted emotion datasets.
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Figure 3.3: Distribution of attended-phonemes (and phonetic groupings) across four emotion classes on

acted data

We would like to note that this study has only inspected English language data. However, the

framework provided can easily be applied to any other language. We leave the investigation of

the phonetic correlates of emotion in other languages, and its comparison with the conclusions

provided in this study, as a possible future work.

One limitation of this study is the lack of the same set of observers across the acted and natural

datasets. While we have no control over this within our analysis, given the diversity of observers

for the two datasets, we expect little statistical observer bias. However, this remains to be

verified by future studies.

3.5 Conclusion

In this section, we study how the emotion expression differs when it is acted out vs when it

is naturally expressed. We perform this study by focusing on the phonetic bases of the vocal

expression. Phonetic bases of emotion comprise ‘what’ phonemes are used and the ‘manner’

they are delivered in to express the emotion.

To run a quantifiable test, we model the task as an attention-based emotion classification problem.

The attention mechanism aims to capture the “attended” phonemes in order to get the correct

classification. We then calculate the distribution of these attended phonemes and examine how

their distribution varies between natural versus acted emotions. We observe several differences,
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Figure 3.4: Distribution of attended-phonemes (and phonetic groupings) across four emotion classes on

natural data

for example, a higher occurrence of fricatives and stops in natural speech than in acted speech.

We obtain statistically significant differences in the attended-phoneme distribution among

natural and acted emotions. Therefore, our hypothesis stands true. The differences in phonetic

bases signal a dichotomy between natural and acted emotions. This study has applications in

speech emotion recognition, emotional speech synthesis, and human-computer interaction.

Moving forward, we want to experiment with the bases of vocal expression from other modalities,

in addition to the phonemes. In the next chapter, we will focus on the different modalities that

carry emotion expression. These modalities include the speech signal, the phoneme, and the

word sequences. We specifically try to model the speech cadence in each modality in addition

to other features important for speech emotion.
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Figure 3.5: Box plot of attented phoneme /T/, /AY/, /DH/, /EY/ in natural versus acted dataset. The figure

highlights the frequency difference among the two datasets. Note the median values for the box plots are

very different for both datasets for a given emotion.



Chapter 4

Cadence in Emotion

In the previous chapter, we looked at how acted and natural emotions differ from each other,

especially ‘what’ phonemes were used in each emotion and ‘how’ they were expressed. We

extend this analysis to other modalities, including phonemes, words, and the speech signal itself.

We will focus on how these modalities carry the emotion, which can help in the automatic

decoding of the emotion expression.

4.1 Introduction

Systems that perform automatic detection of emotion have been shown to perform better when

using multiple modalities than when using a single one (111). Using multiple modalities requires

an understanding of how speech enunciation, word usage, etc changes under any emotional

state. These may involve changes in the acoustic properties, phonetic changes, prosodic changes,

changes in the usage of words and their delivery, etc.

In the case of phonetic changes, for example, in anger, phonemes are more distinctly articulated

than they are in other emotions (112) and there are more distinct opening and closing movements

for vowels (113). In addition to this, the choice of phonemes is also affected by the emotion, for

example, pleasant emotion is correlated with higher use of more approximate consonants, more

back vowels, and more tense vowels (102). Similarly, in the textual modality, previous studies

have shown that the choice of words is dependent on the expressed emotion. For example (114)

shows there is a significant effect on word choice under high emotional valence, e.g. the general

use of pronouns, like the word “I” varies when expressing a negative versus a positive emotion.

We note here that changes at these finer levels in any modality are not independent of each other.

For example, higher usage of first-person pronouns in anger changes the phonetic and acoustic

properties of the signal as well. Also, we note that for each modality, individual change rates

are different. For example, the phenomenon of coarticulation in phonemes affects a window of

neighboring phonemes – thus the prosodic changes that happen for a specific emotion state

21
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affect the nearby phonemes as well. In a similar way, changes in a word affected by an emotional

state cause modifications in other words in the sentence, and such resultant changes can span

multiple adjacent words. Formant movements in the audio signal vary at different rates as

well. Therefore each of these modalities has its own natural rate, i.e. its natural ‘cadence’. The

cadences of the modalities are related, as explained earlier, but they are also distinct and local

for each modality. Individually their cadence is important for emotion, because, as explained

earlier, the choice of phonemes and words is related to the emotional state. Thus modelling

the intra-modality cadence as well as the local cadence separately is important for the task of

emotion detection.

In this chapter, we explore the best strategy to capture the natural cadence in each modality:

whether their cadences must be individually modeled, or if they must all follow the natural

cadence of “time” as captured in the audio signal; whether it is better to align the modalities

with the audio signal in either case or if it is better for the modalities to remain unaligned. We

also explore how the individual modality cadence is best captured. For this task, we use the

transformer architecture (115). Since the model does not have a sequence-2-sequence (seq2seq)

component, it cannot account for the order in the input stream. To capture the concept of order

in the input stream, it uses ‘positional encoding’.

4.2 Proposed Model

To explore the questions put forth, we introduce the notion of ‘cadence retaining alignment’ (CRA)

which is modeled by first adding the positional encoding for each input modality separately

and then aligning the streams. In this case, each modality has a separate positional encoding.

Secondly, we introduce the notion of ‘cadence normalizing alignment’ (CNA) where the phoneme

and word sequence ids are first stretched out to align with the audio features, and then a

positional encoding is used. In this case, there is one shared positional encoding between the

modalities. Thirdly, we introduce ‘unaligned local cadence’ (ULC) where the modalities are

not aligned and have their individual positional encodings to capture the local cadence of the

modalities.

In order to test the hypothesis we use the IEMOCAP dataset (24) and the CMU-MOSI dataset

(116). Both datasets consist of aligned phonemes and words for each utterance.

In order to test our hypothesis, we need to perform analysis on the aligned and unaligned

modalities with and without individual PEs. In our case, audio features act as the base for

aligning the other two modalities. The phoneme ids and words are aligned based on the extracted

HuBert features from the audio.

Given an audio signal A, let HA = [H1, H2, · · · , HNA
] represent the sequence of audio feature

vectors derived from it, where NA is the length of the vector sequence and Hi ∈ RdA×1
, where

dA is the dimensionality of the individual feature vectors. As is the norm, the vectors in H
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represent features derived from uniformly spaced windows of the signal A and correspond to

ticks of time.

Let PA = [P1, P2, · · · , PNP
] represent embeddings of the sequence of phonemes in A, where

NP represents the number of phonemes in the recording, and Pi ∈ RdP×1
is actually a dP

dimensional embedding of the phoneme that is learned. Let b1, b2, · · · , bNP
represent time

boundaries of phonemes in H.

An alignment P∗
A of P to H is obtained by repeating each Pi bi times:

P∗
A = [P1, P1, · · · , P1(b1times), P2, P2, · · · , P2(b2times),

· · · , PNP
, PNP

, · · · , PNP
(bNP

times)] (4.1)

Note that P∗
and H are now identical in length. Here, and below, the “*” superscript in P∗

A is

used to indicate an alignment of PA to HA.

Similarly, let BA = [B1, B2, · · · , BNT
] represent the sequence of (RdT×1

embeddings of) words
in A and qt, q2, · · · , qNT

be their boundaries in HA. In our work we have used the Bert model

(109) to obtain the embeddings Bi. We can define B∗
A, the alignment of BA to HA similarly to

Eqn. 4.1.

We can now define our three models.

CRA: The CRA model locally positionally encodes the individual streams, aligns and con-

catenates them and uses them as features to the classifier. There are several proposed ways

of using PE, but in our work we simply add the PE into the encoded inputs. We define the

locally positionally encoded version of HA as ĤA = HA + PEdA
NA

. We can similarly define

P̂A = PA + PEdP
NP

and B̂A = BA + PEdT
NT

.

The aligned versions of P̂∗
A and B̂∗

A of P̂A and B̂A are obtained by aligning P̂A and B̂A re-

spectively to HA as in Equation 4.1. The final feature sequence FCRA ∈ R(dA+dP+dT )×NA

for classification is obtained by vertical concatenation: FCRA = ĤA ⊙ P̂∗
A ⊙ B̂∗

A, where ⊙
represents the concatenation operator.

The final classification is performed using a softmax layer onΩ(FCRA), i.e. the fixed-dimensional

output of a Conformer encoder (117). Ω(·) that operates on FCRA.

CNA: The CNA model concatenates aligned feature vector sequences before positionally encod-

ing them. Thus FCNA = HCNA + PE
(dA+dP+dT )
NA

, where HCNA is the vertical concatenation

of HA,P∗
A and B∗

A. The final classification is performed using a softmax layer on Ω(FCNA).

ULC: The ULC model independently processes HA, P̂A and T̂A, each with their individual

PE and concatenates their final outputs for classification. Thus, classification is performed by

applying a softmax layer on Ω(HA)⊙ Ω(P̂A)⊙ Ω(T̂A).
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Figure 4.1: Conformer Encoder, with average pooling used in our experiments. In the later images, this

model is denoted by Ω

After having described the basic three architectures that we want to experiment with, we

devised six different models, shown in figure 4.2. Model A uses only the audio modality (devised

for comparison purposes). It applies a softmax classifier directly to Ω(HA). In our experiments,

the audio features HA were derived from a HuBert model (118). Model B is the CRA model.

Model C is the CNA model. Model D is the ULC model.

Models E and F are double-fusion models, where the individual streams are both concatenated

to form a joint feature and indvidually processed. Thus model E is obtained by applying a

softmax classifier to Ω(FCNA) ⊙ Ω(P̂A) ⊙ Ω(T̂A). Model F applies a softmax classifier to

Ω(FCRA)⊙ Ω(P̂A)⊙ Ω(T̂A).

4.3 Experimental Validation

4.3.1 Dataest

We use IEMOCAP dataset, which is acted conversational speech, consisting of 10 speakers, 5

male and 5 female. The data consists of Anger, Happy, Sad, Neutral, Excitement, Frustration,

Fear, Surprise, and others. Following prior work (119) however, since the dataset is not balanced

we only use the most frequent four classes including Happy, Sad, Anger, and Excitement. Each

emotion class per speaker can be seen in Table 4.1.

We also perform experiments on CMU-MOSI dataset (116), which is a collection of speakers

reviewing products on YouTube. The data is labelled on a sentiment scale of -3 to 3, going from

negative to position emotions. In our experiments we divide the classes into two, positive (≤ 0)

and negative (> 0), following prior work (111). We use the standard train, test split published

with the dataset. Table 4.3 shows the number of utterances in training and testing. Both of the

datasets already contain the forced aligned phonemes and words.
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Figure 4.2: The 6 models used in our experiments (One is not shown). In each figure, Ω is the conformer

encoder shown in Fig. 4.1, L is a linear layer, H represents HuBert features, P∗
represents phoneme ids

aligned with H, B∗
represents Bert embeddings aligned with H, P are unaligned phoneme ids and B are

unaligned bert embeddings. Top Left: Model A, Top Right: Model B, Middle left: Model C, Middle right:

Model E, Bottom: Model F. Model D (which is not shown) has the same figure as model B except that the

inputs are unaligned versions.

Table 4.1: Number of emotion utterances per speaker for each of the four emotion classes in IEMOCAP

1 2 3 4 5 6 7 8 9 10

ang 92 147 78 82 148 67 122 70 205 92

hap 66 69 77 66 55 70 34 47 31 80

sad 113 78 132 116 133 113 81 84 62 172

neu 163 171 221 213 190 135 182 227 76 130

Table 4.2: Number of positive and negative emotion utterances in CMU-MOSI in train and test split

train test

pos 676 401

neg 602 513
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4.3.2 Model

4.3.2.1 Transformers

Transformer architecture, originally proposed (115) for the task of machine translation (sequence

generation task), has successfully been used for classification tasks aswell. It is an encoder,

decoder style architecture. In the encoder module, it forgoes the use of seq2seq models (generic

way for encoding sequential inputs for modelling the sequential information in an input), instead

it utilizes feed-forward layers with activation, or convolutional layers (conformer encoders

(120)). It makes use of multi-head attention mechanisms for attending to the entire input streams,

bypassing the problem of modelling long-term dependencies that general seq2seq models face.

Furthermore, to add the order information in the input the model uses positional encodings

(explained in next section). Figure 4.1 shows the encoder architecture of the model, proposed in

the original paper, which we use in this work.

4.3.2.2 Positional Encoding

Positional encodings are suppose to represent the absolute or relative positions of the input

streams. We use the originally proposed sinusoidal positional encoding, which allows the model

to attend by the relative positions of the inputs. The sinusoidal PE are defined as the sequence

of M vectors: PED
M = [PED(0), PED(1), · · · , PED(M − 1)]. where the indivdual vectors

PED(k) = [PE(k,0), PE(k,1), · · · , PE(k,D−1)]
⊤

are composed as

PE(k,2i) = sin(k/100002i/D)

PE(k,2i+1) = cos(k/100002i/D)

where D is the dimension of the encoded inputs and also the dimension of the PE.

4.4 Result

Table 4.3: Accuracy for each model

A B C D E F

IEMOCAP 64.7 68 62.1 62.2 67.8 66.7

CMU-MOSI 67.1 68.9 61.4 63.2 67.4 66.7

4.4.1 Separate Positional Encoding vs Shared

Comparing the CRA and CNA strategies: separate PE for each modality has shown to work

much better in comparison to using only one shared PE. The difference can be seen while
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comparing model B and model C. Separate PEs lead to a 5.9% improvement in IEMOCAP and

7.5% improvement in CMU-MOSI dataset. This difference shows that the positional encodings

are important at capturing the local cadence changes, i.e change rates in the audio, text and

phoneme identities separately.

4.4.2 Aligned vs unaligned inputs

Comparing the CRA and ULC strategies: aligned input modalities have shown to perform better

than unaligned ones. This can be seen while comparing model B and D. Aligned streams lead

to a 5.8% improvement in IEMOCAP and 5.7% in CMU-MOSI. Aligned inputs are better at

capturing the changes over the input modalities and also the correlated changes in between

the modalities. However aligning the inputs are expensive. For word and phoneme, forced

alignment needs to be used, which we note that if the model is being used in computationally

low resource settings, would not be feasible to perform.

4.4.3 Fusion vs none

We have found that fusion models, like model E and F, which use the aligned or unaligned

versions of the modalities twice do not perform as well as best strategy CRA, i.e model B where

aligned inputs are used. Model E uses both the aligned and unaligned inputs with separate PEs,

however it can be speculated that with the addition of the unaligned inputs, the performance

degrades in comparison to model B. Model F uses both aligned and unaligned inputs, however

the aligned inputs have only one PE. It is exciting to see that the performance difference between

model E and F is not that big in both the datasets.

4.4.4 Single modality vs multi modality

Having multi-modalities is important for the task, as shown in many earlier works as well.

Comparing model A and other models, it can be observed that using only audio modality,

model A, the performance does not improve drastically when other modalities are brought into

the picture. We attribute this to the choice of HuBert features, since these features are rich

representations of the audio, and not only audio but include linguist and phonetic information

in the representations, so in a sense using only HuBert feature does not qualify for ‘only

audio modality’. When the model A is trained using directly on spectrograms or MFCC, the

performance is quite low, and the performance difference between single and multi-modalities

can be observed there (we however do not include those results).
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4.4.5 Importance of aligned inputs

From the results, it can be observed that models which use aligned inputs but only a shared PE

and models which use unaligned inputs but individual PEs perform almost similarly. This can be

seen while comparing model C and D and also comparing E and F. In model C where inputs are

aligned but the PE is shared performs almost similarly to the model D where unaligned inputs

are used with individual PEs, 62.1% versus 62.2% in IEMOCAP and 61.4% versus 63.2% in

CMU-MOSI respectively. Comparing models E and F, it can be observed that the difference

is 1.1% in IEMOCAP and 0.7% in CMU-MOSI. This shows that the benefit that aligning the

inputs together gives can be fully achieved by having individual PEs for each modality even

when they are unaligned. The performance degradation is small enough for the cost of aligning

the inputs.

4.5 Conclusion

Combining multi-modalities has been shown to be important for the task of emotion recognition.

However, combining different modalities together effectively is an open problem. Specific to

this task, there are numerous studies explaining how each of the modalities, e.g. speech signal,

phoneme sequence, and word sequence change individually and also in conjunction with each

other, i.e. have local cadence and inter-modality dependent cadence. Hence, it is important to

model the individual cadence of each modality, and not assume a common global clock. We

propose a simple framework for modeling this, by assigning a positional encoding specific to

each modality, which allows the transformer model to attend to the input streams based on the

positions of the elements in the streams. From our experiments, we show that local cadence is

highly important for the task; the performance improves by at least 5.9% compared to when

the modalities share only one PE.

Furthermore, we show that the performance improvement that aligning the input modalities

with each other gives (with a shared positional encoding) can be equally achieved by using

unaligned input modalities but each with their own individual positional encoding.

Going forward, we change the focus on representing strategies for emotion. The decoding

capabilities of emotion rest on how the emotions are represented, and limiting representational

abilities hinder the decoding capabilities. In the following chapters, we focus on how current

emotion representation could be better utilized and further how can they be enhanced.



Chapter 5

Representing Emotions: Unifying
Discrete and Continuous Views

In the past two chapters, we focused on how the encoding of emotions differs and how the

phonetic sequence carries this information and then extended this analysis to form better com-

putational decoding methodologies that utilize multiple modalities in addition to the phoneme

sequence. In the coming two chapters, we will focus on how computational decoding could be

improved by utilizing better representations of emotions. In the current chapter, we will combine

the two widely used emotion representations, i.e. discrete and continuous representations.

5.1 Introduction

Emotion is a complex entity that can be represented in different ways. When defined as a motor

response to stimuli, it can be viewed as belonging to a discrete set; whereas when considered as

a subjective feeling, it can be expressed as a continuous vector in multiple dimensions (75).

Speech Emotion Recognition (SER), the task of identifying the emotional state of the speaker

using speech as input, can be used to predict both discrete (83) or continuous emotions (84).

The most commonly used continuous representation for this task comprises three attributes –

Valence (V), Arousal (A), and Dominance(D) (from Russell (76)). Among these three dimensions,

Valence represents the pleasantness of the emotion, Arousal denotes the intensity of it, and

Dominance represents the degree of control over a social situation. Similarly, a number of

discrete emotions have been identified – happy, sad, angry, etc. Though the discrete and

continuous views of emotion appear to be different, they have shared and complementary

information. Psychological models like Plutchik’s wheel of emotions (29) or Russell’s model

space (81) represent discrete emotions on and within a circle on a continuous “arousal-valence”

plane, demonstrating that the values of these continuous variables are correlated to the discrete

emotion.

29
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Figure 5.1: Plutchik wheel showing the discrete emotions, and some initial estimates of what V,A,D

values could be for each emotion in the wheel.

Translating between these two forms of emotion representations has been of interest (77; 78;

79; 80), both with audio and textual input. Though there appear to be conflicting views (78; 80),

many works have established different extents of correlations between the continuous and

discrete emotions- like anger has a lower valence that is high in arousal (81; 82). Therefore in

this chapter, we propose to examine such dependency relationships.

5.2 Motivation

Plutchik circumplex of emotions displays emotions as a flower. Each layer of the flower contains

8 emotions. The most inner layer is the basic emotions. There is some topological relationship of

every discrete emotions in this wheel. For example, grief is right opposite ecstasy and loathing

is opposite admiration, and so on. Any leaf in the flower either represents positive emotions

- positive valence, or negative emotions - negative valence. As one goes out of the leaf, the

intensity of the emotion decreases, so the arousal is lower. Therefore, given this circumplex, we

can estimate some values for each V,A and D for the emotions. Figure 5.1 shows the Plutchik

wheel and the initial estimates of what the V,A,D values could be for each emotion. These

estimates are agreed upon by 5 experts in the lab. By plotting the initial estimates on the

circumplex, we get the plots for valence, arousal and dominance as shown in the figure 5.2.

However these estimates of VAD are noisy and since they are only a consensus of few experts,

we can improve upon these estimates. To improve upon them, we can imagine the Plutchik

wheel as a circle, where each emotion has a radius and an angle from the center. We assign these

two values as representative features for each emotion. To model these values, we form a simple

linear function between the position of the discrete emotion and VAD. Position of the discrete

emotion refers to the position of the emotion in the circumplex (hence denoted by its radius

and angle in the circumplex). We form another linear layer which predicts VAD values from the
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Figure 5.2: Plotting initial estimates of V,A,D on the circumplex using the radius and angle of the

emotions from the Plutchik wheel. Left is valence, middle is arousal and right is dominance.

Figure 5.3: Plutchik wheel showing the discrete emotions, and learned estimates of what V,A,D values

for each emotion in the wheel.

Figure 5.4: Plotting learned of V,A,D on the circumplex using the learned radius and angle of the emotions.

Left is valence, middle is arousal and right is dominance.

position of the emotion. We repeat this prediction process until convergence of both VAD and

the angle-radius. Figure 5.3 shows the final values of the VAD for each emotion. Furthermore,

plotting the emotions again on the circumplex by using their updated angle and radius learned

values, see figure 5.4. Focus on the activation and dominance plots and we observe that there is

a better estimate of activation and dominance, covering a greater range in the space. A good

observation is that this re-estimate encompasses the topology of the initial Plutchik wheel and

introduces valence, activation and dominance into them. What this shows is that there is a

better way of learning the relationship between the two emotion representations of discrete

and continuous, but needs a more complex model than a linear layer.
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5.3 Proposed Model

Holistic models for automatic SER must be able to capture both generic and specific notions of

emotion contained in the continuous and discrete emotion labels. Prior work has investigated

multi-task architectures for jointly predicting continuous and discrete emotion (121; 122;

84). However, such models do not adequately utilize the relationship between discrete and

dimensional emotions.

We propose a hierarchical model structure that better utilizes the dependency of the discrete

and continuous representations. Below, we first, explain the baseline architecture and models

and then we explain the hierarchical model architectures.

5.3.1 Encoder Decoder Architecture

To perform SER on input speech, we use a speech encoder and pooling decoder. The encoder

takes as input a sequence of N content-based speech features X = [x1, x2, · · ·xN ], and pro-

duces as its output a sequence of hidden representations H = [h1, h2, ....hM ]. These hidden

representations are fed to a decoder that predicts either continuous emotion ĉ, discrete emotion

ŷ, or both.

The decoder comprises a temporal self-attentive pooling layer, followed by a Multi-layer Per-

ceptron (MLP) that extracts task-specific embeddings, ED for discrete prediction and EC for

continuous prediction. These embeddings are then passed through the final classification layer

that maps to 3 dimensions for continuous prediction (corresponding to V,A,D), or 5 dimensions

for discrete prediction (corresponding to the number of discrete emotion classes). The contin-

uous and discrete baseline models use a similar neural network architecture, except for the

number of output neurons.

Each of the models we describe below, baseline models that perform either continuous or

discrete prediction, and multi-task or hierarchical multi-task models that predict both discrete

and continuous emotion, share the same encoder structure but with slightly different decoder

architectures.

5.3.2 Baseline Models

Baseline Discrete Model: To independently predict only the discrete attributes from input

X , the model termed as Baseline D uses a decoder with self-attentive pooling followed by

a Multi-Layer Perceptron which generates the embedding ED. They are then fed into the

classification layer that produces the discrete label ŷ as its output. The model is shown in Fig.

5.6 (top left).
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Figure 5.5: Baseline Discrete Model. The Baseline C model is similar (not shown) with intermediate EC

and final continuous prediction ĉ.

Figure 5.6: The top left shows the Multi-task model (MTL). The top right and bottom figures show the

Hierarchical multi-task model D-C and C-D respectively. SAP stands for self-attention pooling. MLP

stands for multi-layer perceptron. ŷ is the discrete label prediction whereas ĉ is the 3-dimensional

continuous emotion prediction.
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Given the true discrete label y, the model is optimized using the multi-class cross-entropy

criterion. For a dataset with A utterances, the cross-entropy loss is computed as:

Ldisc = −
A∑
i=1

K∑
c=1

yi,c log(ŷi,c) (5.1)

Baseline Continuous Model: To predict the continuous attribute labels independently from

the input speech, the encoder-decoder model, called Baseline C uses a continuous emotion

pooling layer and MLP to predict the continuous emotion ĉ = [ĉV al, ĉAro, ĉDom].

The variables ĉV al, ĉAro, and ĉDom correspond to the valence, arousal and dominance predictions

respectively.

This model is optimized using the Concordance Correlation Coefficient (CCC) Loss. Given the

prediction ĉ and the ground truth c, the CCC loss is defined as shown in Equation 5.3.

CCC =
2scĉ

s2c + s2ĉ + (c̄− ¯̂c)2
(5.2)

Lccc = 1− CCC (5.3)

where scĉ, s
2
c , s

2
ĉ , c̄,

¯̂c represent the covariance between the ground truth and prediction, variance

of the ground truth, variance of the prediction, mean of the groundtruth and mean of the

prediction respectively.

Multi-Task Model (MTL): Since continuous and discrete representations carry information

about the same utterance, we are interested in understanding if jointly predicting continuous and

discrete emotion attributes of the utterance improves model performance. To do this, we use a

multi-task architecture, called Multi-task, to predict both the discrete and continuous emotion

attributes simultaneously. We use a shared speech encoder that transforms the input speech

into hidden representation H , capturing shared information between discrete and continuous

emotion attributes.

This model predicts both discrete label ŷ and continuous labels ĉ = [ĉV al, ĉAro, ĉDom] for every

utterance. The model uses a shared encoder. The decoder consists of two parallel branches that

are used to learn task-specific pooling and MLP parameters. The discrete branch generates

a discrete embedding ED, which is then used to predict the discrete emotion ŷ. Similarly,

the continuous branch predicts a continuous embedding EC , which is used to predict the

continuous emotion ĉ.

The model is optimized with the total loss as shown in Equation (5.4).

Ltotal = α(Lccc

V al + Lccc

Dom + Lccc

Aro) + βLdisc (5.4)

where the values of α and β are set to 1 based on hyperparameter search.
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5.3.3 Hierarchical Multi-Task Models (HMTL)

Multi-task modeling described in the previous section seeks to utilize the shared information

between discrete and continuous attributes to predict them jointly. However, it doesn’t assume

any direct dependency between them. Based on the hypothesis that knowledge of discrete

emotion attributes would help improve continuous attribute predictions and vice-versa, we

develop hierarchical multi-task models.

In this model, the continuous and discrete emotion prediction branches in the decoder are used

to generate the respective embeddings EC and ED , as in the multi-task formulation. However,

here, the predicted continuous emotion, i.e., ĉ is not computed solely based on EC , but also on

ED. In other words, the discrete emotion embedding is used as an auxiliary input to predict

the continuous emotion. We term this HMTL-DC model. Similarly, the HMTL-CD model is

where the continuous emotion embedding is used as an auxiliary input to predict the discrete

emotion.

In HMTL-DC model, discrete emotion embedding ED , is concatenated with the continuous

embedding EC . This concatenated embedding [EDEC ] is then used to predict the continuous

emotion, ĉ. Similarly, in the HMTL-CD model EC is concatenated with ED and used to predict

ŷ. The models are optimized with the total loss as shown in Equation (5.4).

5.4 Experimental Validation

5.4.1 Data and Evaluation Metrics

Our experiments are conducted on the MSPPodcast(123) and IEMOCAP (24). MSP Podcast

is the largest human-labeled emotion dataset with 29,965 training examples and 10,013 test

utterances.

MSPPodcast, comprising human annotated podcasts, has labels for three continuous dimensions

- valence, arousal, and dominance, and for five discrete emotions - neutral, angry, happy, sad,

and disgust. In this work, we report our results on the balanced test1 evaluation set with 30 male

and 30 female speakers. We also use IEMOCAP, a 20-hour dataset, with annotations on acted

emotion. It comprises 10 different speakers, 5 male, and 5 female. We use the same continuous

dimensions and the same 5 emotions that are used from the first dataset.

Both of these datasets are publicly available and have contrasting labels, meaning one is acted

and the other spontaneous (124). Discrete emotion recognition is evaluated using F1 or accuracy.

For continuous prediction, we compute CCC for each of the attributes.
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5.4.2 Model Hyperparameters

All our models are built using ESPNet2 (125)

We use HUBERT-large (118) embeddings as the input features following from past work (126).

The encoder consists of a 4-layer conformer with 64 hidden units. We employ separate self-

attentive pooling(127) layers for continuous and discrete emotion. The decoder consists of MLPs

that map from the encoded output from 768, 64, 32, and then 3 for the continuous prediction and

5 for the discrete prediction. We use a ReLU activation to ensure that the predicted continuous

attributes are strictly positive and use LeakyReLU elsewhere. Dropout of 0.2 is used in the

decoder. The models are trained with the Adam and a peak learning rate of 1e-3 for 15,000

warmup steps.

Table 5.1: Emotion Recognition Results on IEMOCAP using 5-fold cross-validation: CCC, Valence,

Arousal, and Dominance are reported for continuous emotions, and Unweighted accuracy is reported for

discrete emotion prediction

Model Description CCC CCC-V CCC-A CCC-D Acc

Baseline C 0.580 0.548 0.606 0.566 -

Baseline D - - - - 0.737

MTL 0.603 0.571 0.669 0.567 0.723

HMTL-DC 0.667 0.660 0.717 0.625 0.744

HMTL-CD 0.648 0.651 0.694 0.599 0.749
SoTA (128) 0.573 0.527 0.663 0.530 -

SoTA (129) - - - - 0.740

Table 5.2: Results on MSPPodcast: Concordance Correlation Coefficient(CCC) - overall, Valence, Arousal

and Dominance is reported on the test1 evaluation set. For discrete emotions, unweighted F1 is reported.

Model Description CCC CCC-V CCC-A CCC-D F1

Baseline C 0.593 0.597 0.646 0.538 -

Baseline D - - - - 0.368

MTL 0.587 0.591 0.637 0.533 0.393

HMTL-DC 0.617 0.588 0.675 0.584 0.404

HMTL-CD 0.605 0.554 0.661 0.569 0.411
SoTA (128) 0.619 0.485 0.733 0.640 -

SoTA (130) - - - - 0.340

5.5 Results

5.5.1 Same Dataset Setting

Table 5.1 shows our experimental results on IEMOCAP dataset, where all results are computed

using standard 5-fold cross validation (131). Table 5.2 reports the results of experiments on

MSPPodcast.
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Figure 5.7: The plots compare the performance of the discrete and continuous predictions for IEMOCAP

and MSPPodcast under five different training conditions. IC refers to when only IEMOCAP continuous

emotions are in the training data. MC are when MSPPodcast continuous are in training data. ID refers to

IEMOCAP discrete and MD for MSP Podcast discrete. IC MD refers to when IEMOCAP continuous and

MSPPodcast discrete are in training data. Similarly for others.

We make several observations from these results. Firstly, HMTL-DC has the best overall CCC for

both datasets. On IEMOCAP, it has the best CCC for all three dimensions Valence, Arousal, and

Dominance. Whereas in MSPPodcast, the CCC is best in all the dimensions except for Valence.

Secondly, the HMTL-CD model has the best discrete prediction metric for both datasets.

These results support our hypothesis that knowledge of discrete and continuous emotion

attributes can be used to improve performance on continuous and discrete emotion prediction

respectively. To determine if HMTL-DC and HMTL-CD models perform significantly differently

from the baseline models, we perform statistical significance tests. For a given utterance Ui,

let the model 1 prediction be mi
1 and the model 2, prediction be mi

2, let di = mi
1 −mi

2. The

null hypothesis is H0 : E [di] = 0 and the alternate hypothesis is HA : E [di] ̸= 0. Under the

assumption that the scores are normally distributed, we can perform a standard t-test. Our

results show that at the significance of 5%, all the models are statistically different in both

discrete and continuous predictions.
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Figure 5.8: First row shows the same dataset setting analysis. 1st plot shows CCC change when the

discrete predictions are correct vs incorrect. Followed by accuracy change for instances in three MAE

bins for Valence, Arousal and Dominance respectively. The second row shows same analysis for cross

dataset setting.

5.5.2 Cross Dataset Setting

In this section, we attempt to use discrete and continuous labels from different datasets and

analyze gains when training models on multiple datasets with matched (e.g. discrete-discrete)

and mismatched (e.g. continuous-discrete) labels. We perform all experiments using a subset

of the MSPPodcast data chosen randomly such that the resulting size is the same as that of

the IEMOCAP training data. This is done in order to be able to make fair comparisons on

the transferability of representations. Figure 5.7 summarizes the results of our experiment on

transferring labels across datasets. We perform this experiment in several different settings: (1)

only IEMOCAP discrete (ID) labels are used for training, (2) only IEMOCAP continuous (IC)

labels are used for training, (3) only MSPPodcast discrete (MD), (4) only MSPPodcast continuous

(MC), and other combinations of MD, ID, MC, IC are used for training the models.

IEMOCAP Discrete Prediction: Figure 5.7 top left shows the results of IEMOCAP discrete

from different models where the dataset and labels are varying. We observe that when training

data contains IEMOCAP discrete and MSPPodcast continuous, the results are the best, i.e in

mismatched label conditions.

IEMOCAP Continuous Prediction: Refer to Figure 5.7 top right. We observe the best

performance is achieved when IEMOCAP continuous and MSP Podcast discrete are used in

training i.e in mismatched label conditions.

MSPPodcast Discrete Prediction: We observe that when the labels are matched, using discrete

labels from both IEMOCAP and MSP Podcast dataset, the performance is the highest i.e in

matched label conditions.

MSPPodcast Continuous Prediction: We observe a similar trend in this case, where the

match label condition helps the MSPPodcast continuous predictions.
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In conclusion, we observe that using mismatched labels from the MSPPodcast data for training

improves performance on discrete and continuous emotion prediction for IEMOCAP. How-

ever the same is not observed for MSP-Podcast where the matched conditions lead to better

performance for both discrete and continuous predictions. We believe this might be because

the inter-annotator agreement for continuous values in MSPPodcast is much lower than in

IEMOCAP (132), which makes it challenging to obtain gains in MSPPodcast using transferred

representations from IEMOCAP.

5.5.3 Analysis

To quantitatively examine the interior workings of the model, we examine how the performance

changes for the HMTL-DC and HMTL-CD models in comparison to the MTL model, under different

settings. We compare the accuracy of the discrete prediction for the instances where the MAE

is lower vs when the AME is higher. Furthermore, we compare the MAE of the continuous

predictions for instances where the discrete prediction is correct versus when it is incorrect.

Figure 5.8 shows the performance comparison in MSP Podcast. For the top row of the figure,

we compare the models from the same dataset setting. For the first plot, we observe that for

all three models, MTL Baseline, HMTL-CD and HMTL-DC, the MAE of the instances where the

discrete predictions are correct is lower compared to when the predictions are incorrect. This

shows that discrete predictions help with continuous predictions. The following three charts

show the accuracy for the instances in three different tertiles of the MAEs for Valence, Arousal,

and Dominance respectively. It can be observed that in the lower tertiles (where the MAEs are

lower), the accuracy is higher, and in the third tertile (where the MAEs are higher), the accuracy

is lower. This shows that continuous predictions are helping with discrete predictions.

Figure 5.8 lower row shows the same analysis performed in the cross-dataset setting. Here we

compare models which use the mismatch label settings i.e. IC MD and ID MC. We observe

a similar trend as in the same dataset setting. We also analyze the cross-dataset models and

observe a similar trend.

Limitation: One limitation of this work is that the different datasets that are used in training

hierarchical models need to be in sync with their labeling strategy of discrete and continuous

emotions. Otherwise, this strategy won’t lead to improvement.

5.6 Conclusion

Different datasets are labeled with either discrete or continuous labels, making it challenging

to train large-scale emotion models utilizing all the datasets. In this paper, we introduce

hierarchical multi-task learning models that use discrete labels to predict continuous emotion

attributes and vice versa. With our method, we obtain absolute improvements of 1.2% Accuracy
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and 4.3% F-1 for discrete prediction on IEMOCAP and MSPPodcast respectively. On continuous

labels, we improve 0.09 CCC for IEMOCAP and 0.025 CCC in MSPPodcast. Furthermore,

Furthermore, we demonstrate that these continuous and discrete labels need not necessarily

be manually annotated within the same corpus to improve recognition performance. Of the

prevailing annotated datasets for emotion recognition, only a few such as MSPPodcast (133), and

IEMOCAP(134) are annotated for both continuous and discrete attributes. Most, like MELD(135),

are annotated for discrete attributes only. We demonstrate that even if the model is trained on

continuous emotion labels from MSPPodcast and discrete labels from IEMOCAP, the proposed

Hierarchical Multi-Task approach improves performance and generalizability. This implies

that emotion recognition datasets can be trained jointly on multiple corpora with different

labels. Under this mismatched label setting for IEMOCAP and MSPPodcast, we observe that

mismatched labels from MSPPodcast help improve performance on IEMOCAP.

In the next chapter, we will expand the emotion representations beyond the current handful of

discrete classes. We use the acoustic properties that are known to be correlated with various

emotions and include them as descriptors of the emotions. This effectively increases the number

of classes and enhances the model’s ability to learn the relationship between acoustic properties

and emotions.



Chapter 6

Representing Emotions: Natural
Language Acoustic Prompts

In the previous chapter, we focused on how we can combine the use of current discrete and

continuous emotion representations together. This allows us to achieve better emotion detection

results and also allows models to be trained on multiple datasets that are annotated with either

discrete or continuous or both. In this chapter, we will expand this work to present new

representation strategies for emotion, which go beyond the use of discrete or continuous labels.

We propose the use of natural language, specifically language that includes acoustic correlates

of emotions. We show that this improves the emotion decoding performance, in two tasks;

speech emotion recognition and speech emotion retrieval.

6.1 Introduction

Emotions are usually described using discrete labels like ’angry’, or ’happy’ following psycho-

logical models like the Plutchik wheel of emotion (136) or Ekman’s model of emotion (137).

Although these frameworks are extremely popular and provide ease of modeling, they do not

fully capture the diversity in emotion expression. This makes using such discrete representations

sub-optimal for downstream tasks.

Understanding the source of diversity in emotion expression is the key to formulating more

accurate emotion representations. There are many sources of diversity in emotion, like the

speaker, culture, and context, among other factors (138; 124). Labeling two instances of emotion

with the same label of say ‘anger’, ignores the intricacies of the expression of anger. Therefore,

we believe it is important to represent the fine-grained characteristics of emotion.

These fine-grained characteristics of emotions can be better captured by the flexibility that

natural language provides. In general, such descriptions can describe the low-level information

in the audio like the acoustic properties or they can describe the high-level information like

41
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who is expressing the emotion and what the context is. Humans often use affective language

to casually describe emotion in speech, for example, ‘An angry man shouting loudly’. In this

example ‘loudness’ has a direct acoustic correlate ‘intensity’ which can be used to form a

description e.g. ‘this is the sound of high-intensity anger’.

The choice of natural language description affects the high dimensional representation learned

from the text, hence it is very important to choose the right description for the emotion. This

leads to the question:

How do we describe an emotion using natural language and how can a model learn it?

In this work, we propose a method to describe the emotion in audio by using the low-level

information in the audio. Previous research shows that there are numerous acoustic correlates of

emotion (139; 140; 141). These acoustic correlates include measurements like the average pitch,

intensity, speech rate, and articulation rate. We extract these correlates from each utterance

and use them to form the description in an automatic and scalable way. We call descriptions

generated in this manner ‘acoustic prompts’.

Given these acoustic prompts, we train models that associate them with corresponding audio

by fine-tuning the Contrastive Language-Audio Pretraining (CLAP) model (86; 142). CLAP uses

contrastive learning to associate the audio and their descriptions and yields state-of-the-art

performance in learning audio concepts with natural language descriptions. We then evaluate

this fine-tuned model on downstream tasks.

We evaluate on Emotion Audio Retrieval (EAR) and Speech Emotion Recognition (SER). SER is

a well-known task defined as given a speech utterance, determine the emotion present in the

utterance (83; 124). The task of EAR is not a commonly performed task. There are tangential

works e.g. (143; 144) which examine retrieval of music audios, however, this task has not been

explored for speech emotion. We believe that EAR is an important task to address since it

can be useful in speech forensics, recommendation systems, search engines, social media, etc.

Since emotions are also indicators of certain events, EAR methods can help in retrieving hate

speech, and violence from audio. We show that the acoustic prompts improve the model’s

performance in EAR significantly; Precision@K is consistently better for various values of K .

We also find that in SER, the model performance improves. Specifically, recognition performance

improves 3.8% relative on Ravdess dataset. In a fine-tuning classification setup, we observe

3.7% improvement on Ravdess.

6.2 Proposed Model - CLAP

Fig. 6.1 shows the Contrastive Language-Audio Pretraining (CLAP) model - the backbone

architecture used in this paper. The audio-text pairs are passed through an audio encoder and a

text encoder respectively. Let fa(.) represent the audio encoder and ft(.) represent the text
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Figure 6.1: The left part of the image shows model training. Given a batch of N audio-text pairs, the

model trains the audio and text encoders to learn their (dis)similarity using contrastive learning. On the

right side is shown an evaluation scenario. Given an audio of unknown emotion, trained audio and text

encoders are used to extract representations from the audio and the descriptions. The prediction is made

based on the cosine similarity between the two representations.

encoder. For a batch of N:

X̂a = fa(Xa); X̂t = ft(Xt) (6.1)

where X̂a ∈ RN×V
are the audio representations of dimensionality V , and X̂t ∈ RN×U

are the

text representations of dimensionality U .

We brought audio and text representations into a joint multimodal space of dimension d by

using a projection layer:

Ea = La(X̂a);Et = Lt(X̂t) (6.2)

where Ea ∈ RN×d
, Et ∈ RN×d

, La and Lt are the linear projections for audio and text

respectively.

Now that the audio and text embeddings (Ea, Et) are comparable, we can measure similarity:

C = τ ∗ (Et · E⊤
a ) (6.3)

where τ is a temperature parameter to scale the range of logits. The similarity matrix C ∈ RN×N

has N correct pairs in the diagonal and N2 −N incorrect pairs in the off-diagonal. The loss

can be calculated as:

L = 0.5 ∗ (ℓtext(C) + ℓaudio(C)) (6.4)

where ℓk = 1
N

∑N
i=0 log diag(softmax(C)) along text and audio axis respectively. We used

this symmetric cross-entropy loss (L) over the similarity matrix to jointly train the audio and

text encoders along with their linear projections.

We chose this architecture because it yields SoTA performance in learning audio concepts with

natural language descriptions. We use log Mel spectrograms from the audios, sampled at 44K

Hz, as input to the audio encoder - CNN14 (145), which is pre-trained on 2M audio clips from

AudioSet. The text encoder is BERT uncased. The audio encodings are of 1024 dimensional from

the HuggingFace library (146), whereas text encodings are 768 dimensional. Both encodings are

then projected into a joint multimodal space of dimension 1024. Both audio and text encoders

are frozen in our experiments, but the projection layers are learnable. We use PyTorch to
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implement the model architecture. The model is trained with 0.0001 learning rate, batch size of

128, for 30 epochs using Adam optimizer.

6.3 Proposed Approach - CLAP

6.3.1 Datasets

We use 6 Emotion Datasets (ED) in this setup, see Table 6.2. The literature using these many

datasets for emotion tasks are rare. The original CLAP model is trained with audio-text pairs

sourced from three audio captioning datasets: ClothoV2 (147), AudioCaps (148), MACS (149),

and one sound event dataset: FSD50K (150). Altogether they are referred to as 4D henceforth.

All the datasets used are publicly available.

6.3.2 Prompt Generation

For all the emotion datasets being used, we only have the discrete class labels no associated

descriptions. Therefore, we devise a scalable and automatic prompting method that is based

on the acoustic properties of the speech audios. There are numerous acoustic correlates of

emotion therefore, we hypothesize that including this information in the prompts would benefit

downstream emotion tasks. We construct the prompts in the manner described below:

1. Class label Prompt: The simplest description for each audio can be the class label, i.e. audio

with the discrete true label of ‘anger’ will be labeled as ‘anger’. We use this as the baseline

prompt to compare against the proposed prompts.

2. Pitch Prompt: Pitch is known to be affected by emotion, lower pitch is related to negative

emotions like fear and high pitch is related to positive emotions like happiness or surprise (140).

We bin pitch into four bins, since pitch is naturally sex-specific i.e. low-male pitch (< 132.5

Hz), high-male pitch (> 132.5 Hz, < 180 Hz), low-female pitch (> 180 Hz, < 210 Hz) and

high-female pitch (> 210 Hz) However, we also experiment with binning into two classes,

based on a cutoff of 170 Hz. The cutoffs are obtained from the average numbers for vocal pitch

reported in the literature (151). The prompt is set as ‘bin-class emotion-class’, an example of

which is ‘low pitch anger’ (without sex information) or ‘low male pitch anger’ (otherwise).

3. Intensity Prompt: Intensity is known to be affected by emotion, low intensity is linked

with negative emotions like sadness or melancholy and high intensity is linked with joy or

excitement (140). We bin the average intensity over the audio clip in two bins, low and high

intensity at 60 dB (152). The cutoffs are based on average intensity numbers reported for human

speech in literature. The same rule as pitch prompt is followed to form the intensity prompt, an

example of which is ‘high intensity anger’.
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Table 6.1: Given audio of class label {emotion}, the prompts generated will be one among the following.

Property Prompt

Class label {emotion}
Pitch high female pitch {emotion}

low female pitch {emotion}
high male pitch {emotion}
low male pitch {emotion}

Intensity high intensity {emotion}
low intensity {emotion}

Speech rate high speech rate {emotion}
low speech rate {emotion}

Articulation rate high articulation rate {emotion}
low articulation rate {emotion}

4. Speech-rate Prompt: It has been observed that faster-spoken speech is linked with highly

potent emotions such as anger and happiness whilst slower speech is linked with sadness,

disgust, and boredom (139). Speech rate is calculated by extracting the number of syllables

spoken divided by the total duration of the audio clip. We use 3.12 syllables/sec as the cutoff to

bin the speech rate into two bins, low and high speech rate (153). An example of a speech-rate

prompt is ‘high speech rate anger’.

5. Articulation-rate Prompt: Similarly to speech rate, fast articulation rate is linked with

emotions of interest, fear, or happiness; whereas slow articulation rate is indicative of sadness

and disgust (139). The articulation rate is calculated as the total number of syllables divided by

the total phonation time. We bin the audio into low and high articulation rate at the cutoff of 4

syllables/sec (153). An example of articulation-rate prompt is ‘high articulation rate anger’.

Even though speech and articulation rate are similar concepts, speech rate captures speaker-

specific information in the form of the number of pauses and hesitation whereas articulation

rate ignores such information.

6. Prompt Augmentation: To combine all 5 prompts, we pair an audio clip independently

with each acoustic prompt. Thus, one audio clip will result in 5 pairs used for training our model.

Note: we also tried making one prompt with all the acoustic properties combined together.

However, this does not perform as well as when the prompts are paired separately with a given

audio.

Table 6.1 shows all the acoustic prompts that are used in this work. We calculate the pitch

and intensity using Librosa (154) and we calculate speech rate and articulation rate using

Praat (155). Note: Other methods to select thresholds (used in prompt creation) like dataset-

specific thresholds showed little effect on the final results, therefore we choose to use the

literature-inspired thresholds.
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Table 6.2: Details of the 6 emotion datasets used in this paper.

Dataset Files Class Emotions

CMU-MOSEI(119)

23K 9

ang, exc, fear, sad

frus, neu, sur, hap, dis

IEMOCAP(24)

10K 9

hap, fear, sad, sur, exc,

ang, neu, disappoint, frus

MELD(156)

10K 7

neu, sur, fear, sad,

joy, disgust, ang

CREMA-D(157)

7K 6

ang, dis, fear, hap,

neu, sad

RAVDESS(158)

2.5K 8

neu, calm, hap, sad,

ang, fear, disgust, sur

CMU-MOSI(119) 2.2K 3 neu, positive, negative

Table 6.3: Precision@K achieved under different training conditions and prompt settings. The rows show

three different models. The first row is the baseline CLAP model. The second and third rows are models

trained on 5 emotion datasets, not including the IEMOCAP dataset. The second row is when the prompts

used for training are the emotion class labels (CL) of the audios and the third row is when the prompts

are acoustic prompts. PA refers to Prompt-Augmentation The queries here are the acoustic prompts also

shown in Table 6.1. The model trained with acoustic prompt augmentation (PA) is consistently better.

Class Label Queries Pitch Queries Intensity Queries Speech Rate Queries Articulation Rate Queries

P@1 P@5 P@10 P@1 P@5 P@10 P1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

4D 0.50 0.35 0.35 0.07 0.12 0.10 0.13 0.18 0.19 0.25 0.20 0.15 0.13 0.10 0.14

4D + [5 ED - CL] 0.50 0.40 0.35 0.00 0.04 0.05 0.25 0.13 0.15 0.13 0.18 0.19 0.13 0.13 0.13

4D + [5 ED - PA] 0.75 0.45 0.38 0.20 0.13 0.15 0.25 0.20 0.20 0.38 0.25 0.23 0.38 0.23 0.21

6.4 Experimental Validation and Results

6.4.1 Emotion Audio Retrieval

We evaluate our trained models for the task of emotion audio retrieval (EAR). With the increasing

sizes of audio databases, being able to search such databases for specific types of audio is

important. We compare (1) the baseline CLAP model, (2) the model where the prompts used for

training are the emotion class labels of the audio, and (3) the model trained with our acoustic

prompting method using prompt augmentation.

The first three columns in Table 6.3 show the results when the queries are among the four

emotion classes, i.e. happy, sad, angry, and neutral and the collection consists of IEMOCAP

dataset. Row 1 model is trained on only 4 audio captioning datasets. Rows 2 and 3 models are

trained on 5 emotion datasets, not including IEMOCAP. For a given query, the model outputs

top K audios whose audio embeddings have the highest cosine similarity to the text embedding

of the query.

We observe that the model trained on acoustic prompts performs significantly better for all the

precision@K metrics. This shows that training the model with acoustic prompts is resulting in

better-learned emotion representations.
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Table 6.4: Accuracy % on Ravdess when the model is trained under different settings. The second column

shows when Ravdess is not in the training sets. The third column shows when the model is finetuned on

Ravdess. The second row shows the CLAP Baseline trained on 4 audio captioning datasets (4D). Third

row is when the model is trained using only 5 Emotion Datasets (5 ED). The following rows include 4D

and 5ED in training and for the ED, the prompts during training are either the class labels (CL) or the

acoustic prompt augmentation (PA) respectively.

Training dataset Leave one out Finetune

Random 12.50 12.50

4D 15.99 68.50

5 ED - CL 22.88 68.50

4D + [5ED - CL] 38.46 68.69

4D + [5ED - PA] 27.88 72.46
SoTA - 81.82 (160)

Furthermore, we also access whether the trained model learns associations between the acoustic

properties and the speech emotion. We test this in a similar framework as in the last experiment.

The queries are made similar to the prompts as shown in Table 6.1.

The rest of the columns in Table 6.3 show the results of audio retrieval when queries are

from the acoustic prompts. We calculate precision@K for each acoustic prompt shown on

the columns. From the results, we observe that the model trained on the proposed acoustic

prompting method performs best in all cases. The takeaway here is that our model is able

to retrieve audio significantly better when trained using acoustic prompt augmentation. The

precision@K numbers are comparable to numbers observed in audio retrieval tasks (159). The

results suggest that we can introduce even more elaborate descriptions for each audio at training

time and the model will learn associations and be able to retrieve audios with those descriptions.

6.4.2 Speech Emotion Recognition

To evaluate how the acoustic prompts would help in SER, we perform the following two

experiments. The first is a zero-shot like setup where we leave one dataset out, which is used

during the testing stage. The second is a fine-tuning setup where the model from the first setup

is fine-tuned on the left-out dataset.

6.4.2.1 Leave one out

This setup evaluates how well a model trained on a pre-defined set of classes generalizes to a

new dataset, which might have same or different sets of classes. Out of the 6 emotion datasets,

we leave one out for testing and train the model on the other 5 emotion datasets. Therefore the

training and testing datasets are completely different. In the case where Ravdess is the testing

dataset, ‘calm’ class is not represented in any of the other training datasets and is a zero-shot

classification result.
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We train 5 different models shown in the rows of Table 6.4. There are two main takeaways from

this experiment. Firstly adding Emotion datasets in the training stage helps the performance on

the left-out emotion dataset. This can be observed in the second column where the performance

improves from 15.99% to 22.88%.

Secondly using acoustic prompt augmentation (PA) is not helping in the fine-tuning setup. We

believe this is because there is a distribution shift in the training and testing datasets, which

effects the acoustics and hence the acoustic prompts. For example, ‘high intensity anger’ prompt

might not be prevalent in the training datasets but is present in the testing dataset. This harms

the transferability of the learned acoustic prompts to a completely new dataset. Note that

the SoTA performance for this evaluation setup is not found in literature because the general

evaluation setup is when the dataset is present in both training and testing sets.

6.4.2.2 Finetune

In this experiment, we fine-tune the model from the previous stage on the left-out dataset.

The results for SER are shown in the last column of Table 6.4. We observe that when using

acoustic prompt augmentation, we get the best accuracy metric. We see improvement in

performance by absolute 3.77%, from 68.69% to 72.46%.

6.4.3 Prompt Analysis

To evaluate which of the proposed acoustic prompts is better, we apply the trained model on

SER with a smaller setup as in the last experiment, where the testing dataset is present in

the training dataset. The model is trained 6 different times, where each time the description

associated with emotion audios are varied. Among the 6, 1 uses the class label prompt and 4

uses the acoustic prompts as described in Section ??, and 1 uses the prompt augmentation -

which combines all the acoustic prompts.

Figure 6.2: Accuracy achieved using different acoustic prompts on Ravdess. C=Class label, P=Pitch

prompt, I=Intensity prompt, SR=Speech-Rate prompt, AR=Articulation-Rate prompt, PA=Prompt Aug-

mentation.

We train the model on 4 audio captioning datasets and 1 emotion dataset. The left part of Figure

6.2 shows the performance achieved when the model is trained on the training set (including
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4D and Ravdess) and tested on the testing set of Ravdess. We observe that among the 4 acoustic

prompts, the pitch prompt gives the best performance. The second-best performance is achieved

by the intensity prompt, followed by speech rate and then articulation rate. Secondly, we

observe that overall acoustic prompt augmentation is giving the best performance in both

datasets.

6.5 Limitation of CLAP Model

There are certain limitations to our work. Firstly, we use only four acoustic properties, however,

there are other acoustic properties that are effected by emotion and should be explored. Secondly

for each prompt, we create 2 or 4 bins per acoustic property, while these bins could be more

fine-grained. Our future study will include work in alleviating the need for thresholding and

relying on data-centric methods of binning the prompts. This work performs SER and EAR using

the audios and their automatically generated descriptions. We use the acoustics of emotions to

prompt the audios, in fact, there can be more complicated descriptions, invoking the semantics,

environment, and context among other factors. We envision that as methods of describing

emotions become more complicated, our ability to model emotions will become better. The

acoustic properties we extract include pitch, intensity, speech rate, and articulation rate extracted

from the audio. We find that among the acoustic prompts, pitch prompt is the best performing.

Overall for EAR when we do acoustic prompt augmentation, we achieve consistently better

Precision@K metric. For SER, we also achieve an improvement in performance in Ravdess by

3.8% in the finetuning setup.

6.6 Going beyond CLAP

One of the limitations of the CLAP model is that the skeleton of the prompts have to be explicitly

defined, as shown in Table 6.1. However having defined the prompts, we are limiting the sort of

natural language descriptors that the model can use to describe the emotions and hence further

improve the classification results. This gives us the motivation for the following improvement

on the model architecture of CLAP. We introduce a learnable part of the prompt called the

‘prefix’ that is in the latent space and learned during the training of the model. The following

section provides further details of the model architecture, that we call SELM ‘Speech Emotion

Language Model’.

6.7 Proposed Model - SELM

Figure 6.3 shows the architecture of the SELM Model. The architecure of the model can be

broken down into the following components:
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Figure 6.3: SELM: Speech Emotion Language Model. The model is fed with audio and text description

prompts, which get independently encoded by audio projection audio mapper, and text embedder. The

encoded audio and text is used to prompt a Language Model. In the figure, the input text prompt is “this

person is feeling” and SELM outputs “emotion of happy”. The audio projection and audio mapper are

learned during training while the Language Model and Audio Encoder are frozen.

Audio encoder. The audio encoder extracts dense representations from audio. We use

Wav2Vec2 as the choice of audio encoder due to its near SOTA performance for SER (161). The

4th layer of Wav2Vec2 contains the information relevant to the task of SER (161). Therefore, we

extract the 4th layer of Wav2vec2 as our frozen audio feature extractor.

Text Embedder. The text embedder consists of a Language Model tokenizer followed by

embedding lookup to convert language model tokens to continuous embeddings. We keep the

tokenizer and embedding lookup same as the Language Model used, which in our case is GPT2

(162)

Audio Projection. The audio projection consists of two learnable linear layers with GeLU

activation in between. This is similar to CLAP projection (86), and performs a non-linear

transformation of the 4th layer of Wav2Vec2 hidden state. This transformed representation is

passed to the Audio Mapper.

Audio Mapper. The audio mapper consists of a sequence mapper and a transformer layer.

The sequence mapper is a linear layer followed by a reshape operation to convert a single

embedding into a fixed set of continuous embeddings (t1, t2, … tk). The sequence is passed to a

self-attention Transformer. The transformer learns to map the generated sequence from audio

(s1,… sk) to the latent space of the Language Model (a1,… ak).

Text Mapper. The text mapper consists of a learnable Transformer layer to transform text

embeddings into the latent space of the Language Model (t1, t2, … tk).

Language Model. The latent prefix for the Language Model is the concatenation of the audio

prefix (a1, a2, … ak) and text prefix (t1, t2, … tk). The Language Model generates a text (emotion
of happy) conditioned on this latent prefix. We use GPT2 (162) as the choice of Language Model

and a prefix size of 10 for audio and text respectively.
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6.8 Proposed Approach - SELM

Training: The model is trained using the next-token prediction objective. Let one example

of training data consist of audio xai , input text prompt xti and ground truth response yti .

The audio encoder and audio mapper transform the audio xai into a continuous sequence of

embeddings (a1i , a2i , ....aki), where k is the prefix size. Similarly, the text embedder and text

mapper transforms the prompt xti into a continuous sequence of embeddings t1i , t2i , ....tki .

Both sequences are concatenated to form the prefix zi:

zi = a1i , a2i , ....aki , t1i , t2i , ....tki (6.5)

Then the Language Model conditioned on zi produces a sequence of output tokens oti . The model

is trained to predict the next text tokens oti (t ∈ [0, l]) conditioned on zi in an autoregressive

fashion. The loss function is Cross-Entropy:

L = −
l∑

t=1

log pθ(yti |zi, y0i , ..., yli) (6.6)

where θ denotes the model’s trainable parameters which consist of Audio Projection, Audio

Mapper, and Text Mapper. We keep the Wav2Vec2, Text embedder, and Language Model frozen.

Inference: The test audio and test input prompt are used to build prefix zi to prompt the

Language Model. The Language Model predicts the next token based on beam search decoding

with a beam size of 3. The output of the model is a text and can be directly used in any

downstream pipeline

For evaluating metrics, the free-form text answer from SELM has to be converted to 1 out of C

classes for each dataset or user-specified classes. For example, SELM generates the emotion

as frustration but the user wants classification into 4 classes of Happy, Sad, Angry, Neutral.
Therefore, the generated text needs to be mapped into one of the C classes. For this, we encode

the generated text and classes with CLAPS text encoder. Then use cosine similarity between

text embedding of generated text and text embedding of classes to determine the most likely

class.

6.9 Experimental Validation and Results

6.9.1 In Domain Setup

To check the in-distribution performance of SELM we use the in-domain setup. In this setup,

the model is trained using the training subset of the Evaluation Datasets and evaluated on

the testing subset of them. In explicit train-test subset are not available, we perform N-fold

cross-validation.
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In SELM, the audio encoder is Wav2Vec and is frozen i.e. not learned during training. We

compare against literature baselines where the Wav2Vec2 is frozen followed by learning single

or multiple linear layers. The results are shown in Table 6.5 for three datasets. We present SELM

performance in the first row, and compare it to the methodology where Wav2Vec2 features are

used followed by a simple neural network on top. We believe this is a fair comparison as the

acoustic model architecture is the same in both models. SELM’s better performance shows the

benefit of using the learnable prefix layer and using the large language model.

In-domain Dataset

Model RAVDESS ↑ CREMAD ↑ IEMOCAP ↑
Wav2Vec2 FT 56.53 (160) 46.02 (163) 69.90 (62)

SELM 75.70 88.16 73.09

Table 6.5: In-domain performance of SELM on three datasets. Similar to SELM, the benchmark numbers

also use wav2vec2-base embeddings to extract acoustic features.

6.9.2 Out of Domain Setup

We simulate the Out-of-Distribution (OOD) setup by excluding some datasets from training.

Therefore, the model is evaluated on three Evaluation Datasets namely RAVDESS, CREMA-D,

and IEMOCAP, not used in training.

The existing literature models are also not trained on these three datasets, making this a valid

OOD comparison. Table 6.6 presents the OOD experimental results for RAVDESS, CREAM-D

and IEMOCAP. The first half of the table presents performance on all emotion classes in the

dataset, while the lower half (denoted with *) presents numbers on a subset of classes. The

subset of classes are chosen to be the four primary emotions: happy, sad, angry, neutral. The

results show SELM outperforms existing models on all three datasets for both all-class and

4-class setup. Moreover, some of the datasets contain emotions that SELM has not seen during

training, and hence showcasing the generalization ability of the model.

6.9.3 Few Shot Learning

Adapting to new distribution requires annotated examples for the target domain. To test the

efficiency of this adaptation, we explore Few-Shot Learning (FSL) for SELM. For the FSL setup,

we inherit the pretrained SELM model. Then the model is finetuned using N examples from

target domain. The finetuning is restricted to specific parts of model to be parameter efficient

and to prevent loss of generalization ability of SELM. We perform FSL in two settings, 4-shot

and 8-shot, where 4 examples or 8 examples per class respectively are randomly picked from

the training set to finetune specific parameters of SELM.

We compare the Few-Shot learning performance of SELM against literature benchmarks. The

results are shown in Table 6.7. The table shows the performance of the model when it is

finetuned on either 4 examples per class (4-shot) or 8 examples per class (8-shot). For the
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Out-of-Domain Dataset

Model RAVD ↑ CREMA ↑ IEMOC ↑
Random 12.50 16.70 -

CLAP (Audio) (86) 16.00 17.80 13.71

Pengi (164) 20.32 18.46 -

MMS large (165) 13.50 17.20 -

Whisper medium.en (165) 15.30 20.90 -

Whisper medium (165) 16.70 19.90 -

Whisper large-v2 (165) 15.10 20.20 -

AudioFlamingo (166) 20.90 26.50 -

SELM (Ours) 24.51 28.30 21.42
CLAP

∗
(86) 29.48 31.05 33.72

LanSER PS
∗

(167) - 15.90 30.90

LanSER CM
∗

(167) - 23.50 34.30

CLAP (Ours)
∗

(168) 38.46 35.22 -

SELM (Ours)
∗ 52.53 42.79 40.02

Table 6.6: OOD Performance of different models across three datasets. The dataset is considered OOD

when labeled or unlabelled audio is not used during training or unsupervised adaptation during testing.

The
∗

symbol indicates only four emotion classes (anger, happiness, sadness, and neutral) are used for

evaluation. The metric used is unweighted.

all-class settings (presented in the earlier rows of the table), we compare SELM’s performance

against Audio-Flamingo (166). The AudioFlamingo reports 4-shot and 8-shot numbers, however

the testing strategy and split is not reported. For the 4 class emotion classification, we compare

againts LanSER (167), which reports the performance when the model is fine-tuned using 10%

of the data. We note that 10% data from target domain is significantly more than 4-shot. For

example, 10% of data from CREMA-D is equivalent to 744 audio files and hence the setups are

not directly comparable. Due to the lack of Few-Shot Learning approaches in SER, we compare

SELM against LanSER

The results shown in Table 6.7 lead to multiple conclusions. First, SELM performs better

than prior work on CREMA-D and IEMOCAP. Second, 8-shot always leads to performance

improvement over 4 shot. Similarly, 16-shot performs better than 8-shots, i.e. providing SELM

more target domain data will lead to better performance. However, there SELM Few-Shot has

some limitations. First, the AudioFlamingo performs better on RAVDESS in all-class settings

than SELM. We believe that this is due to the specific training strategy of AudioFlamingo which

enables use of In-Context Learning. Moreover, AudioFlamingo is trained on 6 million instances,

which is 20 times higher than our settings. Second, in RAVDESS, the 4-shot leads to higher

performance than 8-shot in the 4-class settings. This might be because RAVDESS has song

and speech samples, while SELM has never encountered songs in training data. As songs have

different audio distribution from speech samples, the parameter-efficient Few-Shot learning is

not sufficient to improve performance and adapt to the song distribution in a few examples.

6.10 Conclusion

SELM is an improvement over the CLAP model that was proposed earlier. Comparing the zero

shot performance of SELM to CLAP, we can observe that the performance improves from 38.46
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Dataset for Few-Shot Learning

Model Setup RAVD ↑ CREMA ↑ IEMOC ↑
AudioFlam. 4-shot - 30.47 -

AudioFlam. 8-shot 35.20 31.80 -

SELM (Ours) 4-shot 30.09 30.10 25.32

SELM (Ours) 8-shot 31.81 32.27 27.01
LanSER PS

∗
10% - 35.50 42.00

LanSER CM
∗

10% - 43.70 50.00

SELM (Ours)
∗

4-shot 57.14 43.93 50.17

SELM (Ours)
∗

8-shot 55.77 46.02 50.17

Table 6.7: Few-Shot Learning results of different models and methods on OOD dataset. The dataset is

considered OOD when labeled or unlabelled audio is not used during training or unsupervised adaptation

during testing. The
∗

symbol indicates only four emotion classes (anger, happiness, sadness, and neutral)

are used for evaluation. The metric used is unweighted accuracy.

to 52.53 in RAVDESS. Using few shot learning in SELM, this performance improves to 57.14

using 4-shot and 55.77 using 8-shot examples. This shows how improving the representation

capabilities of emotion, by using natural language descriptions (in CLAP) or by making the

model learn such descriptions (in SELM), we can improve the learning capabilities of our model,

and improve emotion recognition performance.
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Chapter 7

Prior Work

7.1 Theoretical Personality Models

The question of what constitutes ‘Personality’ has garnered a lot of interest from various fields.

Researchers have tried to understand how to classify individuals into different personalities,

how many unique personalities there are, what are the different dimensions that each individual

should be classified over, and how should each dimension be assessed. There are numerous

propositions for each. We mention some of the more accepted/used theories here:

• Five-factor Model: Researchers initially studied the lexical terms in the English language

which can be used to describe all the traits for different human personalities. Using factor

analysis, five dimensions were discovered (169; 170). These five basic dimensions included:

Openness to Experience (O), Conscientiousness (C), Extraversion (E), Agreeableness (A),

and Neuroticism (N). OCEAN for short. These five traits have been consistently found in

subsequent studies. As mentioned in (171): ”In many ways, it seems remarkable that such

stability should be found in an area which to date has granted anything but consistent

results.” The same methodology was performed using other languages like Czech, Dutch,

Filipino, German, Greek, Hebrew, Hungarian, Italian, Korean, Polish, Russian, Spanish,

Turkish, and other languages, and the findings suggest the existence of the same five

personality factors (172).

• NEO Personality Inventory-Revised (NEO PI-R): Further work on the Five-factor model

elaborated each of the five factors into sub-traits called facets (173). For example, the six

facets the researchers have identified for agreeableness are trust, straightforwardness,

compliance, altruism, modesty, and tender-mindedness.

• Three Dimensions of Personality (PEN): Introduced by (174) who identified two super-

factors: Extraversion (E) and Neuroticism (N) and Psychoticism (P). Each of these super-

factors contained low-level traits.

56



Introduction 57

• Myers-Briggs Type Indicator (MBTI): Introduced by (175) where individuals are classified

on four different dimensions (1) Extroversion (E) versus Introversion (I); (2) Sensing (S)

versus Intuition (N); (3) Thinking (T) and Feeling (F) and (4) Judging (J) versus Perception

(P). Each individual is given a four-letter personality depending on where the individual

falls in each of the four dimensions. For example, INFP would mean Introverted-Intuition-

Feeling-Perception individual. Although MBTI is widely acceptable among individuals, it

is criticized for its oversimplification and for limiting the unlimited space of personality

into 16 discrete types.

• ARC types: Introduced by (176), the authors cluster the Big-Five personality traits from

the Five-factor model into three personality traits. (1) Resilient, (2) Overcontrolled,

and (3) Undercontrolled. These three personality traits are different combinations from

the five personality traits identified in the Five-Factor model. For example, people with

overcontrolled personalities have high neuroticism and low extraversion. Undercontrolled

personalities are low on agreeableness and conscientiousness but low on neuroticism and

openness.

• Four Personality types: A much recently proposed is a four-factor model (177), which

clusters individuals into four clusters, where individuals around identified clusters show

existence of four robust personality types. These four-personality types are also some

combination of the personliaty identified in the Five-Factor model. These four include

(1) Role Models: Socially desirable, low on neuroticism, and high on all other four

traits. (2) self-centred - not as socially desirable, low scores on openness, agreeableness,

conscientiousness, (3) Reserved - not so socially desirable, Low scores on neuroticism

and openness (4) Average - least robust, average score on all traits.

7.2 Computational Personality Models

[TODO] Over the years, there have been numerous works that have tried to detect personality

traits from various modalities directly. Personality detection from text has been vastly studied,

especially because there are more cleanly compiled datasets available for this task. However

there are very few speech datasets available for personality detection.

Works studying personality from speech have studied various features that are useful for the

task. One of the earliest works (12; 15) find correlations between different speech features

and personality traits, i.e. they find that ‘significant positive association between personality

trait of dominance and the voice characteristics of loudness, resonance, and lower pitch.’ and

find that there exists positive correlations between submissiveness and high speech rate, etc.

Studies like (178) further report similar correlations between voice qualities and personality

traits e.g. it states that ‘result might indicate that a more aggressive trait is associated to a tenser

or creakier voice’. Another study (179) specifically shows how extroversion can be assessed
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from voice. More recent explorations have studied features like prosody (180; 25; 181), MFCC

(182), non-verbal features like speaking time length, number of pauses (183).

For modeling the speech personality task, studies have explored various models like GMM (184),

SVM (185). Among recent works, (186) proposes to use frame level low level speech features

from opensmile toolkit, and train a neural auto encoder model for binary classification of the

OCEAN traits into high and low classes.

When we started exploring this research topic, I realized the scarcity of data in the field. My

first intention was to contribute a dataset for task that is more reliable in terms of its annotation,

and is much larger in scale. However, i realized soon that this is an extremely difficult task

to delve into. In the next chapter, I describe the work done on the data collection front and

the setbacks faced. Furthermore, instead of relying on the annotated data for personality, and

building more data intensive models, I move towards more knowledge based exploration of the

task. In the coming chapters, I explain how we do that.



Chapter 8

Data Collection - VoxCeleb for
Personality

8.1 Introduction

One of the biggest problems with studying personality from speech is the lack of datasets in

the field. Dataset collection is not an easy task especially in as subjective a task as personality.

Secondly getting reliable annotation is a bigger challenge.

Some of the available datasets, including speech modality, are listed in Table 8.1. Among these,

the widely used dataset is SSP-Net, which is a collection of French TV broadcasts. The reason

it is the most widely used is that each audio file in the dataset is annotated by 11 different

raters, among which some are professionals and some are laymen. The dataset with the greatest

number of hours is UDIVA, consisting of 90.5 hours of speech.

Our aim was to release the dataset with the highest number of audio for this task, divided into

two sets, one consisting of shorter audio and the other longer ones. The data consists of 20000

audio clips with a total of 52.2 hours. With this dataset, the unique aspect is that we will be

getting annotations for shorter and longer audios, where the smaller audios range from an

Dataset # Clips # Spks # Hrs Annt. Type

SSPNet (25) 640 322 1.7 External Raters

ELEA (187) 22 85 5 External Raters

FirstImpression (188) 10000 3000 41.7 MTurk

YouTube Lens (183) 2269 469 150 MTurk

MHHRI (189) 746 18 4.25 Self Reported

UDIVA (190) 940 147 90.5 Self Reported

VoxCeleb-Pers (Ours) 20000 958 52.2 MTurk

Table 8.1: Datasets present for Speech Personality. From left to right: the total number of clips, number

of speakers, total number of hours, personality annotation type (how personality was annotated).
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President N E O A C

Lyndon Johnson 95 99.4 7 0.07 72

Richard Nixon 97 7 14 0.02 98

Gerald Ford 15 91 8 53 69

Ronald Reagan 4 98 10 26 9

George H. W. Bush 58 55 18 29 23

James Carter 76 58 77 56 98

John F. Kennedy 27 99.6 82 11 5

Bill Clinton 58 99.9 82 24 5

George W. Bush 49 99.6 0.03 4 9

Table 8.2: Personality OCEAN Trait Scores for the Presidents. These scores are percentiles with respect

to the U.S. general population.

Presidents Carter Clinton Ford HW Bush Johnson Kennedy Nixon Reagan W Bush Total

# Hours 8.38 17.80 7.93 10.05 27.80 14.37 9.65 21.77 14.70 132.5

Table 8.3: Duration of Audio (Hrs) for each President.

average of 5 seconds, and the longer audios an average of 1 minute. Personality perception as a

function of audio length has not been studied before and informs us how differently or more

accurately people make judgments about others when hearing shorter or longer audio.

One of the lacking aspects of the current datasets is the way that they are annotated for

personality labels. The labels are either self annotations or crowd-sourced through Amazon

Turk. However, neither self-reporting nor crowd-sources are experts in the understanding of

personality and cannot therefore accurately rate personality traits. Therefore, we aimed to work

on the creation of a speech personality dataset where the annotations are expert labelers, and

therefore the labels are more trustworthy.

United States Presidents’ lives have been studied extensively over the years. In the book

‘Personality, character, and leadership in the White House: Psychologists assess the presidents’
(191), many expert psychologists study 21 United States presidents, studying each president

throughout their lives, from birth to their time in office to afterward. They have rated the

president on the Big-5 OCEAN traits. Table 8.2 shows the percentile scores for the OCEAN

traits for some of the presidents. There are 9 Presidents, for whom we can find their voices

online. The earliest is John F. Kennedy and the latest is George Walker Bush (the later presidents

are not rated in the book and therefore are not included in the study). We collect audio files for

each of these presidents from the Miller Centre (192). Table 8.3 shows the number of hours we

have per president. We will use this data to analyze our models.

8.2 Voxceleb Dataset

Voxceleb dataset (193) is one of the largest datasets, used to study many different tasks. It is a

collection of celebrity interviews, consisting of audio-visual modality. We use Amazon Turk to
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# Question

1 This person is reserved

2 This person is generally trusting

3 This person tends to be lazy

4 This person is relaxed, handles stress well

5 This person has few artistic interests

6 This person is outgoing, sociable

7 This person tends to find fault with others

8 This person does a thorough job

9 This person gets nervous easily

10 This person has an active imagination

Table 8.4: BFI-10 Questionnaire

Figure 8.1: Histogram depicting the frequency of the chosen answer by raters for the short audios (above)

and long audios (below).

collect personality annotations for this dataset. We use the BFI-10 questionnaire (194), shown in

Figure 8.4. The questionnaire is a compressed version of the original BFI-44, a set of 44 questions

(195). These 10 questionnaires have been shown to cover the same subset of phenomena that

the original set covers. The lower number of questions makes it easier to collect responses from

the raters. Each question can be answered on a scale of 1-5 where the rater selects from Strong

agrees, to Strong disagrees. The rater listens to an audio and then proceeds to answer the 10

questions. We collect some demographic information for each rater, including their gender, age,

and education level. As previously mentioned, there are numerous ways in which personality

traits can be annotated, but the most widely accepted is the Big 5 OCEAN traits. Therefore,

we also annotate the speakers on these traits. These traits can be extracted from the BFI-10

questionnaire easily (25).

8.3 Results and Conclusion

Here I present the number of audio files for which we collected the annotations for. We collected

annotations for 324 short audio files and 90 long audio files. Each audio file is rated by 3 raters
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Figure 8.2: Krippendorff’s alpha for the shorter audios (top) and for longer audios (bottom) for each

of the 10 questions. We can observe that the Krippendorff’s alpha is poor for all the questions for both

settings.

on the 10 BFI questions. Figure 8.1 shows the histogram of the chosen answer by the raters.

We can observe that majority of the raters prefer to choose ”I Agree” option for each of the 10

questions. The second frequent answer is ”Neutral”. The trend of the answers tend to more

towards the ”I Agree” and ”Strongly Agree”. Very few raters select the ”Disagree option”.

Figure 8.2 shows the Krippendorff’s alpha for the short and longer version of the audios. We

can observe from the bar chart that the Krippendorff’s alpha is poor for both scenarios for all

the questions. Above 0.8 Krippendorff’s alpha is acceptable and considered good agreement,

however what we observe in the ratings collected shows poor agreement.

In conclusion, from the above results we can observe that the BFI-10 questionnaire has very little

agreement among the raters. This agreement leads to poorer agreement among the OCEAN

traits as well. Our understanding is that this low agreement is either due to the platform used

in this data collection effort and the bad faith of the raters, or that it is genuinely a hard task.

This agreement is in the same ballpark as reported for other datasets. The field of OCEAN trait

understanding could benefit from a better questionnaire based assessment from personality

that is more refined than the BFI-questionnaire, especially one that is geared towards the

understanding personality from speech.

Therefore, instead of going down this route, we focus more on knowledge based analysis of

personality. We delve deeper into prior literature which link low level speech features to

personality. This leads to handcrafted features, more explainable model building and better

understanding of personality from speech.



Chapter 9

Knowledge Based Features for
Personality Evaluation

There has been a lot of work in building computation models for personality as explored in the

previous section. However building computational automatic models required enough data and

also good quality labels, both of which are hugely lacking in this area.

In our own effort of making automatic models for personality detection, we faced with these

issues whereby data is scarce, especially speech based data, and secondly, the quality of the

labels is really low, with very low inter-annotator agreement.

To tackle the above issues, we take a more knowledge-based approach to the problem then a

data-intensive approach. There is bunch of literature which study how voice quality features

are reflective of certain personality traits, and in order to reach to these voice quality features,

we delve deeper into the low level features. We form this chain of formulas, which first go from

low level features, to voice quality features, finally to personality ratings. Below we g o in depth

of how this is done.

9.1 Introduction

The fact that voice carries information about the speaker has been observed and noted for

centuries. In daily life, humans make myriad judgments about people based on their voice,

especially the quality of their voice. Voice quality has indeed long been recognized as a

fundamental aspect of human communication, influencing and supporting practice in various

fields such as music, speech therapy, interpersonal communication, and speaker profiling. For

example, (196) highlights the importance of vocal quality in conveying emotion and style.

(197) emphasize the impact of voice quality on speech clarity and the therapeutic strategies to

rehabilitate voice disorders. In interpersonal communication, the nuances of voice quality can

influence perceptions of trustworthiness, attractiveness, and authority, as explored by (198).
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Studies like (199) discuss how vocal characteristics can be leveraged for forensic purposes,

providing critical evidence in legal contexts.

Despite its significance, the assessment of voice quality has predominantly been subjective,

described with terms like “rough,” “breathy,” “twangy,” etc. This subjectivity, while capturing

the nuanced perceptions of human listeners, presents challenges for consistent and accurate

analysis, especially in applications requiring precise differentiation of voice characteristics.

Such examples include speaker profiling for security and law enforcement, where the automated

deduction of a multitude of speaker characteristics from voice is desired, but their relationships

to voice have only previously been documented in terms of subjective assessments of the

corresponding voice qualities.

Similarly human personality is a subjective characteristics, however there have been numer-

ous studies to highlight the different objective ways in which humans can be characterized

and hence rated on different personality bases. The Big-5 OCEAN traits [CITE] is one such

methodology, where every individual is rated on each of the 5 dimensions, including Openness,

Conscientiousness, Extraversion, Agreeableness, and Neuroticism. Personality understanding,

however more advanced than voice quality assessment, proves to be challenging task for rating

individuals using this methodology. Raters when ranking an individual on OCEAN traits result

in extremely low inter annotator agreement, proving the challenging nature of the task, and

making it more so important to have a more standardized way of ranking individuals on various

personality traits.

The need for objective measurement arises from the limitations of subjective evaluation, which

can vary widely between listeners and lack the precision necessary for applications such as

medical diagnostics, forensic analysis, and automated speech processing. Objective measures

can provide a standardized way to evaluate voice quality and personality, enabling consistent

assessments across different contexts and applications.

The goal of this paper is to offer a path toward achieving this goal - to propose objective

assessment of voice qualities and personality traits. By analyzing the physical properties

of voice signals, many prior studies have established correlations between these low-level

signal features and the perceived qualities of the human voice and between voice qualities and

perceived personality OCEAN traits. Such studies have identified and noted many specific

signal characteristics – such as frequency, amplitude, pitch, and other spectral characterizations

– that relate to the subjective qualities traditionally used to describe voice. Secondly, there are

numerous studies which correlate e.g. voice qualities like the hoarseness of voice to personality

traits like Extraversion (179). Leveraging these correlations, it is possible to develop formulae

or algorithms that quantitatively assess voice quality based on measurable signal properties

and personality based on quantitative voice qualities.

Towards this goal of quantitative expression and evaluation of voice quality, we propose a clear

3-step procedure: 1) We choose 24 voice quality features that are widely used in different fields,

especially in clinical literature. For each of these, we collate the results of prior scientific studies
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that have documented the statistical relationships of these voice qualities to members of a set of

25 low-level signal characterizations. For OCEAN personality traits, we document for each trait,

prior literature which have found correlations between the 5 personality traits and 24 voice

quality features. 2) We translate these observations into a set of formulae with linear terms

and weights. 3) We experimentally evaluate the consistency and accuracy of these formulae

by devising human assessment and data-driven experiments. We show that the formulae are

consistent and strongly follow the expected subjective trends of voice quality and personality

traits assessment by trained humans.

9.2 Related Work

Given the usage and significance of voice quality in various scenarios especially in diagnosing

health conditions, speaker profiling etc, over the years multiple methodologies have been devel-

oped for measuring voice quality. These efforts include visual analysis, perceptual evaluation,

aerodynamic measures, acoustic analysis, and self-evaluation by the individual (200; 201). Below

we give examples of some of these efforts.

Auditory perceptual assessment is the most widely used methodology for measuring voice

quality. Laver’s Voice Profile Analysis (202) proposed a phonetic classification system, using

differences in the laryngeal and supra-laryngeal settings of the voice production systems for

describing differences in voice qualities. Other methods include evaluation protocols like GRBAS

(203) scale. It evaluates an individual on 5 voice qualities including roughness, breathiness,

asthenia, strain and grade of the voice. Another example is RBH scale (204) which evaluates 3

voice qualities including roughness, breathiness, and hoarseness. CAPE-V (205) evaluates several

voice qualities including loudness, diplophonia, vocal fry, falsetto, asthenia, aphonia, pitch

instability, tremor, wet/gurgly, roughness, breathiness and strain. (206) proposes a metric based

on the phase spectrum, demonstrating its effectiveness in detecting voice disorders by capturing

irregularities in the glottal source. They test their methodology on private medical dataset

and verify their ranking of voice quality against doctor’s rankings. Some other methodologies

analyse power spectra of a given speech signal over time, which reflect differences in voice

qualities.

Other proposed models evaluate sustained vowels by an individual. Such models include

Acoustic Voice Quality Index (i.e., AVQI) (207) and Cepstral Spectral Index of Dysphonia (208),

widely used in clinical settings to identify vocal abnormalities.

While existing methodologies contribute to voice quality assessment, they often suffer from

limitations. Some require expert analysis, while others impose specific requirements on the

individual, such as sustaining vowels. Additionally, these methods typically focus on a subset

of voice qualities, neglecting a comprehensive evaluation. This necessitates the development of

readily deployable, user-friendly approaches that capture the full spectrum of voice qualities

without imposing stringent pre-conditions.
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Secondly, personality OCEAN trait prediction is a very useful task for more natural human-

computer interaction, for aiding in the assessment and monitoring of mental health and psycho-

logical problems in humans, etc. There are existing datasets as well for which speech samples

are labeled for the OCEAN traits of the speakers. However such datasets are small in quantity

and more over are of poor quality. The OCEAN labels are either coming from self-ratings from

the speaker (which are less reliable since speakers have little knowledge about the OCEAN

traits), or are labeled using crowd-sourcing. Crowd-sourcing labels bring numerous challenges

with them, including poor inter-annotator agreement (IAA). Whereby the most widely used

datasets have IAA of 0.12-0.2 (25), which is poor.

Regardless of the poor quality of the openly available datasets for personality, many prior works

have tried to automatically deduce personality from speech (180; 209; 186) by performing a

binary classification task, which is predicting for each of the 5 OCEAN traits, if an individual

scores high or low on that trait.

Instead of going towards a more data-driven approach for personality analysis, we shift our focus

towards a more knowledge-driven approach. We develop a framework based on more knowledge

based features, relying on findings from prior literature which have found correlations between

voice quality features and personality traits, and report results for personality prediction task.

9.3 Proposed Formulation - Voice qualities, OCEAN traits, signal
characteristics and rationale for selection

In this paper we focus on 24 voice qualities (VQF). These are listed below. The detailed definition

and description of each of these qualities can be found here (210).

1. Coveredness (Cov) 2. Aphonicity (Aph)

3. Biphonicity (Biph) 4. Breathiness (Brea)

5. Creakiness (Crea) 6. Diplophonicity (Dip)

7. Flutter (Flu) 8. Glottalization (Glo)

9. Hoarseness (Hoa) 10. Roughness (Rou)

11. Nasality (Nas) 12. Jitter (Jit)

13. Pressed (Pre) 14. Pulsed (Pul)

15. Resonant (Res) 16. Shimmer (Shim)

17. Strained (Stra) 18. Strohbassness (Stro)

19. Tremor (Tre) 20. Twanginess (Twa)

21. Ventricular (Ven) 22. Wobble (Wob)

23. Yawniness (Yaw) 24. Loudness (Lou)

Fe focus on the following 25 low level speech features (LLF), which are listed in the table below,

and whose detailed definitions can be found in (210).
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1. Loudness 2. alphaRatio

3. hammerbergIndex 4. slope0-500

5. slope500-1500 6. spectralFlux

7. mfcc1 8. mfcc2

9. mfcc3 10. mfcc4

11. F0semitoneFrom27 12. jitterLocal

13. shimmerlocaldB 14. HNRdBACF

15. logRelF0-H1-H2 16. logRelF0-H1-A3

17. F1frequency 18. F1bandwidth

19. F1amplitudeLogRelF0 20. F2frequency

21. F2bandwidth 22. F2amplitudeLogRelF0

23. F3frequency 24. F3bandwidth

25. F3amplitudeLogRelF0

9.3.1 Correlating LLF to VQF, and VQF to OCEAN

Correlations for voice qualities are established based on extensive analysis of prior literature.

Table 9.1 shows the correlations between 24 voice quality and 25 low level speech features.

To give an example of how a column is filled up in Table 9.1, lets look at the voice quality

of ‘Breathiness’. (298; 299; 300; 272) demonstrates that breathiness has a negative correlation

with loudness, alphaRatio (the ratio of the summed energy from 50-1000 Hz and 1-5 kHz),

hammarbergIndex (the ratio of the strongest energy peak in the 0-2 kHz region to the strongest

peak in the 2-5 kHz region), a positive correlation with spectral flux (a measure of the change

in the spectral content of a sound over time), has a positive correlation with F1, F2 and F3

bandwidth and (301) shows that breathiness has a negative correlation with F2 and F3 frequency.

The other columns in Table 9.1 have been similarly completed based on a collated analysis

of findings in prior literature. For example, a subset of findings we refer to in this work are:

nasality (240; 302), tremor (245; 303; 304), creakiness (305; 306; 283), hoarseness (307), pressed

(308; 212), loudness (309), and many others.

The collection of all the formulae can be found here: https://github.com/ydhira/vqf_

ocean_formulas_pipeline

To derive the formulae, we use the correlation information that we have collected in Table 9.1,

as follows: A given voice quality i (vqi) can be written as a function of each of the low-level

features j (llfj) as shown below:

vqi = 1/Z ∗
∑
j

ci,j ∗ wi,j(vllfj
− µllfj )

σllfj

(9.1)

https://github.com/ydhira/vqf_ocean_formulas_pipeline
https://github.com/ydhira/vqf_ocean_formulas_pipeline
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Table 9.1: Shows the correlation of 24 voice quality features (columns) with the 25 low level features

(rows). For reference the color palette can be found in Table 9.3.

Feat↓ VQuality→ Cov Aph Biph Brea Crea Dip Flu Glo Hoa Rou Nas Jit

Loudness - (211) (212) - (213) - (214) - - (215)

alphaRatio (210) (216) (217) (218) - (219)

hammarbergIndex (210) - (216) (220) (218) (219) -

slope0-500 (210) (221) (222) (220) -

slope500-1500 (210) (221) (221) - - (223) -

spectralFlux (224) (218) (213) (223) (214) (214)

mfcc1 - (222) (225) - -

mfcc2 - (222) - (225) - -

mfcc3 - (222) - (225) - -

mfcc4 - (222) (225) - -

F0semitoneFrom27.5Hz (210) (226) (227) (211) (212) (220) (223) (212) (228) (229) -

jitterLocal (211) (230) (231) - (223) (212) (228) - (232)

shimmerLocaldB - (211) (230) (231) - (223) -

HNRdBACF - (211) (212) (231) (233) (225) (234) (212) (219) (235)

logRelF0-H1-H2 - (211) (236) (225) (237) -

logRelF0-H1-A3 - (211) (236) (237) -

F1frequency - (224) (238) (218) - (214) (214) (239) -

F1bandwidth - - (224) (238) - (214) (214) (218)

F1amplitudeLogRelF0 - (224) - (214) (239)

F2frequency (210) - - (238) (238) (218) - (214) (214) (240)

F2bandwidth - - (224) (241) (218) - (214) (214) (229)

F2amplitudeLogRelF0 - - (214) (239) -

F3frequency (210) (210) - (242) (241) (218) (214) (214) (243) -

F3bandwidth - - (242) (241) (218) (214) (214) (229) -

F3amplitudeLogRelF0 - - - (214) (239) -

Feat↓ VQuality→ Pre Pul Res Shim Stra Stro Tre Twa Ven Wob Yaw Lou

Loudness (224) (210) (215) (244) - (245) (246) - -

alphaRatio - Neu - (247) - (248) (249) - - -

hammarbergIndex - Neu - - (248) (249) - (250) -

slope0-500 (251) - (244) (252) (249) (253) (250) (254)

slope500-1500 (251) - (244) (252) (249) (253) - (254)

spectralFlux - - (244) (252) (248) (254)

mfcc1 (251) - - (255) (256)

mfcc2 (251) - - (255) - (256)

mfcc3 - (251) - - (255) (256)

mfcc4 - (251) - - (255) - (256)

F0semitoneFrom27.5Hz (224) - - (228) (252) (257) (253) (258) (254)

jitterLocal - - (228) (212) (257) (246) -

shimmerLocaldB - - (232) - (212) (257) (246) - (258)

HNRdBACF (251) (251) (259) (212) (257) (253) - (258) (256)

logRelF0-H1-H2 (210) - (250) - - (256)

logRelF0-H1-A3 - - - (256)

F1frequency (251) (251) (251) (260) (250) (256)

F1bandwidth (261) (262) (246) (254)

F1amplitudeLogRelF0 (210) (250)

F2frequency (251) (251) (250) (260) (250) (256)

F2bandwidth (261) (246) (254)

F2amplitudeLogRelF0 - (210) - (250) (254)

F3frequency (251) - (251) - (251) (260) (250) (256)

F3bandwidth - (261) (262) (246) (254)

F3amplitudeLogRelF0 - (210) -

where Z is the normalizing factor which equals to the number of llf involved in the equation.

This ensures that the absolute value of the voice quality is between 0 and 1. ci,j is 1 when the
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Table 9.2: Shows the correlation of the 24 voice quality features (columns) with the 5 OCEAN traits

(rows). For reference the color palette can be found in Table 9.3.

OCEAN↓ VQuality→ Cov Aph Biph Brea Crea Dip Flu Glo Hoa Rou Nas Jit

Openness (O) (263) (264) (265) - - - - (266) (267) (268) (181)

Conscientiousness (C) (264) (269) - - - - (181) (230) (230) (230)

Extraversion (E) (270) (271) - (272) - - - - (179) (181) (273) (179)

Agreeableness (A) (274) (264) - (230) - - - - (275) (276) (277) (278)

Neuroticism (N) (274) (279) - (280) - - (281) - (263) (263) (230) (278)

OCEAN↓ VQuality→ Pre Pul Res Shim Stra Stro Tre Twa Ven Wob Yaw Lou

Openness (O) (282) (283) (284) - (16) - - (285) - - (286) (287)

Conscientiousness (C) (288) (289) (16) (278) (290) - (264) (291) - (292) (286) (16)

Extraversion (E) (293) (283) (179) - (271) - - (294) - - (179) (179)

Agreeableness (A) (282) (295) (284) - (277) - - (294) - - (286) (9)

Neuroticism (N) (266) (295) (284) (278) (295) - (296) (285) - (292) (297) (9)

Table 9.3: Color Palette for the Correlations Table

Correlation Color Weight

Strong Negative (SN) 1

Negative (N) 0.75

Weak Negative (WN) 0.25

Neutral (N) - 0

Weak Positive (WP) 0.25

Positive (P) 0.75

Strong Positive (SP) 1

Inconclusive (IC) 0

relation between vqi and llfj is a positive correlation, it is −1 if the correlation is negative, else

it is 0. The wi,j is the weight assigned to the correlation. µllfj
and σllfj

are the statistics of the

llfj calculated as explained later in section ??.

Table 9.2 shows the correlations between the 24 voice qualities and the 5 OCEAN traits. To

illustrate an example of one of the OCEAN traits, lets look at Openness. Openness is negatively

correlated with voice quality of coveredness, aphonicity, nasality, jitter, pulsed, strained and

yawniness. Openness is positively correlated with biphonicity, breathiness, pressed, resonant,

twanginess and loudness. There are some voice qualities, for which we do not find prior

literature and hence and are not cited.

9.4 Experimental Validation and Results

The above formulae are extracted from prior literature, however validation of the formulae is

highly important for their correctness and usefulness. Figure 9.1 presents the overview of the

research questions that we ask in this paper.

(RQ1) Do the voice qualities, extracted from the formulae, agree with human perception of the

voice qualities, i.e., do the formulae ranking of two utterances for a voice quality agree with

human ranking?
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Figure 9.1: Overview of the research questions

(RQ2) Are the voice quality features useful for downstream tasks like speaker identification?

(RQ3) Do the OCEAN personality formulae agree with the OCEAN ranking assigned by raters?

In order to address the above RQ’s, we perform the following tasks and analysis:

• (RQ1) Ranking of voice qualities: The voice quality features highlight the correct voice

qualities in a given speech sample. For this purpose, we make the assumption that a

given speaker would have one most-prominent voice quality, e.g. the nasal voice quality

would have a higher score for the speech sample as compare to the other voice qualities.

We rank a pair of audio samples A and B based on this scoring. We then ask raters to

rank the pair A and B as per their perceived voice quality. We calculate how many times

do the human raters agree with the automatic scoring by the formulae. Section 9.4.1

provides the details of how this task is performed.

• (RQ2) Speaker identification using voice quality formulae: We assess the usefulness of the

voice quality formulae by analyzing their performance on a close set speaker identification

task. We use the Librispeech clean dataset and analyze which voice qualities have the

most distinctive power for speaker identification. Section 9.4.2 provides details about this

task.

• (RQ3) Personality Classification using OCEAN formulae: We employ the OCEAN trait

formulae for downstream personality analysis. We use the SSPNet speaker trait corpus,

which is rated for the OCEAN traits by human raters. We then compare how the OCEAN

formulae ranking compares with the human rankings. Section 9.4.3 provides details for

this task.
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Figure 9.2: Top: The Low Level Feature for a speech signal. Mid: Voice Quality Feature for the same

speech signal. Bottom: The speech signal.

9.4.1 Ranking of voice qualities

9.4.1.1 Methodology

To extract the low level signal characteristics, we use the Temporal Acoustic Parameter (TAP)

model (310). The model is trained on speech data and is robust in predicting the low level

features. For this purpose we use the VoxCeleb dataset (311). Once the low level features are

extracted, we extract the statistics (mean and variance) of the multiple low level speech features.

These statistics are then used for the formulae as explained in the previous sections. We then

extract the voice quality features, a 24 dimensional vector per utterance.

For each voice quality, we rank the audios in the VoxCeleb dataset for that voice quality. We

select the audios which rank the highest for that voice quality against the ones which rank

lowest for that voice quality and form pairs in such a way. While forming pairs we make sure

that sex of the speaker is the same so that it does not influence the listener’s judgement of the

voice quality. For example for voice quality of nasality, we form pairs among the top 5 samples

ranking highest for nasality randomly with the 5 samples which rank lowest for nasality. These

5 pairs are then given to raters, who are provided with the following 4 choices: 1. Speech sample

A is more nasal than B, 2. Speech sample B is more nasal than A, 3. They are both equally nasal,

4. They both are not nasal. The listener are also provided with a representative speech sample

for that voice quality, i.e a speech sample which has been determined to be highly nasal by

two experts in the lab. These representative speech sample primes the listener as to what that

particular voice quality sounds like.

9.4.1.2 Results

Each voice quality questionnaire has 5 questions and is answered by 20 people. A majority vote

is taken as the human rating for that voice quality. For each of the 5 questions, we then note

how many pairs agree with the formulae ranking.
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Table 9.4: Human judgment alignment with the formulaic predictions when accounting for listener sex

Voice Quality Correct

Listener=Female Listener=Male Overall

Creakiness (f=1, m=4) 5 4 5

Twanginess (f=4, m=1) 4 5 5

Hoarseness (f=0,m=5) 5 5 5

Strohbassness (f=0,m=5) 4 4 4

Nasality (f=3, m=2) 3 3 4

Coveredness (f=2, m=3) 4 5 4

Glottalization (f=2, m=3) 0 3 1

Breathiness (f=4, m=1) 1 1 1

Pulsed (f=0,m=5) 0 3 0

Table 9.5: Examining the percentage accuracy across varying conditions of speaker and listener sex.

Listener

Speaker Male Female

Male 31.5 33.4

Female 12.9 11.8

Table 9.4 shows the overall correct pairs out of 5. It can be observed that voice quality creakiness,

twanginess, hoarseness are perceived quite well and all 5 pairs agree with the formulae ranking.

For the voice quality strohbassness, nasality, coveredness 4 out of 5 agree with formulae ranking.

Voice qualities of glottalization, breathiness, and pulsed have a low score of 1 out 5 and 0 out of

5 respectively, and hence human ranking does not agree with the formulae ranking.

We also notice that for male speakers, more female listeners get the ranking correct and vice

versa, i.e for female speakers, more male listeners get the ranking correct. The exact percentage

is shown in table 9.5.

A secondary analyses was run by giving the listener a 5 second of audio and the entire 10 sec

of audio; where the 5 second of audio is either the first half, the second half and a random 5

second chunk of the audio. We then run the human ranking test again for each. We run this

test for the voice quality of nasality, breathy and creaky. The results are shown in table ??. We

can observe that the voice quality is not consistently expressed in a speech sample and raters

are not consistent in the first or the second half of the audios. A random chunk of sample leads

to better results for creaky voice quality. We can observe that longer speech sample does not

necessarily lead to a higher correctness, infact longer samples are actually worse than the most

correct shorter 5 second segment.



Introduction 73

Table 9.6: Human judgment alignment with the formulaic predictions when accounting for listener sex

when audio length is ≈ 5 sec (short) vs ≈ 10 sec (long).

Voice Quality Correct

Listener=Female Listener=Male Overall

Nasality (first half) 2 2 4

Nasality (second half) 0 2 2

Nasality (random chunk) 3 3 4

Nasality (long) 2 2 1

Breathy (first half) 1 0 0

Breathy (second half) 1 2 1

Breathy (random chunk) 1 1 1

Breathy (long) 0 0 0

Creaky (first half) 4 4 4

Creaky (second half) 4 4 4

Creaky (random chunk) 5 4 5

Creaky (long) 5 5 5

9.4.2 Speaker Identification using voice quality formulae

9.4.2.1 Methodology

To assess the usefulness of the voice quality formulae, we hypothesize that voice quality features

capture speaker specific characteristics. For example is the speaker voice is predominantly

nasal, then the nasal voice quality would capture this. In addition, the pattern of nasality would

also be specific to each speaker, therefore proving useful for the speaker identification task.

For this purpose, we conduct a close set speaker identification task. We use the voice quality

extraction in a windowed fashion, where we end up with features as shown in figure 9.2. For

this task, we use the Librispeech dataset (312) and just the clean subset of the dataset.

9.4.2.2 Dataset

The Librispeech clean subset, which is a collection of speakers reading audio books. There are a

total of 22831 audio files, 251 speakers and the average audio recording is 4 seconds long. For

each speaker, we use 80% of the audio files in the training set and the rest 20% in the test set.

9.4.2.3 Results

Left part of figure 9.3 shows how the voice quality features perform on the test set of Librispeech

clean. Around 6th epoch the model is able to achieve above 90% F1 score.

To analyze further as to which voice quality features are most useful for speaker identification

task, we train the model 24 times, each time training on a different voice quality feature.

Right part of figure 9.3 shows the bar chart demonstrating F1 for each voice quality. We can



Introduction 74

Figure 9.3: [Left] Testing metrics on close set speaker Identification on the Librispeech Clean subset.

[Right] F1 metric when a single voice quality feature is used for model training for the task of close-set

speaker identification on Librispeech clean subset.

observe that Aphonicity voice quality feature is the most distinctive and results in the highest

performance, leading to 24.35% F1 metric, followed by Biphonicity which results in 17.49%

F1. The reason that aphonicity and biphonicty voice qualities features are performing well is

because they fluctuate the most as a time series and this trend captures speaker specific patterns

9.4.3 Personality classification using OCEAN formulae

9.4.3.1 Methodology

In order to validate the formulae presented in the table 9.2, we assess their usefulness in

downstream personality prediction task. We perform the task as a binary classification task for

predicting low or high OCEAN trait.

9.4.3.2 Dataset

We use the SSPNet Speaker Personality Corpus dataset (25) for personality analysis. SSPNet is

a collection of 640 utterances of french news broadcasts and each audio file has been labeled by

11 raters for the OCEAN traits. The audio files are on average 10 seconds long. The number of

speakers in the dataset are 322. We use this dataset to evaluate the performance of the proposed

voice quality and OCEAN formulae on the task.

9.4.3.3 Results

We extract the OCEAN traits for the SSPNet dataset using our proposed OCEAN formulae, and

perform the binary classification task. We also train a neural network model on the proposed

voice quality formulae (extracted similarly as done in the speaker ID task) and perform the
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Figure 9.4: Accuracy for personality OCEAN traits on the SSP-Net dataset.

OCEAN classification task. We also compare with a baseline model (186), which proposes

to use the frame level low level speech features from opensmile toolkit. They train a neural

auto encoder model. For the second neural network model, the architecture is as follows: it

is a Convolutional Neural Network model followed by a linear layer, ReLU activation and

batch-norm layer, followed by a average pooling to convert the output of the convolutions into

a 64 dimensional vector which is then passed through a linear layer and then softmax to predict

the output into two classes.

Figure 9.4 shows the performance of the proposed voice quality and OCEAN formulae on the

OCEAN trait prediction task.

We observe that OCEAN formulae performance is comparable to the baseline and the voice

quality formulae’s performance. The OCEAN formulae outperforms in Openness, Conscien-

tiousness, Agreeableness. Whereas voice quality formulae outperforms greatly on Neuroticism.

In Extraversion, however the baseline model performs the best compared to others. On average,

on all the traits, the OCEAN formulae achieve the best performance, 78.74%, followed by 76.08%

and then by the baseline model 70.42%.

9.5 Conclusion

One limitation of the current work is the assumption that the relationship between voice

quality and low level feature and secondly between OCEAN and voice quality is linear. The

relationship could in fact be more complicated, i.e. non-linear. Future work in this direction

includes exploring this more complex relationship with the help of neural network.

In conclusion, in this work we proposed formulation for extracting 24 different voice qualities

from low level speech signal properties and henceforth extracting 5 OCEAN traits using the

24 voice qualities. This is the first work, to the best of our knowledge, which gives objective

methodology for extracting voice qualities and OCEAN traits instead of the traditional way of

subjectively describing them. We test the usefulness and correctness of the objective values of

the voice qualities and OCEAN traits in multiple tasks. Firstly, we assess how well do human
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ranking agree with the voice quality formulae ranking on pairs of speech samples. We launch

this experiment for various voice qualities, and find that on average 3.1 / 5 pairs humans agree

with the formulae ranking. Secondly, we assess how well do the voice quality formulae perform

on the speaker identification task and find that on Librispeech clean subset, on a close set

speaker identification task, voice quality formulae can lead to 94.9% accuracy. Thirdly, we

perform personality binary classification task for each of the OCEAN traits on the SSPNet

personality corpus. We find that on average the OCEAN formulae achieves the best performance

of 78.74% compared to the 76.08% achieved by the voice quality formulae and 70.42% by the

baseline method.

Going forward, we change the focus on representing strategies for personality. Widely per-

sonality has been represented on the Big 5 traits, the OCEAN. This representation has been

reached at by analyzing the different ways in which humans describe other or themselves.

However there is little to no work done in order to understand the bases using newer techniques.

Understanding the personality bases impacts the way data is collected, is more in line with the

personality perception by humans and in effect impact the data or knowledge based personality

modeling. In the following chapter, we focus on how current personality representations are

reached at and if the newer techniques agree with traditional understanding.



Chapter 10

Representing Personalities -
Revisiting Personality Bases

Personality has been represented in numerous ways. As stated in Chapter 4.1, these are various

theoretical models, with either 3, 4, 5 etc number of dimensions (bases) on which personality is

defined. Identifying the correct number of dimensions is important as it impacts all downstream

tasks performed on such data. The work done in previous chapter also demonstrates how

important the number of bases on which personality is defined is.

10.1 Introduction

Understanding personality is important for numerous fields, like behavioral science (313),

sociology (314), human-computer interaction (315; 316; 317). The question of what constitutes

‘Personality’ has garnered a lot of interest from various fields. Researchers have tried to

understand how to classify individuals into different personalities (318), how many unique

personalities there are (a good comprehensive summary of which can be found here (319)),

what are the different dimensions that each individual should be classified over, and how should

each dimension be assessed (319). There are numerous propositions for each. One of the most

accepted theories is the Big-5 personality trait theory (169; 170), also called the the OCEAN traits.

OCEAN stands for Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism.

However there are many other theories as well like the NEO Personality Inventory-Revised

(NEO PI-R) (173), Three Dimensions of Personality (PEN) (174), Myers-Briggs Type Indicator

(MBTI) (175) etc, four personality types (177), etc.

Understanding personality is useful for developing technologies that are used for human-

computer interaction. At the least, human interactions with machines can become more natural

if computers are able to understanding personality as humans do. Such technologies can also

aid in the assessment and monitoring of mental health and psychological problems in humans

(320; 321), helping all involved – healthcare providers and affected people – in positive ways.

77
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They can also help predict the long-term susceptibility of individuals to specific types of work,

social situations, and other factors (322).

One way to understanding personality is to identify unique bases across which an individual’s

personality could be described. For example, some works state 5 bases; i.e the OCEAN traits

mentioned earlier. Others state 4 bases (177), and some 3 (174). Infact in earlier works, there

was so much a large range of opinions (323), where Cattell (1973) (324) held the opinion that

the number of bases were as high as 16, while Eysenck (1976) (325) and Wiggins (326) believed

that the number is as low as 2 or 3, the focus being on extraversion and neuroticism being the

most important bases. The question arises as to why are the opinions so diverse, how have

these works landed on these number of bases and is there a way to evaluate how close we are

to the true number of bases? We go into detail on how the 5 widely accepted bases have been

identified in Section ??.

The methodology of identification of these unique bases can be roughly described as follows:

(1) A list of all possible English words are shortlisted which can be used for describing human’s

personality traits, (2) Individuals are either asked to perform self-ratings, where they describe

themselves using a subset of these words, or they describe others using a subset of words, (3)

These ratings are then analyzed using factor extraction methods like principle-component,

varimax and oblique algorithm to reduce the number of dimensions that are most used in

discriminating individuals. In this framework, there are a sources of uncertainty. Firstly,

the involvement of human ratings brings variability of opinions, biases like individual biases,

cultural biases, language differences, etc. Secondly, there is little understanding of the differences

that arise from self ratings versus ratings other individuals.

In this paper, we propose new methodology to verify the already established personality bases,

understand how many ‘number’ of bases are optimal. We analyse that standalone list of words

from previously proposed literature and we use various Large Language Models (LLMs) to

extract their word embeddings and cluster them. We make observations on the optimal number

of clustering of these words. Secondly, we hypothesize that words in context would provide

more information about how they used to describe people/things. We use the Project Gutenberg

(327) and use this dataset to extract sentences in which a collection of personality words are

used. We examine the sentence embeddings from these sentences and make inferences on these.

We propose a metric called cluster entropy to measure the goodness of the cluster sizes. We find

that the cluster entropy is lowest when the cluster size is 2, followed by 5. We also identify the

representative words for different cluster sizes and observe that when the cluster size equals 2,

each LLM model selects words from one of the OCEAN bases. When the cluster size equals 5,

there is a word from each of the 5 OCEAN bases.
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10.2 Background work

One of the widely accepted ways of representing personality is using the OCEAN personality

bases. OCEAN stands for Openness, Conscientiousness, Extraversion, Agreeableness and

Neuroticism. But where do these 5 bases come from? In this section we explore the origin of

these 5 bases.

Originally, Allport and Odbert in 1936 (328) did a landmark lexical study of listing all the

different words from the English dictionary that can be used for describing humans. They

made a collection of 18000 such words (328). Cattell reduced the extensive 18 K list into 4500

trait terms and later reduced it to 35 terms by eliminating different words like synonyms. This

allowed him to perform data analytic techniques on the terms like factor analysis (169; 170). He

identified 12 personality factors which he also included in the 16 personality factor questionnaire

proposed in order to assess an individual’s personality (329).

Norman in 1967 (330) also worked on the original 18K words from Allport and Odbert and

reduced these list of 18K words to just 2800 words in various phases (330). Firstly from the

initial master pool of 18K words, they manually curtailed words. For example, they removed

words that are not used in contemporary discourse, rather pertain to obscure literary, historical

or mythological referents; and they removed words which are broader terms denoting various

anatomical or physiognomic characteristics. Further categorizing on these words lead to a

shorter word list of 2800 terms only. These traits were judged to reflect stable, ”biophysical”

traits, which were further divided into 14 lists of 200 terms each. Later Norman (331) reduced

this list into 75 smaller semantic categories. He did this based on his understanding of the

similarities in words’ meaning. In making his classifications, Norman began by sorting the

terms into a few broad categories, and then he subsequently developed more fine-grained

classifications within each of the initial categories.

Goldberg in 1990 (332; 21) worked on the list of 2800 terms from Norman and used a subset of

1710 words to be included in a self-report inventory of trait-descriptive adjectives. His aim was

to uncover the underlying dimensions in the terms. For this purpose, he employed a number of

students to describe themselves using the terms. Under instructions to work on this task for no

more than an hour at a time, 187 college students (70 men and 117 women) described themselves

on each of the 1,710 terms, using an 8-step rating scale ranging from extremely inaccurate to

extremely accurate as a self-descriptor. Factor extraction methodologies are then performed on

these ratings. like principal-components, principal-factors, alpha-factoring, image factoring,

and maximum-likelihood procedures. In a a similar manner, the 75 Norman categories were

analyzed using a wide variety of such procedures. Goldberg identifies the five-factor space in

English.

Such procedure have repeatedly in various studies led to establishing the five factors. For

example, Tupes and Christal (171) found five relatively strong factors. This five factors have

been replicated by Norman (1963) (331) , Borgatte (333) , and Digman and Takemoto-Chock
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(334) and Goldberg (21). Since these initial landmark studies in the 90’s, these bases have been

widely accepted and there has been little exploration of the bases using newer methodologies.

A high level timeline of work on discovering personality bases in shown in Figure 10.1

The Big-Five personality bases are widely accepted, however there are other competing hy-

pothesis as well. The studies presented in Section ?? falls under the psycho-lexical hypothesis.

The lexical hypothesis assumes that our usage of language and words to describe humans

would reveal the underlying bases of the personality. However opponents to this hypothesis

suggested that the complexity in personality could not be captured by just words alone, and

entire sentences have to be considered. There are other hypothesis like the Five Factor Model

(Costa and McCrae), which propose a different methodology to understand personality. Costa

and McCrae (335) who suggested the NEO personality model, which uses longer sentences for

rating individuals. In connection to this is the BFI-10 questionnaire which assesses people on

these extensive NEO traits.
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Figure 10.1: Timeline of the Development of the Big Five Personality Bases

10.3 Proposed Approach

10.3.1 Dataset

In our to perform our experiment, we require a collection of text where individuals have been

described in diverse manners. For this purpose we use the Project Gutenberg (PG) dataset,

founded in 1971. It is a library of over 70, 000 free eBooks, and more than 3×10e9 word-tokens

(336).
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Table 10.1: Some example sentences. The top part of the table presents sentences for the word ‘talkative-

ness’, where the lower half shows examples for the word ‘silence’.

1. During lunch both girls were struck by his unusual talkativeness.
2. You must forgive my talkativeness; I am hot upon this subject and

forget that others may grow weary of it.

3. The talkativeness of these Europeans […]

4. He spoke also of the talkativeness of his Katie.

5. Often there is restlessness, talkativeness, indifference,

carelessness and disturbances of volition.

1. There was, moreover, great silence in the chamber.

2. […] she, thinking herself snubbed by his silence after her

avowal, grew hot and uncomfortable.

3. Our God shall come, and shall not keep silence;

4. After a long and gloomy silence he spoke again.

5. You needn’t be afraid; I daren’t say more; my silence is prepaid.

6. Francis walked on for some moments in silence.

10.3.2 Analysis

In order to perform our analysis, we use the 75 words reduced by Norman (331). For each word,

we perform two different experiments, where we extract individual word representations from

different Large Language Models (LLMs). Secondly, we extract sentences from the PG dataset

and similarly extract sentence representation from the LLMs. Below we go into detail about

each category of experimentation.

Individual Word Analysis:
We use the 75 words reduced by Norman (331) (note that these 75 words are coming from

the original 18K word list from Allport and Odbert, as described in Section ??)
1
. To extract

the embeddings of the words, we use three different Large Language Models: BERT (109),

Llama (337), OPT (338) and T5 (339). BERT is an encoder-only model, Llama and OPT are a

decoder-only models and T5 is a encoder-decoder model. We cluster these embeddings using

KMeans using different number of clusters.

Sentence Analysis:
Instead of doing the analysis for individual word embeddings, it is important to consider the

context in which they occur. For this purpose, we use the Project Gutenberg collection of books.

The motivation is that books would contain many instances of words used in describing people,

things, or circumstances. These description would be more useful in understanding the usage

of such words and how similarly/dis-similarly these words are used as.

We again use the 75 word list as above from Norman as above. For each of the word in this list,

we identify 10, 000 sentences in PG where these words occur. We extract word embeddings

1

The list of all the words can be found in the GitHub repository here: https://github.com/ydhira/

personality_bases/blob/main/norman_75.txt

https://github.com/ydhira/personality_bases/blob/main/norman_75.txt
https://github.com/ydhira/personality_bases/blob/main/norman_75.txt
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using the three LLMs; Bert, Llama and OPT. Note that for a word that occurs in two sentences,

the word embedding extracted from these two sentences would be different since the embedding

is influenced by the context (what words occur before and after).

We cluster the word embeddings into different number of clusters and calculate the metric

that we call: ‘cluster-entropy’ (CE). CE measures the entropy of all the word embeddings for a

single word belonging to the same cluster. In detail, lets suppose for word w, from sentence k,

whose embedding is denoted as ewk , belongs to cluster ci where i goes from 1 · · ·N where N is

the total number of clusters. Belonging to a cluster is determined by the minimum euclidean

distance of ewk to the cluster center. For all the word embeddings of word w represented as ew ,

we calculate the clusters that it belongs to, and from this calculate the probability of clusters,

simply by counting the times that ci appears in that cluster. The entropy of this probability

vector represents the cluster-entropy for word w. An average over all the words, represents

overall cluster entropy. It could be written as:

CE = Ew[H(pwi)]

where pwi is the probability of word embedding of word w belonging to cluster i

Using NN for reducing cluster entropy:

Instead of using KMeans for clustering, we experiment with using Neural networks for the task

of clustering. We have multiple objective functions to optimize for: 1. Entropy of probability of

an instance belonging to a cluster should be low 2. Entropy of the probability of all the sentence

embeddings for the same word belonging to the same cluster should be low 3. Entropy of the

probability of all the instances belonging to each cluster

Formally, to define the loss function, let the batchsize be N , the output logit be li where i goes

from 1 ·N , and let K be the total number of words.

L1(Φ) =
1

N

N∑
i=1

H(softmax(li))

L2(Φ) =
1

K

K∑
k=1

softmax(li ∈ wk)

L3(Φ) = H(
1

N

N∑
i=1

softmax(li))

L(Φ) = w1(L1(Φ) + w2L2(Φ)− w3L3(Φ)) (10.1)

Φ̂ = argmin
Φ

w1(L1(Φ) + w2L2(Φ)− w3L3(Φ)) (10.2)

where w1, w2, and w3 are weights for combining the losses.
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Figure 10.2: Cluster Entropy across the different configs for each LLM.

Figure 10.3: [Left] Cluster entropy using different number of clusters using the Llama LLM. [Right]

Cluster entropy comparing the different LLM Models and Kmeans model.

We compare the cluster entropy when clustered using KMeans versus Neural Networks. We

discuss the results in the following section.

Cluster Representative Word:

For each cluster, we extract one representative word for that cluster. We do this by picking the

word which appears the most in a cluster, normalized by the word frequency. We compare the

representative word for when KMeans is used for clustering versus when Neural Networks are

used for clustering.

10.4 Experimental Validation and Results

10.4.1 Cluster Entropy

Figure 10.3 shows the cluster entropy achieved when the number of clusters are set to 2,4,5,6,8,10

and using embeddings extracted from the llama model. We experiment with three different

weight settings as shown in equation (1), which are labeled as mlp 1, mlp 2, and mlp 3 in figure

10.3. We can observe the neural networks are able to perform better clustering than KMeans is

able to, by observing that the cluster entropy is lower for mlp models compared to the kmeans
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Figure 10.4: Representative words from the different models using different number of clusters (c). E.g.

the number of cluster is shown as c=2, when the number of clusters=2.

model. We can also observe that the trend of the cluster entropy is similar across the mlp

models, where the lowest cluster entropy is when the number of clusters are 2, 5, 6 and 8.

The lower part of Figure 10.3 shows the cluster entropy for the four different LLM used. We

can observe that llama embeddings lead to better cluster entropy compared to the other models,

we can also observe that the consistently the cluster entropy is lowest or similar to the previous

cluster number is 5, otherwise the cluster entropy is not consistent at a given cluster number

across the LLMs. This points at the stability of when the number of clusters are set at 5.

10.4.2 Cluster Representatives

The identified cluster representative words are shown in figure 10.4. We show the identified

words for different number of clusters across the different LLMs. We can observe the level of

agreement that different LLMs have for each value of c. We will go into depths of two scenarios:

when the number of clusters is 2 and when it is 5.

Two Clusters
When the number of clusters is set at two, the two cluster center identified by Bert are ‘silence’

and ‘talkativeness’. These dimension has also been observed previously has the dimension

with the most discriminative power in the factor analysis methodologies, reported in (171).

Another interpretation of this finding is that these two words point towards the introversion

and extroversion category established in the Big-5 trait hypothesis. At a higher level, one

big observation is that each model picks out two words in the Big 5 OCEAN traits (21). For

example, Bert picks out silence-talkativeness from the Extraversion bases. Llama picks outs

Talkativeness-Energy also from Extraversion bases. OPT picks Order-Boisterousness from the
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Figure 10.5: Bar chart shows the Jaccard Index between representatives words within each LLM as a

function of the number of clusters used.

Conscientiousness scale. T5 picks self pity-Negligence from the Neuroticism scale. This is an

interesting observation since individually these bases seem to be the most informative when it

comes to dividing personality into two clusters.

Five Clusters
When the number of clusters is set at five, it can be observed that each representative words

comes from one of the OCEAN bases as listed in (21), especially in Bert and Llama. For

Bert, silence is from Extraversion bases, Order is from Conscientiousness bases, Objectivity

is Openness, Negligence is from Neuroticism and Greed is from Agreeableness. For Llama,

Vindictiveness is from Neuroticism, Reflection is from Extraversion, Boisterousness is from

Conscientiousness, Art is from Openness and Agreeableness is from Agreeableness. For OPT and

T5, there are less than 5 words highlighted because the same word is picked as a representative

word for more than one cluster, therefore there is an overlap. For OPT, vindictiveness is

Neuroticism, self-reliance is Openness, order is Conscientiousness, evangelism is Extraversion.

For model T5, self-reliance is Openness, evangelism and adventure is Extraversion.

Agreement Within the Same LLMs

In order to assess how often do different configurations of the LLMs results in the same

representative words, we calculate Jaccard Index of the representative words. Jaccard Index

(JI), measures the similarity between two finite sets. It is defined as the size of the intersection

divided by the size of the union of the sample sets. Figure 10.5 shows the bar chart of average

jaccard index over different configurations for each LLMs over the different number of clusters.

We can observe that when the cluster=2, OPT model results in JI equals to 1. LLama results in

higher JI when clusters=4, T5 results in high JI when clusters=5,6, and 8, and Bert results in

high JI when clusters=10.
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Figure 10.6: Heatmap shows that average Jaccard Index between the different LLMs.

Agreement Between Different LLMs
To assess the level of agreement in between the different LLMs, we calculate Jaccard Index over

all the different configurations and over all the clusters sizes. Figure 10.6 shows the heatmap

of the average JI in between the different LLMs. We can observe that on average T5 has the

highest JI, followed by OPT, Bert and then Llama. Bert and T5 tend to agree more, followed by

Bert and OPT and then OPT and T5.

10.5 Conclusion

In this work, our aim is to uncover the main bases across which personality could be best

represented in. Traditionally personality is widely represented on the OCEAN traits, which had

been established in the 1900’s and the field has not been revisited recently. In this work, we

aim to utilize newer methodologies to re-analyze the lexical bases on top of which the OCEAN

traits are based on. We utilize language models, including Bert, Llama, OPT and T5 to extract

context representations of words identified in earlier works for personality analyses. Using

these higher dimension representations, we first identify the metric called cluster-entropy based

on the purity of a cluster-size which best clusters the lexical bases. When the cluster size is

4, considering all the 4 LLMs, we observe that the variance in cluster entropy is the smallest,

followed closely by cluster size of 5. We also identify representative word for each cluster, and

observe that interestingly the representative word comes from each of the 5 OCEAN bases

when cluster size is 5. In conclusion, according to the cluster entropy metric, bases 4 an 5 are

the most optimum number where most models.
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Chapter 11

Conclusion and Future Directions

11.1 Thesis Conclusion

This thesis delves into the topic of understanding psychological traits from human speech,

focusing on emotion and personality. We divide the pipeline of understanding psychological

traits into three components. The first part is the ‘encoding process’ - where the psychological

trait encodes into various signals including the speech signal, which is then communicated. The

second part is the ‘decoding process’ which involves how the features encoded in the signals (i.e

the speech signal) can be decoded from it and optimally used to understand the trait. Thirdly the

‘representation process’ - which tries to entangle the problem of representing the psychological

traits.

The three constituents of the understanding pipeline are dealt individually for both emotion

and personality. Firstly for encoding emotions, we delve deeper into how the encoding process

in humans differ when expressing natural versus acted emotion. We perform this study by

focusing on the phonetic bases of the vocal expression. Phonetic bases of emotion comprise

‘what’ phonemes are used and the ‘manner’ they are delivered in to express the emotion. We

find statistically significant differences in the expression of phonemes under acted and natural

expression. We find that fricatives, stops and nasal are more important in natural speech than

in acted speech for classifying for emotion. We also find that vowels are more important in

acted speech than in natural speech.

Secondly for decoding emotions from speech we delve deeper into how the specific features

in speech carry information about emotions. There are an array of speech features, including

acoustic, prosodic features that have been studied for the task, however one very important

feature, the ‘cadence’ of speech has not been. That is because it is difficult to quantify cadence

and secondly to utilize it in a methodical way in determining emotions. We present a way

in which cadence of speech signal can be used methodologically and in addition cadence of

other modalities like the word sequence and phoneme sequence, can be used for understanding

emotion. Our experimentation analysis reveal that cadence is a very beneficial feature to utilize
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in understanding emotion and boosts performance significantly leading to a 5.9% improvement

in IEMOCAP and 7.5% improvement in CMU-MOSI. We also find that the cadence of each

modality is different from each other and need to be modeled separately. Most importantly, our

findings suggest that if the cadence is modeled well, it eliminates the need to align modalities

together.

Thirdly, we focus on ways in which emotion representation can be improved for their un-

derstanding. Emotions have traditionally been modeled as discrete (angry, happy, sad), or in

three dimensional continuous space representing valence, activation and dominance (VAD).

In our first study, we focus on how these two views of emotions could be combined together

to utilize their complementary information for better emotion understanding. We propose a

hierarchical multitask neural network architecture, where the discrete and continuous emotion

representations are predicted in a multi task framework. We find that they do have comple-

mentary information and using both views brings benefits in the detection task leading to

a 1.2% accuracy improvement in discrete classification and 0.09 CCC improvement for VAD

prediction in IEMOCAP. Secondly, we move beyond these traditional views of emotions and use

the natural way that humans describe emotions in real life. Emotions can be described in greater

detail using the flexibility that natural-language provides. We note that there are multiple

acoustic correlates of emotion and use these acoustic features to expand the natural language

descriptions of emotion. We use this for training a Contrastive-Language-Audio model and show

that indeed using these longer acoustic descriptions, we improve the emotion classification

performance on top of using simple emotion labels, leading to 5.6% relative improvement in

Ravdess dataset. Furthermore, instead of using explicit acoustic prompts, we allow the model

to learn such prompts automatically while training, which is called ‘prefix’. Using this strategy,

we improve on the emotion classification task under various settings: ‘zero shot’, and ‘few shot’

and in-domain, for example this strategy leads to 36.58% relative improvement in Ravdess zero

shot setting.

In the second half of this thesis, we delve into understanding personality from speech. Firstly, we

focus on what features encoded in the speech could be best used to understanding personality.

Due to the lack of labeled speech data for the task and also the low reliability (low inter annotator

agreement) of the labeled data, we take a more knowledge base approach. In order to study

the ‘encoding’ of personality in speech, we dive deeper into literature studying effects on voice

per personality trait, finding that personalities have a specific effect on the voice, for example

high extroverted personalities have more loudness and more jittery voices. This motivated us

to hand-craft feature sets for studying personality. We validate our hand crafted features sets

collecting human labels on them and on multiple down stream tasks like speaker identification

and personality analysis. We find that our handcrafted features lead to better results on certain

personality traits like openness, consciousnesses, extraversion and agreeableness.

Secondly we delve a bit deeper into how personality representation can be improved. Tradi-

tionally, personality is represented using the Big-5 OCEAN traits. However these five bases

have been established a long time ago, with the help of human annotations and low amount of
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data. With availability of more data, and Large Language Models (LLM), we revisit discovering

the bases that are emerge from the understanding that LLMs have. We find that 2 bases are the

most informative when grouping people, followed by 4 and then 5. However when focusing on

the 5 bases, we find that the model anchors on the identified OCEAN bases, which validates the

bases already established.

11.2 Future Directions

The work done in this thesis has implications in research and development. I list a few ideas

here, in the hopes that who ever is reading this thesis gets inspired to take these ideas forward.

11.2.1 Incorporating emotion and personality models in the physical world

The progress that Artificial Intelligence has made in the recent years has been phenomenal.

This progress when incorporated into products that people can interact with is the ultimate

test of the potential and progress of AI. One example of this is the advancement in Large

Language Models, and the phenomenal adaptation of ChatGPT by users all around the world. I

believe that psychological traits like emotion and personality are an integral part of seamless

communication between humans and machines. Human computer interaction would need to

incorporate the ‘encoding’, ‘decoding’ and ‘understanding’ of the psychological traits, and such

models would need to be effective, scalable, reliable and should have low latency.

11.2.2 Psychological trait understanding in the wild

Building on top of the previous point, one of the big requirements to incorporate emotion and

personality models in physical objects is the need for it to work over multiple domains. It needs

to work irrespective of the culture, age, gender, language etc differences between the users. This

also remains one of the most challenging problems in the field. With the advent of foundation

models in various fields, and their exhibit of developing emergent properties, I believe that such

models would work well for this task as well, and provide a solution for domain adaptation in

this very subjective task.

11.2.3 Revisiting the categorization of the psychological traits

We made an attempt in this direction by firstly combining multiple emotion representations, or

coming up with natural language descriptions for the emotions, or re evaluating the bases for

personality. However I believe that there is still potential in this direction. Having a single set

of defined classes for emotion or personality limits any model’s ability to learn generalizable

representations, and there has to be a way to incorporate subjectivity in the way the classes are
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established. This area is relatively new with our work being the first using LLMs or contrastive

models for learning new ways of representing emotions and personality, and I believe it is an

important one worth exploring.
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and Tim H Stelkens-Kobsch, “Mapping discrete emotions in the dimensional space: an

acoustic approach,” Electronics, vol. 10, no. 23, pp. 2950, 2021.

[81] J.A. Russell, “A circumplex model of affect,” Journal of personality and social psychology,

vol. 39, no. 6, pp. 1161–1178, 1980.

[82] Eddie Harmon-Jones, Cindy Harmon-Jones, and Elizabeth Summerell, “On the importance

of both dimensional and discrete models of emotion,” Behavioral sciences, vol. 7, no. 4, pp.

66, 2017.

[83] Hira Dhamyal, Bhiksha Raj, and Rita Singh, “Positional encoding for capturing modality

specific cadence for emotion detection,” Proc. Interspeech 2022, pp. 166–170, 2022.

[84] Rui Xia and Yang Liu, “A multi-task learning framework for emotion recognition using

2d continuous space,” IEEE Transactions on affective computing, vol. 8, no. 1, pp. 3–14,

2015.

[85] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini

Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al., “Learning

transferable visual models from natural language supervision,” in International Conference
on Machine Learning. PMLR, 2021, pp. 8748–8763.

[86] Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, and Huaming Wang,

“Clap: Learning audio concepts from natural language supervision,” arXiv preprint
arXiv:2206.04769, 2022.



Bibliography 99

[87] Andrey Guzhov, Federico Raue, Jörn Hees, and Andreas Dengel, “Audioclip: Extending

clip to image, text and audio,” in ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022, pp. 976–980.

[88] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Chan-

ning Moore, Manoj Plakal, and Marvin Ritter, “Audio set: An ontology and human-labeled

dataset for audio events,” in 2017 IEEE international conference on acoustics, speech and
signal processing (ICASSP). IEEE, 2017, pp. 776–780.

[89] Justin Salamon, Christopher Jacoby, and Juan Pablo Bello, “A dataset and taxonomy

for urban sound research,” in Proceedings of the 22nd ACM international conference on
Multimedia, 2014, pp. 1041–1044.

[90] Karol J Piczak, “Esc: Dataset for environmental sound classification,” in Proceedings of
the 23rd ACM international conference on Multimedia, 2015, pp. 1015–1018.

[91] Sinuo Deng, Ge Shi, Lifang Wu, Lehao Xing, Wenjin Hu, Heng Zhang, and Ye Xiang,

“Simemotion: A simple knowledgeable prompt tuning method for image emotion clas-

sification,” in International Conference on Database Systems for Advanced Applications.
Springer, 2022, pp. 222–229.

[92] Rebecca Jürgens, Annika Grass, Matthis Drolet, and Julia Fischer, “Effect of acting

experience on emotion expression and recognition in voice: Non-actors provide better

stimuli than expected,” Journal of nonverbal behavior, vol. 39, no. 3, pp. 195–214, 2015.

[93] Janneke Wilting, Emiel Krahmer, and Marc Swerts, “Real vs. acted emotional speech,” in

Ninth International Conference on Spoken Language Processing, 2006.

[94] Klaus R Scherer, “Vocal markers of emotion: Comparing induction and acting elicitation,”

Computer Speech & Language, vol. 27, no. 1, pp. 40–58, 2013.

[95] Oliver Sacks, “The president’s speech,” Language, Communication and Education, p. 23,

1985.

[96] Tom Johnstone and Klaus R Scherer, “The effects of emotions on voice quality,” in

Proceedings of the XIVth international congress of phonetic sciences. Citeseer, 1999, pp.

2029–2032.

[97] Klaus R Scherer and James S Oshinsky, “Cue utilization in emotion attribution from

auditory stimuli,” Motivation and emotion, vol. 1, no. 4, pp. 331–346, 1977.

[98] Carl E Williams and Kenneth N Stevens, “Emotions and speech: Some acoustical cor-

relates,” The Journal of the Acoustical Society of America, vol. 52, no. 4B, pp. 1238–1250,

1972.

[99] Blake Myers-Schulz, Maia Pujara, Richard C Wolf, and Michael Koenigs, “Inherent

emotional quality of human speech sounds,” Cognition & emotion, vol. 27, no. 6, pp.

1105–1113, 2013.



Bibliography 100

[100] Klaus R Scherer, Tom Johnstone, and Gundrun Klasmeyer, “Vocal expression of emotion,”

Handbook of affective sciences, pp. 433–456, 2003.

[101] Sona Patel, Klaus R Scherer, Eva Björkner, and Johan Sundberg, “Mapping emotions into

acoustic space: The role of voice production,” Biological psychology, vol. 87, no. 1, pp.

93–98, 2011.

[102] Cynthia Whissell, “Phonosymbolism and the emotional nature of sounds: evidence of the

preferential use of particular phonemes in texts of differing emotional tone,” Perceptual
and Motor Skills, vol. 89, no. 1, pp. 19–48, 1999.

[103] Shahan Ali Memon, Hira Dhamyal, Oren Wright, Daniel Justice, Vijaykumar Palat,

William Boler, Bhiksha Raj, and Rita Singh, “Detecting gender differences in perception

of emotion in crowdsourced data,” arXiv preprint arXiv:1910.11386, 2019.

[104] “Podcast Directory,” https://www.npr.org/podcasts/.

[105] “Top collections at the archive,” https://archive.org/.

[106] Amazon Mechanical Turk, “Amazon mechanical turk,” Retrieved August, vol. 17, pp. 2012,

2012.

[107] Frank Wilcoxon, “Individual comparisons by ranking methods,” in Breakthroughs in
statistics, pp. 196–202. Springer, 1992.

[108] “Google Speech To Test,” https://cloud.google.com/speech-to-text/.

[109] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, “Bert: Pre-

training of deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[110] Paul Lamere, Philip Kwok, Evandro Gouvea, Bhiksha Raj, Rita Singh, William Walker,

Manfred Warmuth, and Peter Wolf, “The cmu sphinx-4 speech recognition system,” in

IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP 2003), Hong Kong, 2003,

vol. 1, pp. 2–5.

[111] Navonil Majumder, Devamanyu Hazarika, Alexander Gelbukh, Erik Cambria, and Sou-

janya Poria, “Multimodal sentiment analysis using hierarchical fusion with context

modeling,” Knowledge-based systems, vol. 161, pp. 124–133, 2018.

[112] Miriam Kienast and Walter F Sendlmeier, “Acoustical analysis of spectral and temporal

changes in emotional speech,” in ISCA Tutorial and Research Workshop (ITRW) on Speech
and Emotion, 2000.

[113] Thomas Goldbeck, Frank Tolkmitt, and Klaus R Scherer, “Experimental studies on vocal

affect communication.,” 1988.

[114] Janneke Iven, “The effect of emotional valence on word choice,” 2017.

https://www.npr.org/podcasts/
https://archive.org/
https://cloud.google.com/speech-to-text/


Bibliography 101

[115] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[116] Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-Philippe Morency, “Mosi: multimodal

corpus of sentiment intensity and subjectivity analysis in online opinion videos,” arXiv
preprint arXiv:1606.06259, 2016.

[117] Jinhwan Park, Chanwoo Kim, and Wonyong Sung, “Convolution-based attention model

with positional encoding for streaming speech recognition on embedded devices,” in

2021 IEEE Spoken Language Technology Workshop (SLT). IEEE, 2021, pp. 30–37.

[118] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhut-

dinov, and Abdelrahman Mohamed, “Hubert: Self-supervised speech representation

learning by masked prediction of hidden units,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 29, pp. 3451–3460, 2021.

[119] Amir Zadeh and Paul Pu, “Multimodal language analysis in the wild: Cmu-mosei dataset

and interpretable dynamic fusion graph,” in Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Long Papers), 2018.

[120] Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei

Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, et al., “Conformer: Convolution-

augmented transformer for speech recognition,” arXiv preprint arXiv:2005.08100, 2020.

[121] Geng Tu, Jintao Wen, Hao Liu, Sentao Chen, Lin Zheng, and Dazhi Jiang, “Exploration

meets exploitation: Multitask learning for emotion recognition based on discrete and

dimensional models,” Knowledge-Based Systems, vol. 235, pp. 107598, 2022.

[122] Ehab A. Albadawy and Yelin Kim, “Joint discrete and continuous emotion prediction

using ensemble and end-to-end approaches,” in Proceedings of the 18th ACM International
Conference on Multimodal Interaction, New York, NY, USA, 2018, ICMI 2018, pp. 366–375,

ACM.

[123] R. Lotfian and C. Busso, “Building naturalistic emotionally balanced speech corpus by

retrieving emotional speech from existing podcast recordings,” IEEE Transactions on
Affective Computing, vol. 10, no. 4, pp. 471–483, October-December 2019.

[124] Hira Dhamyal, Shahan Ali Memon, Bhiksha Raj, and Rita Singh, “The phonetic bases of

vocal expressed emotion: Natural versus acted,” Proc. Interspeech 2020, pp. 3451–3455,

2020.

[125] Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki Hayashi, Jiro Nishitoba, Yuya

Unno, Nelson Enrique Yalta Soplin, Jahn Heymann, Matthew Wiesner, Nanxin Chen,

Adithya Renduchintala, and Tsubasa Ochiai, “ESPnet: End-to-end speech processing

toolkit,” in Proceedings of Interspeech, 2018, pp. 2207–2211.



Bibliography 102

[126] Roshan Sharma, Tyler Vuong, Mark Lindsey, Hira Dhamyal, Rita Singh, and Bhiksha Raj,

“Self-supervision and learnable strfs for age, emotion, and country prediction,” arXiv
preprint arXiv:2206.12568, 2022.

[127] Pooyan Safari, Miquel India, and Javier Hernando, “Self-attention encoding and pooling

for speaker recognition,” Proc. Interspeech 2020, pp. 941–945, 2020.

[128] Sundararajan Srinivasan, Zhaocheng Huang, and Katrin Kirchhoff, “Representation

learning through cross-modal conditional teacher-student training for speech emotion

recognition,” in ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2022, pp. 6442–6446.

[129] Md Asif Jalal, Rosanna Milner, and Thomas Hain, “Empirical interpretation of speech

emotion perception with attention based model for speech emotion recognition,” in

Proceedings of Interspeech 2020. International Speech Communication Association (ISCA),

2020, pp. 4113–4117.

[130] Yang Li, Constantinos Papayiannis, Viktor Rozgic, Elizabeth Shriberg, and Chao Wang,

“Confidence estimation for speech emotion recognition based on the relationship between

emotion categories and primitives,” in ICASSP 2022-2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2022, pp. 7352–7356.

[131] Edmilson Morais, Ron Hoory, Weizhong Zhu, Itai Gat, Matheus Damasceno, and Hagai

Aronowitz, “Speech emotion recognition using self-supervised features,” in ICASSP 2022
- 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2022, pp. 6922–6926.

[132] Meysam Shamsi and Marie Tahon, “Training speech emotion classifier without categorical

annotations,” arXiv preprint arXiv:2210.07642, 2022.

[133] Reza Lotfian and Carlos Busso, “Building naturalistic emotionally balanced speech corpus

by retrieving emotional speech from existing podcast recordings,” IEEE Transactions on
Affective Computing, vol. 10, no. 4, pp. 471–483, 2017.

[134] Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe Kazemzadeh, Emily Mower, Samuel Kim,

Jeannette N. Chang, Sungbok Lee, and Shrikanth S. Narayanan, “Iemocap: interactive

emotional dyadic motion capture database.,” Language Resources and Evaluation, vol. 42,

no. 4, pp. 335–359, 2008.

[135] Soujanya Poria, Devamanyu Hazarika, Navonil Majumder, Gautam Naik, Erik Cambria,

and Rada Mihalcea, “MELD: A multimodal multi-party dataset for emotion recognition

in conversations,” in Proceedings of the 57th Annual Meeting of the Association for Compu-
tational Linguistics, Florence, Italy, July 2019, pp. 527–536, Association for Computational

Linguistics.

[136] Robert Plutchik, The emotions, University Press of America, 1991.



Bibliography 103

[137] Paul Ekman, Are there basic emotions?, American Psychological Association, 1992.

[138] Shahan Ali Memon, Hira Dhamyal, Oren Wright, Daniel Justice, Vijaykumar Palat,

William Boler, Bhiksha Raj, and Rita Singh, “Detecting gender differences in perception

of emotion in crowdsourced data,” arXiv preprint arXiv:1910.11386, 2019.

[139] Robert W Frick, “Communicating emotion: The role of prosodic features.,” Psychological
bulletin, vol. 97, no. 3, pp. 412, 1985.

[140] Klaus R Scherer, “Acoustic concomitants of emotional dimensions: Judging affect from

synthesized tone sequences.,” 1972.

[141] Aneta Pavlenko, Emotions and multilingualism., Cambridge University Press, 2005.

[142] Soham Deshmukh, Benjamin Elizalde, and Huaming Wang, “Audio retrieval with wav-

text5k and clap training,” arXiv preprint arXiv:2209.14275, 2022.

[143] Weixing Wang, Qianqian Li, Jingwen Xie, Ningfeng Hu, Ziao Wang, and Ning Zhang,

“Research on emotional semantic retrieval of attention mechanism oriented to audio-visual

synesthesia,” Neurocomputing, vol. 519, pp. 194–204, 2023.

[144] Ha Thi Phuong Thao, Gemma Roig, and Dorien Herremans, “Emomv: Affective music-

video correspondence learning datasets for classification and retrieval,” Information
Fusion, vol. 91, pp. 64–79, 2023.

[145] Qiuqiang Kong, Yin Cao, Turab Iqbal, Yuxuan Wang, Wenwu Wang, and Mark D Plumbley,

“Panns: Large-scale pretrained audio neural networks for audio pattern recognition,”

IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 2880–2894,

2020.

[146] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-

thony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al., “Hug-
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Vegas, Miguel Ortı́-Pareja, Teresa Gasalla, José Antonio Molina, and Esteban Garcı́a-Albea,
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