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Abstract

In recent years, the community has witnessed the enormous progress of deep neural network

models in matching or even surpassing human performance on a variety of speech and audio

tasks, including Automatic Speech Recognition (ASR), Spoken Language Understanding (SLU),

Text-to-Speech (TTS), etc. However, their impressive and powerful achievement is predomi-

nantly dependent on training with a large set of data defined by a particular and rigid task. In

such a paradigm, the model is expected to learn universal knowledge from a static entity of

data and stationary environments. In contrast, the real world is inherently ever-changing and

non-stationary. New data is often generated and collected every second in a stream format, and

novel classes may also emerge from time to time. Without proper adaptation techniques, the

knowledge learned in the past might be erased easily when the model is learning subsequent

tasks, thus resulting in overall performance degradation. Such a phenomenon is called catas-

trophic forgetting, which limits the practical use and expansion of many deep neural network

models.

In recent years, continual learning has emerged as a new machine learning paradigm that

enables artificial intelligence (AI) systems to learn from a continuous stream of data and in-

crementally improve their performance over time. By adapting to changing environments

and user needs, continual learning aims to address the catastrophic forgetting effect, so that

the model can gradually extend the knowledge it acquires without drastically forgetting the

knowledge that has been learned in the past. Such a property is crucial in practical applications

to enable artificial systems to learn from the infinite streams of data of the changing world in

a lifelong manner.

This thesis mainly focuses on the underexplored area of how continual learning techniques can

be applied in speech and audio tasks. We will introduce the background and formulations of

multiple continual learning scenarios, including data-incremental, class-incremental and task-

incremental settings. Then we will present how different continual learning categories can be

applied to different modules of the modeling pipeline. We propose methods to apply continual

learning algorithms in three speech and audio tasks, including automatic speech recognition,

acoustic scene classification, and spoken language understanding. We then propose to extend

the existing work to the speech enhancement task. We believe that this thesis provides an over-

all exploration of continual learning scenarios in various speech and audio tasks, and makes

an important step towards realizing lifelong learning of speech interfaces.



Contents

Abstract i

1 Introduction 1

1.1 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis Organization and Contributions . . . . . . . . . . . . . . . . . . . . . . 4

2 Technical Background 6

2.1 Formulations of Continual Learning . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Family of Continual Learning Scenarios . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Family of Continual Learning Methods . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Challenges of Continual Learning in Speech and Audio Applications . . . . . 9

3 Continual Learning - Automatic Speech Recognition 11

3.1 Background and Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Continual Learning - Acoustic Scene Classification 18

4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Datasets and Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.5 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Continual Learning - Spoken Language Understanding 26

5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

ii



Contents iii

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Proposed work 33

6.1 Multimodal Contrastive Continual Learning in SLU . . . . . . . . . . . . . . . 33

6.2 Task-incremental SLU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3 Continual Learning in Speech Enhancement . . . . . . . . . . . . . . . . . . . 36

7 Thesis Timeline 37

Bibliography 38



Chapter 1

Introduction

In the real world, human perception typically has the ability to continually learn new informa-

tion and skills based on their prior experience, and apply it to later scenarios. In other words,

humans can accumulate new knowledge together with their old knowledge without abruptly

forgetting about it. However, such a property is non-trivial for artificial systems and machine

learning (ML) models, where the phenomenon of catastrophic forgetting may happen (French,

1999). The recommender system in Netflix or other similar websites would be a simple example

for this case. Recommender systems collect user data periodically over time when the users are

interacting with the systems. As time elapses, customer interest may change across different

categories of movies and shows, e.g., from action to romance. Well-performing recommender

systems are expected to adjust themselves according to specific user behaviors so that they

can give more accurate recommendations on the movies or shows that the customer may be

interested in. During the continual updating process of user data, the system should not care

about only the newly collected data, but should have a comprehensive analysis of the interest

of the customers by combining it with the history data as well. This is an effortless task for

humans, but remains a challenge for machines if no proper adaptation techniques are applied.

Typically, for artificial models like recommender systems, when learning on some new ad-

ditional data, the knowledge of previously learned content tends to be forgotten if it is not

recalled again, especially the knowledge that is learned a very long time ago. On one hand, if

the old customer data is recalled every time when new data arises, some issues about compu-

tation efficiency, memory saving or even privacy concerns might be problematic. On the other

hand, if the system only has access to limited data every time when new data is incoming,

instead of training the model with all past data at one time, the generalizability of the whole

model might be downgraded.

Continual learning, or lifelong learning, aims to circumvent the catastrophic forgetting effect

with the goal of continually adapting the model by learning from infinite streams of data (Kirk-

patrick et al., 2017). In contrast, isolated learning refers to the common paradigm where models

are trained on a fixed and rigid set of data, where no other related information and previously

1



Introduction 2

learned knowledge are taken into consideration (Chen and Liu, 2018). Human perception dif-

fers from isolated learning by retaining past knowledge to find its similar aspects to the new

situation, so that they can adapt to the ever-changing environments in the practical world.

The inspiration for continual learning is to mimic such a human recognition process for ML

models.

The catastrophic forgetting phenomenon refers to the fact that the adaptation of ML models to

an unseen data distribution generally leads to a degradation of its ability to capture the char-

acteristics of the old distributions. This trade-off is also called the stability-plasticity dilemma

(Mermillod et al., 2013). Assuming a model is continuously witnessing new tasks in chrono-

logical order. Memory stability prefers the model to be as stable as possible so that it will not

erase the knowledge learned in the past tasks, while learning plasticity expects the model to

have a high generalizability so that it could accommodate the new data distribution from the

knowledge of the old ones. As a formulation, let’s denote the current state of a system as x,

and the previous state as x0. f is the system response. Then, a simple form of the new system

response can be expressed as:

f(x) ≈ f(x0) + f ′(x0)(x− x0) (1.1)

where a smaller f ′(x0) indicates a higher stability, as the model will be relatively resistant to

changes brought by the new state. Similarly, a larger f ′(x0) represents a higher plasticity.

To address the stability-plasticity dilemma, most existing research in continual learning of

machine learning models has focused on tasks such as computer vision and reinforcement

learning (Chen and Liu, 2018; Aljundi et al., 2017; Shin et al., 2017). However, limited research

has been done on speech and audio applications and it still remains an underexplored area. As

one of the most widely used and informative signals that play a crucial role in human commu-

nication, a continual learning manner of speech and audio models would take full advantage

of the plentiful amount of data collected in daily life, including meetings, talks, conversations,

environmental sounds, etc. Meanwhile, with the increasing use of voice assistants and speech-

enabled devices, it has also become increasingly necessary to investigate continual learning in

speech and audio applications so that the interaction system can effectively satisfy the person-

alized demand of users. Moreover, continual learning can help speech and audio models adapt

to new tasks or environments as they arise, without requiring a large amount of new training

data or retraining from scratch. This can help save a considerable amount of time and resources

while enabling the development of more flexible and adaptive speech and audio technologies.

1.1 Thesis Overview

This thesis begins by introducing the general definition and objective of continual learning in

Chapter 1. In Chapter 2, we will first define the formulation for continual learning problems,
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and then introduce various types of continual learning scenarios under different settings, in-

cluding data-incremental, class-incremental, and task-incremental learning. After that, we will

also present the family of continual learning methods, including rehearsal, architecture, and

regularization methods. Lastly, we will summarize the main challenges of continual learning

in speech and audio tasks. Different scenarios in various speech and audio tasks enable us to

choose different categories of continual learning methods to solve the corresponding problems.

From Chapter 3 to Chapter 5, we demonstrate three continual learning applications in speech

and audio tasks, including Automatic Speech Recognition (ASR), Acoustic Scene Classification

(ASC), and Spoken Language Understanding (SLU).

First, we define a data-incremental learning setting in end-to-end ASR, where continuous

streams of speech become available in sequential order and there are no explicitly defined

task boundaries, and the small sets of new unseen data are incoming in an online manner.

This setting is challenging because we only have limited access to the training data each time.

In this case, the ASR model is intrinsically trained on the same task but different domains of

speech data, where the domain shift can refer to speech contents with different languages, ac-

cents, speakers, and topics, etc, therefore it is called data-incremental learning. To address the

incremental data under this setting, one common approach is to combine both the past and

current data, and retrain the model with the accumulated training set. However, this proce-

dure takes significant time and computational resources, and becomes increasingly unrealistic

when the amount of data is continuously growing over time. Instead, we lead an investigation

into rehearsal continual learning methods, which address the trade-off between computation

efficiency and online performance in data-incremental end-to-end ASR by saving an episodic

memory for the past data.

In the next part, we will focus on the class-incremental learning scenario in ASC. The chal-

lenge of class-incremental learning is mainly from the unseen classes emerging streamingly.

The learner has to incorporate knowledge of new classes incrementally and build a holistic

classifier among all seen classes. Therefore, we apply ASC as a task to demonstrate the effect

of class-incremental continual learning in the audio domain. To recognize unseen acoustic

scenes, humans can associate new sound categories with specific acoustic scenes based on

their extensive life experiences. In our ASC modeling, we also base on rehearsal continual

learning approaches, which save a small subset of past data into a memory buffer for each

of the acoustic scene classes. When new classes of acoustic scenes arise in the subsequent

training process, the memory buffer is used to replay samples. In the class-incremental learn-

ing scenario of ASC, by encouraging the encoder and the classifier to learn task-agnostic and

task-specific knowledge, we design a mutual information-based sampling strategy to select the

most representative and informative samples from the past.

Finally, we will formulate the class-incremental learning setting in SLU by focusing on two

relevant tasks, intent classification and slot filling. As a class-incremental learning scenario,

new types of intents and entities are emerging over time in SLU. Different from ASC, the lexical
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richness enables us to treat the problems of intent classification and slot filling as a sequence-

to-sequence (seq2seq) problem, where the intents and entities are generated along with the

transcriptions. In the seq2seq architecture, the decoder will also be affected by catastrophic

forgetting as the encoder. Under this setting, we combine both rehearsal and regularization

continual learning methods via knowledge distillation (KD) to moderate the forgetting effect

at both the encoder and decoder levels. By regarding the previous model as a teacher and the

current model as a student, we apply KD to transfer knowledge from the teacher network to

the student network, thus achieving the objective of continual learning. We will propose three

KD techniques at different levels of the architecture of the SLU model, including audio-KD,

token-KD, and sequence-KD, and conduct a study to demonstrate that adding more KDs at

different levels will increasingly boost the overall SLU performance.

In summary, this thesis provides a comprehensive study of the application of continual learning

approaches in various speech and audio tasks. We design different continual learning scenar-

ios for corresponding tasks, including data-incremental and class-incremental learning. We

then develop different categories of continual learning methods under specific scenarios. By

demonstrating that appropriate continual learning methods can alleviate the catastrophic for-

getting effect of ML models, we make a step forward in the direction of addressing the stability-

plasticity dilemma in speech and audio applications, thus increasing their practicability in the

real world.

1.2 Thesis Organization and Contributions

We describe the organization and contributions of the thesis as follows.

Organization:

• 1. Overview We begin the thesis by providing an overview of the necessity and

motivation of continual learning, and then introduce its general definition and a thesis

overview in Chapter 1

• 2. Background In Chapter 2, we will illustrate basic background knowledge of contin-

ual learning, including defining its formulation, introducing the family of various contin-

ual learning scenarios and methods, and explaining the challenges of continual learning

in speech and audio applications.

• 3. Completed Work Chapter 3 to Chapter 5 are organized into three parts, which

introduce how continual learning can be applied in three speech and audio tasks with

different strategies.

• 4. ProposedWork Based on the completed work, this chapter proposes to investigate

how to select different objectives of rehearsal methods for rehearsal samples and ongoing

samples respectively. Furthermore, we propose to explore the task-incremental learning
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setting aside from the data-incremental and class-incremental ones in the completed

work.

Contributions:

• We define a novel data-incremental learning formulation in end-to-end ASR, where con-

tinuous streams of data become available to the model. The task boundary is agnostic to

the model under this setting, which differs from traditional continual learning scenarios

where clear boundaries are typically delineated. We then propose an online rehearsal

method and a selective sampling strategy that is calculated on the gradients of rehearsal

samples. Our proposed method is demonstrated to improve the trade-off between the

efficiency and effectiveness of continually learned ASR models.

• We propose a novel rehearsal continual learning approach for the class-incremental set-

ting of ASC from the perspective of mutual information optimization. Our approach op-

timizes the mutual information between different levels of the model, enabling it to learn

both task-agnostic and task-specific knowledge by selecting representative and infor-

mative samples. This optimization encourages the model to both utilize past knowledge

effectively and learn from new information. By combining a mutual information-based

objective with a memory selection mechanism, we demonstrate that our performance

exceeds that of existing methods on multiple continual learning evaluation metrics.

• We illustrate a class-incremental learning setting of SLU, focusing on intent classification

and slot filling with an increasing number of intents and entities. By formulating it

as a seq2seq problem, we propose three knowledge distillation approaches at both the

encoder and decoder levels of the transformer architecture, combined with rehearsal

approaches. We show that a combination of these knowledge distillation techniques

could effectively mitigate the forgetting effect of the SLU model across different domain

scenarios.



Chapter 2

Technical Background

In this chapter, we will present background information about the background concepts related

to continual learning. We will first introduce the formulation of continual learning algorithms,

then present the family of continual learning scenarios and methods, and summarize the main

challenges that its application faces in speech and audio tasks in the end.

2.1 Formulations of Continual Learning

We begin this chapter by giving a formulation of continual learning first, and we will follow the

notations in this section throughout the thesis. As presented in Chapter 1, continual learning is

a type of machine learning paradigm that aims to enable an AI system to learn from a continu-

ous stream of data or tasks, with the objective of solving future learning without forgetting the

knowledge that it has already acquired. Therefore, a general formulation for continual learning

involves the use of a sequence of tasks or domains, where each task or domain is associated

with a set of data points. Figure 2.1 illustrates the idea that continual learning is to solve the

trade-off in the stability-plasticity dilemma (Mermillod et al., 2013) introduced in Chapter 1.

Along the time axis t, the model might witness an increasing number of tasks in chronologi-

cal order, where the data distributions among tasks could be dynamic and changing. The red

arrow denotes the memory stability, which has a tendency to maintain more about knowledge

in the former tasks. In contrast, the blue arrow means the learning plasticity, which pushes the

model to quickly adapt the new patterns in the future tasks. Between stability and plasticity,

continual learning aims to balance the trade-off with using the data from the current task.

Let us consider a sequence of T tasks or domains, and the data sets associated with each task

are denoted by {D1, D2, …, DT }. Let X be the input space, Y be the output space, and fθ be

the model with parameters θ. For each specific task i, we can denote the available data XDi

and the corresponding ground-truth label set as YDi . The goal of continual learning is to learn

the model parameters θ such that the model can perform well on all T tasks in the sequence

6
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Figure 2.1: An example of the stability-plasticity dilemma that continual learning aims to

address, where the model witnesses task A, B, and C in chronological order.

in the end, while preventing catastrophic forgetting of previously learned tasks. This can be

formulated as the following optimization problem:

minimizeθ

T∑
i=1

ℓ(fθ(XDi), YDi) (2.1)

subject to:

• The model should perform well on the current task: ℓ(fθ(XDi), YDi) ≤ ϵ, where ϵ is a

small threshold.

• The model should not forget the knowledge of previously learned tasks: For each j < i,

ℓ(fθ(XDj ), YDj ) ≤ ϵ.

Here, ℓ is the loss function, which measures the discrepancy between the predicted output of

the model and the true output. The first constraint corresponds to the current task, while the

second one corresponds to the previously learned tasks. The constraints ensure that the model

does not forget the previously learned tasks, while still being able to learn the current task.

2.2 Family of Continual Learning Scenarios

Given the complexity of various real-world applications, continual learning may exhibit very

different scenarios across different settings. In this thesis, we mainly categorize the family

of continual learning scenarios in speech and audio tasks into three types: data-incremental,

class-incremental, and task-incremental learning.

Data-incremental learning typically refers to the continual learning setting where there are

no assumptions of explicit task boundaries and the model is continuously learning on incre-

mental data streams (De Lange and Tuytelaars, 2021). Sequence modeling classification tasks

like automatic speech recognition are good examples of data-incremental learning settings,

where the model is trained to solve the same or similar problem defined on a label space of an

entire shared vocabulary, while continuous streams of data may become available over time.

Implicit task boundaries indicate that the model has no information about which new stream
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Figure 2.2: An overview of the categories of continual learning methods in a general ML

pipeline.

of data it is currently observing. Therefore, under this setting, it needs to either process the

observed data in an online fashion, or infer an implicit task identifier from statistics in the

current stream.

Class-incremental learning means that the model learns from evolutive streams of data

where new unseen classes are continuously appearing (Zhou et al., 2023). Many utterance

modeling classification tasks like acoustic scene classification and intent classification can be

demonstrated as class-incremental learning, where an utterance is mapped to one single class

label. In this case, each individual task may contain a different label space that is a subset of

the entire label space Y . The ultimate goal of class-incremental learning is to build a holistic

classifier that can handle all of the seen classes in the past.

Task-incremental learning in our context usually has a more general definition. There are

many similar and related speech and audio tasks in applications, like intent classification and

slot filling. The task incremental setting could refer to the case where the model is contin-

ually being added new capabilities, and expanding itself to be able to deal with increasingly

more new tasks by transferring the knowledge learned from other tasks (Hossain et al., 2022).

Another example is regression tasks like speech enhancement. Unlike data-incremental and

class-incremental learning, the model does not explicitly map the data space to a label space,

but improves its overall robustness when the model continually adapts to changes in the un-

derlying data distribution, like unseen noise types in speech enhancement.

2.3 Family of Continual Learning Methods

In order to tackle various continual learning scenarios in real applications, multiple types of

continual learning methods have been proposed. According to the different modules in the

general ML pipeline that they operate on, continual learning methods can be mainly divided

into three categories: rehearsal, architecture, and regularization-based methods. An overview

of the family of continual learning methods is provided in Figure 2.2.
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Rehearsal approaches typically retain examples from past data to a small set of memory

buffer and replay these examples when the model is learning on new tasks, to alleviate the

issue of catastrophic forgetting (Lopez-Paz and Ranzato, 2017; Rolnick et al., 2018; Chaudhry

et al., 2018). Some methods are restoring the raw samples or their representations, while other

methods involve applying generative models to generate pseudo data rather than replaying in

memory examples (Shin et al., 2017; Lavda et al., 2018). Compared to other methods, rehearsal

methods usually have a better performance with the cost of saving a rehearsal memoryM. At

each individual task t, samples from the rehearsal memory from the previous taskMt−1 and

the current data stream Dt are combined to form the training data to be used in the current

task t. The rehearsal samples are expected to alleviate the catastrophic forgetting effect of the

model by recalling samples from the past tasks, so it improves the training data phase in the

continual learning pipeline.

Architecture-based approaches are expanding the model parameters in the ML pipeline by

isolating parameters for different tasks (Rusu et al., 2016; Aljundi et al., 2017; Rebuffi et al.,

2017a). The objective is to make sure that there is limited interference between different subsets

of modules within a model. Generally, the model parameters for each specific task t are com-

posed of two parts: task-specific parameters and task-sharing parameters. The task-sharing

parameters are shared among all tasks and continually updated, while the task-specific pa-

rameters are updated only when the model is learning this individual task and frozen when

learning other tasks. Architectural methods typically would require a task oracle, which acti-

vates corresponding masks or task branches during the inference.

Regularization methods impose an additional regularization term when new tasks are en-

countered in order to adjust parameter importance, therefore it is improving the continual

learning from the loss level (Kirkpatrick et al., 2017; Zenke et al., 2017; Aljundi et al., 2018;

Li and Hoiem, 2017). The goal is to regularize the change of the model update, so that the

knowledge stored in the learned model can be consolidated instead of forgotten. Typically,

the importance of all the model parameters is estimated to ensure feasibility. Denoting the

importance matrix for the model parameters as Wt for task t, the updated loss function can be

represented as:

ℓ(θt)← ℓ(θt) +
λ

2
(θt − θt−1)

⊤Wt−1(θt − θt−1) (2.2)

where λ is the regularization coefficient to control the weight of regularization.

2.4 Challenges of Continual Learning in Speech and Audio Ap-
plications

As a learning paradigm focusing on improving the model performance across different do-

mains, continual learning may face challenges from multiple facets. We scaffold the problem
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of continual learning in speech and audio applications into three challenges: vague task bound-

aries, multiple dimensions of variability, and resource constraints.

First, the task boundaries in audio and speech could be vague, and the tasks might not be

delineated by clear boundaries. For example, an ASR model trained on Wall Street Journal

(WSJ) (Paul and Baker, 1992) may not generalize well on LibriSpeech (Panayotov et al., 2015).

Their label spaces may share commonalities, which is unlike images that usually have more

disjoint label spaces, e.g. Split-MNIST (Van de Ven and Tolias, 2019) that is splitting 10 digits

as 5 different tasks, while the dictionaries of different ASR corpus may share some common

words or phones.

Second, speech and audio data may inherently involve high variability across multiple dimen-

sions, e.g. new speakers, new acoustic environments, new accents, new languages, etc. This

variability can make it difficult for models to generalize well across different speech and audio

inputs, particularly when the amount of training data is limited.

Finally, speech and audio signals are often high-dimensional and require large amounts of

data and computation resources to train a well-performing model. This may pose challenges

for continual learning, especially when the data distribution changes over time or when the

model needs to be adapted to new environments.



Chapter 3

Continual Learning - Automatic
Speech Recognition

In this chapter, we will focus on continual learning methods in automatic speech recognition

(ASR), which is basically a sequential modeling classification task to transcribe spoken lan-

guage into written text. We will first present a data-incremental setting for ASR, and then

propose a rehearsal method to address the trade-off between the computation resources and

performance in the continual learning problem in ASR.

3.1 Background and Objective

In our previous work, we have investigated the online continual learning setting in end-to-end

ASR (Yang et al., 2022c). The problem setting is as follows. First, we assume we have an initial

model (M0) that has been trained on a given dataset (D0). This model is treated as a seed model

on which a sequence of continual learning updates is applied. Second, we have a set of labeled

datasets {Di}Ti=1 which become available sequentially over time for model training. T is the

total number of subsets and the size of Di is in general significantly smaller than D0.

Note that Di could be any subset randomly split from a larger dataset, which means that dif-

ferent Dis might be different splits from the same dataset, and they might also come from

different datasets. Retraining the ASR model from scratch on {Di}ti=0 each time a new dataset

Dt becomes available requires significant computational cost, especially when the amount of

data in D0 is large and the amount of data in each Di is small.

Therefore, for online continual learning of ASR models, at each time-step t, a well-performing

method would:

• Obtain better (or not degrade) accuracy compared to the previous model (θt−1);

11
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• Obtain better accuracy compared to continually training the previous model (θt−1) on

only the new data Dn;

• Obtain comparable accuracy to a model trained from scratch on all the data available at

this time {Di}ni=0;

• Require significantly less computational cost compared to training a model from scratch

on {Di}ni=0.

3.2 Methodology

The method is basically motivated by Gradient Episodic Memory (GEM) (Lopez-Paz and Ran-

zato, 2017). GEM is a replay-based continual learning method, which stores samples from past

data as its memory. When the model encounters the data of a new task, it requires the mini-

mization of the L2 distance between the gradients of the new data and old data, i.e.,

min
ω

1

2
||ω − g||22

s.t. ⟨ω, g̃i⟩ ≥ 0,∀i ∈ (0, . . . , t− 1).
(3.1)

where g, g̃i ∈ R|θ|
and |θ| is the number of parameters of the model. t is the number of

previous tasks and (0, . . . , t − 1) represents the sequence of tasks. g is the gradient over the

new data in the current task and g̃i is the gradient for the sampled data from ith task in the past,

and it assumes that the positive inner product between the gradients will prevent catastrophic

forgetting. ω ∈ R|θ|
is the target gradient that we want to solve. This quadratic programming

problem (3.1) is then transformed into its dual form,

min
v

1

2
v⊤GG⊤v − g⊤G⊤v

s.t. v ≥ 0.
(3.2)

where G = (g̃1, ..., g̃t−1), and v ∈ R|θ|
. The solution of the primal form could be recovered

by ω = G⊤v + g. After that, ω will be used as the final gradient to update the parameters in

the network. The derivation is as this:

L(ω,v) =
1

2
ω⊤ω − g⊤ω + v(Gω)

ω∗ = −(vG⊤ − g)

Therefore, the dual problem becomes
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max
v

1

2
(vG− g⊤)(vG⊤ − g) + g⊤(vG⊤ − g)− vG(vG⊤ − g)

= max
v

1

2
v2GG⊤ − 1

2
g⊤g − v2GG⊤ + g⊤G⊤v

= min
v

1

2
v2GG⊤ − g⊤G⊤v

s.t.v ≥ 0

Since we do not define clear task boundaries in our online continual learning scenario, we

cannot directly follow the original training protocol directly which requires calculating gradi-

ents for all previous tasks and samples from each of the previous tasks. Instead, we perform

random sampling and selective sampling respectively to sample from the memory. For the

selective strategy, we assign a probability score ci = 1 − ⟨ω,g̃i⟩
||ω||·||g̃i||

to the ith sample, and use

the weighted scores {ci}|M|
i=1 to sample from the memory bufferM. Such a selective strategy

would select samples with less similarity to other samples in the memory more frequently, in-

spired by the fact that unexpected events play an important role in replayed experiences from

the neuroscience perspective (Isele and Cosgun, 2018) and the gradient-based sample selection

(Aljundi et al., 2019). Since we have a higher probability to select the samples with lower cosine

similarity scores, we are relaxing the constraints in the original primal form of GEM. In other

words, instead of the strict constraint that the direction of the gradients of old and new data

must be similar, we release the constraint and develop the quadratic form in eq. 3.1 so that it

can be rewritten as

min
ω

1

2
||ω − g||22

s.t. ⟨ω, ω̃⟩ ≥ −ξ, ξ ≥ 0.
(3.3)

where ω̃ ∈ R|θ|
is the gradient of the selected memory and ξ is the slack variable. The basic

idea is similar to the soft gradient constraint in (Chen and Lin, 2019). Note that since we do

not assume the explicit definition of task boundaries in our case, the dual form of the quadratic

programming can be written as

min
v

1

2
v2ω̃⊤ω̃ − g⊤ω̃v

s.t. v ≥ 0.
(3.4)

where v is a scalar, which is different from the original dual form. Then the updated gradient

can be calculated by ω = vω̃ + g to optimize the current model.
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Characteristics v1 v2 v3

Duration of speech 118h 207h 452h

No. of unique speakers 666 1,242 2,028

No. of words 1.7M 2.6M 4.9M

Table 3.1: The overall statistics of TED-LIUM corpus v1 to v3.

3.3 Experimental Setup

This work used TED-LIUM 1, 2 and 3 (Rousseau et al., 2012, 2014; Hernandez et al., 2018) as

the datasets for the experimental evaluation. TED-LIUM is a series of datasets that consist of

audios and transcripts extracted from the official TED talk website
1
. Such property benefits

us by providing audios from a variety of speakers and their captions with a wide range of

topics. To be more specific, training across different topics of talks will help us demonstrate and

evaluate the effectiveness of our continual learning settings, which is a more realistic setting

in the real world. Meanwhile, in the series of TED-LIUM corpus, each succeeding version is a

comprehensive expansion and evolution of the previous one. These are the important reasons

why we choose TED-LIUM as the target dataset, since it somewhat imitates the growing data

over time in real-world scenarios without explicitly defined boundaries. For simplicity, we

name the difference set between TED-LIUM 1 and 2 as TED-LIUM 2-1, and similar for TED-

LIUM 3-2. Detailed statistics are shown in Table 3.1.

The overall comparison between the statistics of TED-LIUM 1, 2 and 3 is summarized in Table

3.1. From the table, we can observe that TED-LIUM 2 and 3 expanded the original corpus by

adding more acoustic and textual contents. In our experiments, we will follow the setting that

the model is first pretrained on TED-LIUM 1, and then the continual learning is performed on

TED-LIUM 2-1 and 3-2 with different metrics successively.

As the preprocessing step, we use a three-fold speed perturbation with factors 0.9, 1.0, and 1.1.

The tokenization type is Byte-Pair Encoding (BPE), and we remove all the existing unknown

tokens in the raw TED-LIUM corpus. All the results provided are performed with transformers

(Karita et al., 2019) and do not use language models in the decoding process for simplicity.

3.4 Experimental Results

First, we use TED-LIUM 1 as the baseline dataset D0, as introduced in Section 3.2, to train for

50 epochs. The final WER achieves the state-of-the-art performance of 11.0% on TED-LIUM 1.

After that, we randomly split TED-LIUM 2-1 and 3-2 evenly into a sequence of subsets {Di}Ni=1,

and continuously train the model on the N splits in order, with 10 epochs for each split. WER

and the execution time will be recorded at the end of each training step, and the results are

shown in Fig. 3.2. Note that the provided validation dataset is identical for all experiments

1

https://www.ted.com/talks
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Method

WER (%) after

TED-LIUM 2-1

WER (%) after

TED-LIUM 3-2

All Data 9.0 8.1

New Data 10.4 9.8

EWC (Kirkpatrick et al., 2017) 9.9 9.5

MAS (Aljundi et al., 2018) 9.8 9.5

O-GEM (N = 2) 9.4 8.5

O-GEM (N = 10) 9.5 8.6

Table 3.2: WER results for different methods in the online continual learning setting.

related to TED-LIUM 1, 2 and 3, so that we could compare the results of different stages fairly

during the continual learning process.

The comparison of the results of our method, the online GEM (O-GEM) on TED-LIUM corpus

to other continual learning algorithms, including Elastic Weight Consolidation (EWC, (Kirk-

patrick et al., 2017)) and Memory Aware Synapses (MAS, (Aljundi et al., 2018)) is also pro-

vided. Basically, EWC is regularizing the parameter importance based on the gradients of the

loss function, while MAS controls the parameter importance from the gradients of the learned

network output function. We show the comparison between the word error rate of the online

continual learning with equal number of epochs for different methods in Table 3.2. The All
Data method is trained from scratch with all previous data each time when the model receives

a new subset of data Dn, which is our upper bound performance. In contrast, O-GEM and the

New Data method are only trained on the specific new set Dn each time, and O-GEM benefits

from the extracted samples of the episodic memory. We will follow the names in all the dis-

cussions later. From the figure, we can conclude that EWC and MAS could decrease the WER

compared to training with only new data, while O-GEM obtains a much better performance

and is closer to the WER of training with all data.

We compare the experimental results of three methods in Fig 3.1 and 3.2: the O-GEM, All Data
and New Data. All three methods are training on a sequence of subsets {Di}Ni=1, as introduced

in Section 3.2, from TED-LIUM 2-1 and TED-LIUM 3-2. Figure 3.1 shows the learning curve

of validation accuracy of the three methods. The training starts from epoch 50 which is the

number of training epochs for the baseline model. In the New Data scenario, we load the

previous model trained onDn−1 and continually train the model onDn with the same training

strategy as the baseline model. From Figure 3.1, we can observe that the validation accuracy

of New Data goes up sharply at the start of each 10 epochs while goes down during the overall

process of learning on the single set of data, which indicates that the model will learn new

knowledge as soon as they get access to new data, but forget what it has already learned in

the past quickly. Meanwhile, the performance of New Data is stochastic across the 10 splits

because its performance is largely dependent on the content of each specific new data set.

The red curve is the best performing one which increases constantly, as it is retraining from

scratch with both old and new data each time whenever it absorbs unseen data. Without the
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Figure 3.1: Validation accuracy (%) vs. epochs for different methods where N = 10.

Figure 3.2: Word Error Rate (WER, %) & computation time (hours) vs. {Dn}Nn=1 for different

methods where N = 10.

time-consuming retraining, however, O-GEM can achieve competitive validation accuracy in

comparison to the All Data case, while maintaining its increasing accuracy rather than causing

catastrophic forgetting in the New Data method.

Figure 3.2 compares the WER results of selective O-GEM and All Data. Each square marker

represents the WER when the continual learning on one subset Dn is finished. The All Data
training requires the longest execution time, as it requires to be retrained every time when a

newDn is incoming. In contrast, our method could obtain a decreasing WER when it accesses

more data over time, and have a close WER to the All Data scenario (8.6% vs. 8.4%) with more

than four times less computation time for both random sampling and selective sampling, and

with similar computation time, selective sampling can have a further improvement of WER

compared to random sampling. Note that the computation time of O-GEM and New Data
training is proportional to the amount of the new data only, while the training time of All
Data will increasingly scale up since the size of old data is growing. In other words, as the

model receives more information, it will be increasingly more impractical for retraining with

all data since the ratio of old data size to new data size is becoming higher over time and the

computation cost of retraining is more expensive compared to training on only new data. We

demonstrate the experimental results with different numbers of splits N in Table 3.3, where
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we can observe that with more splits of new data, the ratio of computation time for O-GEM

to the estimated computation time for training with all data is becoming smaller. The reason

is that All Data would have to retrain the model from scratch for every Dn, while our method

could save more computation time, which is closer to the real-world problem setting especially

when N is large.

N
Avg. hours

per split

Model update time

diff. vs. All Data
Final WER (%)

0 - - 11.0

2 167.0 79.05% 8.5

10 33.4 23.80% 8.6

20 17.3 13.04% 8.9

100 3.3 2.86% 9.2

200 1.7 1.92% 9.5

Table 3.3: Results for the O-GEM experiments with updates of different numbers of splits N .

The time for All Data is estimated when N > 10 since it is impractical. Note that N = 0
refers to the starting point of the online continual learning, and N = 2 means no splitting is

performed on TED-LIUM 2-1 & 3-2.

3.5 Summary

This work is based on a novel experimental setting for online continual learning in automatic

speech recognition, focusing on the case where additional training data for the same speech

recognition task becomes available incrementally over time. We demonstrate that by perform-

ing incremental model updates with an online Gradient Episodic Memory (GEM) method and

a selective sampling strategy, we can achieve competitive performance to retraining an ASR

model from scratch each time the model has access to new data, while requiring significantly

lower computation cost. We also demonstrate that our online GEM outperforms other contin-

ual learning methods under the same setting.



Chapter 4

Continual Learning - Acoustic Scene
Classification

In this chapter, we will investigate how continual learning works in acoustic scene classifica-

tion (ASC), which is an utterance modeling classification task to recognize the acoustic scene

of one segment of utterance. Based on the class-incremental setting, we will propose a novel

rehearsal method to continually learn on the unseen acoustic scene classes, where the sam-

pling strategy of the rehearsal memory is calculated on mutual information to select the most

informative and representative samples.

4.1 Problem Statement

We follow the setting of class-incremental learning, where new classes of acoustic scenes keep

appearing in continuous streams of data. Compared to another category of continual learning,

i.e., task-incremental learning, class-incremental learning does not have access to task identi-

ties during inference time. Therefore, its objective is to build a holistic classifier among all of

the seen classes by making use of the label information only.

Typically, a task is defined by a set of train and test data that follows a similar distribution,

and in practice, it usually refers to a new set of data that contains data in different classes.

Consider we have the data streams X = {Xt}Tt=1 and its corresponding labels {Yt}Tt=1, where

Xt indicates the data at task t and T is the total number of tasks. For the modeling, we use

an architecture of a feature extractor Φ and a classifier Θ, where the output of the feature

extractor is Φ(X) = Z , which is the feature representation of X and also the input of the

classifier such that Θ(Z) = Y .

At the end of each task t, we inject samples of the input Xt into a memory buffer with a fixed

size M , and the memory will be used to select samples for the purpose of replay when the

18
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model is learning on subsequent tasks. We will demonstrate the comparison between different

sample selection strategies in Section 4.6.

4.2 Methodology

Our mutual information optimization relies on the comparisons between different augmented

representations of acoustic scenes, which are also called pseudo-labeled samples. In MI esti-

mation, the augmentations of the same input will be regarded as positive pairs, while those of

different inputs are taken as negative pairs, so that the dependency between positive pairs will

be maximized and that between negative pairs will be minimized (Oord et al., 2018). Following

the notations in Section 4.1, we will denote Z as the feature representation of the original input

X , and Z ′
as the encoded feature of an augmentation of input X ′

.

In this work, we simulate the pseudo-labeled samples through different augmentation methods.

More specifically, we choose to add Gaussian noise, apply band-stop filtering to the audio input,

or invert the audio along the time axis to perform multiple types of augmentations.

By deploying an arbitrary model architecture of a feature extractor followed by a classifier, we

show that our mutual information optimization can be applied to both modules of the model.

We would like the feature extractor to learn task-agnostic knowledge to produce effective latent

representations of the input audio, while the classifier to learn task-specific knowledge to map

the learned representations to specific acoustic scene classes.

Feature extractor part: To let the feature extractor learn task-agnostic knowledge, we need

to guarantee that the encoded representations preserve sufficient information from the orig-

inal inputs regardless of their classes. Therefore, we will want to maximize the MI between

X and Z , so that Z will preserve generic information from X in the modeling of the feature

extractor. To better estimate the MI, we have augmented acoustic scenesX ′
and its correspond-

ing latent representation Z ′
described in Section 4.2. Assuming that Z and Z ′

are conditional

independent given data X , we have

I(X;Z) = H(Z)−H(Z|X)

= H(Z)−H(Z|X,Z ′)

≥ H(Z)−H(Z|Z ′)

= I(Z;Z ′)

(4.1)

where I(·, ·) indicates the mutual information between two variables and H(·) denotes the

Shannon entropy or conditional entropy given another random variable. We use the property

of conditional independence from Line 1 to Line 2, and the definition of conditional entropy

from Line 2 to Line 3. Therefore, we have I(X;Z) ≥ I(Z;Z ′) from Eq. 4.1, which means that
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maximizing the MI between Z and Z ′
is equivalent to maximizing the lower bound of the MI

between input X and the encoded features Z .

Taking a further step, as from (Oord et al., 2018), the mutual information between Z and its

augmentation Z ′
can be estimated through the InfoNCE (NCE stands for noise-contrastive

estimation) loss as the lower bound, i.e.,

I(Z,Z ′) ≥ logN + LNCE(Z,Z
′)

= logN +
1

N

N∑
i=1

log
(f(zi, z

′
i)/τ)∑N

j=1(f(zi, z
′
j)/τ)

(4.2)

where zi is the representation of an individual sample in the batch. zi and z′i are regarded

as positive sample pairs since they originated from the same sample xi, and all other z′js in

the batch where i ̸= j are regarded as negative pairs. f denotes the exponential of similarity

function and τ is the temperature. N is the batch size of the samples, and when it becomes

larger, I(Z,Z ′) will close its gap to the lower bound. Therefore, I(Z,Z ′) is lower bounded by

the InfoNCE loss and we will use the second term on the right-hand side as the approximation

of MI in our implementations.

Overall, in addition to the task supervision loss, we add the MI estimation to the objective

function to train the model as

Ltotal = LCE(Θ(Φ(X)), Y ) + λLNCE(Z,Z
′) (4.3)

where LCE(·, ·) denotes the cross entropy loss between the predicted and the ground-truth

class logits, and λ is the hyperparameter.

Classifier part: The classifier takes the latent representation Z as input and predicts the class

logits Y . In contrast to the feature extractor, since we would like the classifier to learn task-

specific knowledge, we need to wisely select the samples from the memory, so that they can

not only bring extra information but also make sure the new information can be learned by the

model. Sun et al. (Sun et al., 2022) formalize these two criteria as surprise and learnability by

measuring the predictive distribution of the new sample with respect to those in the memory

to decide its usefulness. In our work, we measure the information carried by the memory

sample by estimating the MI between the encoded representation Z and the predicted logits

Y . In this case, it differs from the original InfoNCE loss with extra information Y . We use

Y here as another standard to determine positive and negative sample pairs, since we would

like to train the classifier to learn task-specific knowledge given the label information. If we

further incorporate the label information Y into Eq. 4.2, for each sample feature zi, we need

to consider zk as the representation of the sample xk for all yk = yi. All pairs of the original
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and augmented representations zk and z′k, along with the augmented representation z′i, can be

regarded as positive pairs with respect to zi, while others are taken as negative pairs, i.e.,

LNCE(Z, {Z ′}, Y )

=
1

N

N∑
i=1

[
1

N∑
k=1

1(yk = yi)

∑
yk=yi

(
∑

ẑi∈Szi

log(f(zi, ẑi)/τ)

− log

N∑
j=1

(
∑

ẑj∈Szj

f(zj , ẑj)/τ))]

(4.4)

where Yt−1 and Zt−1 are the corresponding label and features stored in memory at task t− 1.

Szi indicates the set of all of the original and augmented views of the sample zk that has the

same label with zi, along with the augmented view of itself z′i. The 1(·) function returns 1 if

the condition is true and 0 otherwise. Note that we use the notations {Z ′
t} and {Z ′

t−1} here to

indicate that more than one type of augmentation can be considered.

When we are selecting from the memory at task t, we would like to select the samples that are

both representative and informative. It not only needs to carry new information to the existing

model, but also should have a high learnability instead of becoming an outlier. To achieve this,

we assign a score to the samples and select the samples with the highest score as

scoret(Y, Z) = −LNCE(Zt−1, {Z ′
t−1}, Yt−1)

+ LNCE(Zt, {Z ′
t}, Yt)

(4.5)

The first term on the left-hand side of Eq. 4.4 indicates that we would like to be more likely to

select samples that minimize the mutual information between Z and Z ′
given the class logits

by the previous model at task t − 1. In other words, the samples that are more surprising

to the model are favored. Similarly, the second term indicates that the samples with higher

learnability are more probably to be sampled, since they maximize the MI between Z and Z ′

given Y by the current model, which aligns with our objective function. In such a sense, we

will be more likely to select samples that are both representative and informative, so that the

model can effectively recall past knowledge and learn from new information at the same time.

4.3 Datasets and Baselines

We use the TAU Urban Acoustic Scenes 2022 (Heittola et al., 2020) and Environmental Sound

Classification (ESC)-50 (Piczak) as our datasets. TAU Urban Acoustic Scenes consists of 10

classes of acoustic scenes in total, with around 1,000 samples for each class. Its acoustic scene
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classes are mainly about transportation and city noises. ESC-50 is a smaller dataset that is made

up of 5-second-long recordings in 50 semantical classes, with 40 samples for each class. This

dataset mainly covers the sounds from animals, humans and daily activities, etc. The diversity

of these datasets helps us validate the effectiveness of our continual learning methods under

different settings. For the task splitting, as described in Section 4.1, we split the 10 or 50 classes

in the two datasets into 5 sequential tasks {Xt, Yt}5t=1. Each task contains 2 or 10 different

classes respectively. The order of the classes is determined by the original class indices from

the raw datasets.

We evaluate the continual learning performance of acoustic scene classification with multiple

baseline approaches together with our proposed method as in Tables 4.1 and 4.2. Fine-tune
means the offline training without any continual learning approaches performed, which is the

lower bound of our performance. Random is to randomly select samples from the memory with

an equal probability. Herding indicates herding the embeddings of samples and selects those

who are closest to the center of their corresponding class (Rebuffi et al., 2017b). GSS refers

to gradient-based sample selection, which aims to maximize the diversity of the gradients of

the samples in the memory buffer (Aljundi et al., 2019). Uncertainty calculates the uncertainty

score of each sample based on the prototypes from the herding method, and selects the samples

that the model is less confident of (Xiao et al., 2022).

4.4 Experimental Setup

For our feature extractor, we use a Temporal Convolutional Network (TCN) (Bai et al., 2018)

as the feature extractor and a linear layer as the classifier. The feature extractor takes in the

log-Mel spectrogram of the audio input, computed by a Hanning window with the window

length of 25ms and the hop length of 10ms. The latent representation Z is represented as 100-

dim embedding vectors, which are used to compute the scoring function to sample from the

memory. We train the model for 50 epochs for each task with an Adam optimizer and an initial

learning rate of 0.0005. We use the temperature τ = 1.0 for all the experiments.

4.5 Evaluation Metrics

Aside from average classification accuracy (Acc), we use backward transfer (BWT) and forward

transfer (FWT) as the evaluation metrics (Daz-Rodrguez et al., 2018) to show that our method

helps not only learn task-agnostic knowledge, but also preserve the task-specific knowledge.

BWT measures the influence of learning task t on the accuracies of all previous tasks i < t.

The calculation of BWT at task t is defined as

BWTt =
2

t(t− 1)

t∑
i=2

i−1∑
j=1

(at,i − ai,i), t ∈ {2, · · · , T}
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Method

Memory

Size
Acc ↑ BWT ↑ FWT ↑

fine-tune - 20.4 -56.0 0.0

Random

0.2k 42.8 -28.5 49.8

0.5k 49.8 -27.8 54.3

1k 52.6 -27.0 59.2

Herding (Rebuffi et al., 2017b)

0.2k 51.6 -26.9 56.0

0.5k 54.3 -26.3 63.3

1k 56.2 -24.8 65.2

GSS (Aljundi et al., 2019)

0.2k 51.9 -25.3 56.5

0.5k 54.6 -25.8 62.9

1k 56.1 -24.6 63.7

Uncertainty (Xiao et al., 2022)

0.2k 55.9 -24.5 63.8

0.5k 57.6 -23.7 67.5

1k 58.9 -22.8 69.0

MIO

0.2k 58.0 -23.5 64.7

0.5k 60.7 -22.9 69.1

1k 64.1 -22.5 74.8

Table 4.1: Results for continual learning on TAU Urban Acoustic Scenes with different mem-

ory selection methods and sizes.

where ai,j denotes the accuracy of task j after learning task i. On the contrary, FWT measures

the generalizability of the model by computing the influence of learning task t on the accuracies

of future tasks. From (Lopez-Paz and Ranzato, 2017), we have

FWTt =
1

t− 1

t∑
i=2

(ai−1,i − āi), t ∈ {2, · · · , T}

where āi indicates the test accuracy at task i with random initialization. Overall, a higher BWT

score means a smaller forgetting effect of the model on past task-specific knowledge, while a

higher FWT score means a higher generalizability of the model on task-agnostic knowledge to

benefit unseen tasks.

4.6 Results and Discussion

The experimental results on the TAU Urban Acoustic Scene dataset are shown in Table 4.1. The

row of fine-tune suffers from catastrophic forgetting, and its accuracy is close to a random guess

since we have 5 tasks in total. It is the lower bound of our continual learning performances.

For the rest of the rows, we can observe that our proposed mutual information optimization

(MIO) method achieves the highest score of Acc, BWT, FWT than other memory selection

methods, which indicates that it can not only retain the task-specific knowledge in the past, but
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Figure 4.1: Average Acc (%) over tasks in sequential order for different methods. The accura-

cies are calculated on the test sets of the seen tasks so far.

generalize the task-agnostic knowledge to future unseen classes as well. Another observation

is that our method benefits more from a larger memory size, with a higher performance gain

from a smaller memory size to a larger one. This intuition aligns well with the property of

the estimates of mutual information in Eq. 4.2, where the estimated MI approaches its lower

bound when the number of samples N becomes larger.

Table 4.2 presents the results on the ESC-50 dataset with the same set of evaluation metrics.

Overall, we can observe a similar tendency with the results in Table 4.1, except that the accu-

racies become lower because there are 50 classes in total and less number of samples per class.

We also plot the change of the accuracies over the sequential tasks in Figure 4.1. From the

figure, we can observe that our method has the least forgetting effect with a less decrease in

accuracy. In contrast, fine-tuning has the largest drop with accuracy close to
1
t , where t is the

number of tasks that the model has experienced. It is noteworthy that from task 2 to task 3,

some continual learning methods have an increased accuracy instead of a decreasing one. We

speculate that this phenomenon is due to the shared properties of the acoustic scene classes

that these tasks consist of.

4.7 Summary

This paper presents a replay-based continual learning approach in the acoustic scene classi-

fication task with mutual information estimation. We propose to optimize different levels of

the model to learn task-agnostic and task-specific knowledge from the perspective of mutual

information, and select samples from the memory buffer that are both representative and in-

formative. We demonstrate that our proposed method outperforms other continual learning

algorithms by both a lower forgetting effect and higher generalizability.
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Method

Memory

Size
Acc ↑ BWT ↑ FWT ↑

fine-tune - 19.1 -58.7 0.0

Random

0.2k 22.5 -52.5 26.6

0.5k 24.6 -49.7 27.3

1k 26.2 -47.6 29.7

Herding (Rebuffi et al., 2017b)

0.2k 47.5 -30.8 49.3

0.5k 49.3 -28.7 50.6

1k 50.8 -27.9 52.2

GSS (Aljundi et al., 2019)

0.2k 48.8 -30.3 49.8

0.5k 49.6 -29.3 50.8

1k 50.3 -28.2 51.9

Uncertainty (Xiao et al., 2022)

0.2k 50.9 -28.9 51.6

0.5k 51.8 -27.6 53.1

1k 52.9 -27.1 53.9

MIO

0.2k 52.1 -28.5 53.4

0.5k 53.7 -27.4 55.9

1k 55.3 -26.5 57.3

Table 4.2: Results for continual learning on Environmental Sound Classification-50 dataset

with different memory selection methods and memory sizes.
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Continual Learning - Spoken
Language Understanding

In this chapter, we select spoken language understanding as our task to demonstrate the effect

of continual learning in the class-incremental setting. We mainly focus on intent classification

and slot filling, which involve both sequence modeling and utterance modeling classification

tasks. By formulating it as a sequence-to-sequence problem, we propose to combine rehearsal

methods with regularization via knowledge distillation to combat forgetting at both the en-

coder and decoder levels.

5.1 Problem Statement

We first describe how we have defined the class-incremental learning setting for the SLURP

dataset (Bastianelli et al., 2020). SLURP is a multi-domain dataset for E2E SLU comprising

around 56 hours of audio of people interacting with a home assistant (slurp real), with the

addition of 43.5 hours of synthetic recordings (slurp synth). At present this makes SLURP the

biggest and the most diverse dataset in terms of lexical complexity for SLU. Each utterance is

annotated with three semantics: Scenario, Action, and Entities. The pair (scenario, action) is

defined as Intent. Overall, there are 18 unique scenarios, 46 actions (56 if we consider both

slurp real and slurp synth), 55 entity types, and 69 intents. Figure 5.1 provides an example of

an annotated utterance.

We have used the scenarios as a splitting criterion to define the tasks of the class-incremental

setting. The complete list of scenarios is: [“alarm”, “audio”, “calendar”, “cooking”, “datetime”,

“email”, “general”, “iot”, “lists”, “music”, “news”, “play”, “qa”, “recommendation”, “social”, “take-

away”, “transport”, “weather”]. Since the number of scenarios is limited and each scenario

provides a high-level concept associated with each utterance, we think that they can closely

resemble a practical application that must adapt to new general domains. Additionally, since

the intent classification is the chief metric to assess our model against, the use of scenarios as

26
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Figure 5.1: Example of annotated utterance from the SLURP dataset. The intent in this case

is the tuple (music,likeness).

Figure 5.2: In the class-incremental setting for the SLURP dataset, a bunch of new scenarios

(here 3) becomes available to the model for each task, while the previous ones are no longer

available.

splitting criterion abides by the rule of having only intents related to scenarios available in the

current task. Finally, although some actions and entities can be included in multiple scenarios,

the overlap is very limited because the majority of the entities and actions are specific to a

single scenario. For example, the action “taxi” is only associated with the scenario “transport”,

and the entity “weather descriptor” with the scenario “weather”. Figure 5.2 shows two consec-

utive tasks, each introducing 3 new scenarios. Another critical aspect is the order in which the

scenarios are available to the model. In our implementation, the order depends on the cardi-

nality so that the scenarios with the highest cardinality appear first. In this way, we simulate a

practical situation in which we endow the model with the sufficient general knowledge, learn-

ing the largest scenarios first, that will be useful for learning more specific scenarios. Note that

we do not observe notable differences in performance for different orders.

5.2 Methodology

As discussed in the previous section, we consider a class-incremental learning setting in which

we want to adapt a single model to perform well on all seen tasks. Specifically, the training

dataset is divided into T distinct tasks, D = D0, ...,DT−1. The dataset Dt of the tth task
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comprises audio signals Xt with associated transcriptions Yt, i.e. Dt = (Xt,Yt). In a class-

incremental learning setting, all task label sets are mutually exclusive, i.e. Yi ∩Yj = ∅, i ̸= j.

We deploy a transformer-based seq2seq ASR architecture, constituted by a Wav2vec 2.0 en-

coder (WavEnc) (Baevski et al., 2020) followed by a transformer decoder. Let x = [x1, . . . , xI ]

be an audio input sequence of length I , and y = [y1, · · · , yJ ] be the corresponding output

sequence of length J , with yj ∈ V , where V is the set of all possible output subword tokens.

The goal of the ASR model is to find the most probable output sequence ŷ given the input

sequence x:

ŷ = argmax
y∈Y∗

p(y|x; θ) (5.1)

where Y∗
is the set of all possible token sequences and θ represents the parameters of the

seq2seq model.

Suppose that p(y|x; θt) and p(y|x; θt−1) are the output probability distributions of the trans-

former decoder at task t and t − 1 parameterized by θt and θt−1, respectively. The model

at task t − 1 can be seen as the teacher model. Let also M be the set of rehearsal data at

the beginning of task t. In the following equations, we use x ∈ Dt in place of (x,y) ∈ Dt for

brevity. The standard training criterion of rehearsal-based continual learning methods consists

of minimizing the cross-entropy loss over Dt ∪Mt−1:

Lt
CE

= −
∑

x∈Dt∪Mt

log p(y|x; θt) (5.2)

The main idea of KD is to transfer knowledge from the teacher network p(y|x; θt−1) to a

student model, such that the latter mimics the former’s behavior. Basically, the KD is used to

force the current model to not deviate too much from the teacher, which retains the knowledge

of the previous tasks. We point out that the KD, unless otherwise stated, is applied to the sole

rehearsal data since the teacher can effectively predict only the data seen in the previous tasks.

We propose three different types of KDs: audio-KD, token-KD, and seq-KD. The audio-KD

works at the encoder’s output level, whereas the other two KDs are applied to the output of

the decoder. In this way, we contrast forgetting either at the encoder or at the decoder side (or

both, if we combine multiple KDs).

The audio-KD forces the encoder’s audio embeddings of the current task t to resemble those

from the previous task t−1. Let WavEnc(x) ∈ Rh
be the Wav2vec 2.0 encoder output followed

by a mean operation to squeeze the temporal dimension, where h is the hidden size. We define

the audio-KD loss as:

Lt
audio-KD

=
∑
x∈Rt

||WavEncθt−1(x)−WavEncθt(x)||2 (5.3)
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where || · || is the Euclidean distance operator.

We can apply such similar reasoning to the decoder, which predicts each word of the transcrip-

tion in an autoregressive way (in our case we use Byte-Pair Encoding (Sennrich et al., 2015),

so we will use the term token rather than word to refer to the output units). The token-KD

forces the current decoder to match the token-level distribution of the teacher. This is a kind

of “local” distillation in that the student mimics the teacher for each token of the transcription.

The corresponding CE criterion is defined as:

Lt
token-KD

= −
∑

x∈Mt−1

J∑
j=1

p(yj |x,y<j ; θt−1) log p(yj |x,y<j ; θt) (5.4)

where y<j is the output sequence up to token j − 1.

A potential flaw of this method is that if some initial token distributions are poorly estimated,

their bias will be propagated until the end of the sequence. Indeed, a predicted token might

be optimal at the current position in the sequence, but as we proceed through the rest of the

sentence, it might turn out not to be the optimal one, given that later predicted positions are

not already available.

Seq-KD is an alternative approach that trains the student to generate the same output sequence

as the teacher, thus working at the sequence level. In practice, we generate a new set of auto-

matic transcriptions with the teacher model using beam search at the end of each task (“soft

transcriptions”), and then we use them to train the student network with CE criterion in the

next task. Formally, we add the following CE loss:

Lt
seq-KD

= −
∑

x∈Mt−1

log p(ỹ|x; θt) (5.5)

where ỹ is the output sequence generated with beam search using the teacher model. Overall,

the total loss to be optimized at task t is:

Ltotal = (1− λKD)LtCE
+

∑
k∈K

λKDLtk (5.6)

where K = audio-KD, tok-KD, seq-KD and λKD is the weighting parameter. Depending on

whether we employ a single KD or multiple ones, Eq. 5.6 changes accordingly. Figure 5.3

shows the learning process with the three KD losses applied to the transformer architecture.
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Figure 5.3: Illustration of the learning process in the proposed class-incremental learning

setting. The model from the current task (student) mimics the behavior of the teacher model

through audio, token, and sequence KD losses to counter forgetting.

5.3 Experimental Setup

Dataset and class-incremental learning setting. We conduct experiments on the SLURP

dataset (Bastianelli et al., 2020) (see Section 5.1) using the official train, validation, and test

splits, with a ratio of 70:10:20. In all experiments we also use slurp synth only for training.

Since very long audio data are harmful to efficient training, we remove the training samples

longer than 7 seconds (around 0.004% of the total training dataset).

Concerning the definition of the class-incremental learning setting, we experiment on two

configurations: 1) the dataset is partitioned into 3 tasks, each comprising 6 scenarios (denoted

as SLURP-3); 2) a more challenging configuration wherein the 18 scenarios are distributed

across 6 tasks (denoted as SLURP-6).

Pre-processing and model configurations. As proposed in (Arora et al., 2022), the intent

and entity classification problems are treated as a sequence-to-sequence ASR task, where both

intent and entities associated with an utterance are predicted alongside its transcription. In

a sense, we build an augmented transcription that will be fed to the transformer decoder,

prepending the intent to the original transcription, followed by the entities and the correspond-

ing lexical values. The special token SEP is used to separate the intent from the entities and

the entities from the original transcription, whereas the token FILL is used to separate each

entity from its value. If the original transcription is the one in Fig. 5.3, then the augmented

transcription becomes: music likeness SEP music genre FILL jazz SEP I like jazz.
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Model. The encoder is the base Wav2vec 2.0 model pretrained and fine-tuned on 960 hours

of Librispeech (a CNN- based feature extractor followed by 12 transformer blocks with hidden

size = 768, 8 attention heads, 2048 feedforward network (FFN) hidden states). The feature

extractor is kept frozen during the training, whereas the transformer blocks are fine-tuned.

Then, the transformer decoder includes 6 layers with the same parameters as the encoder. We

apply layer normalization to the input raw waveforms. The total number of parameters of the

model is around 148M.

Training. We tokenize the transcriptions using Byte-Pair Encoding (BPE) (Sennrich et al.,

2015), with a vocabulary size of 1k and BPE dropout = 0.1. Both at inference time and for the

computation of the soft labels for the KD-seq we run beam search with beam width = 20. The

number of epochs for each task is {40,25,15} for SLURP-3, whereas we use {40,25,15,15,15,15}
epochs for SLURP-6. The batch size is 32. We use AdamW optimizer with learning rate = 5e−5
and weight decay = 0.1 and the same learning rate scheduler as (Vaswani et al., 2017). We use

the validation set for hyperparameters tuning, and for selecting the best model for each task

that is used for testing. Each experiment took approximately 1 day and a half on a Tesla V100

and a day on a Quadro RTX A5000.

CL baselines and strategies. Our upper bound is the offline method consisting of a single

macro-task with all the scenarios (i.e. no incremental learning), while the naive fine-tuning

approach, which retrains the same model task by task, is our lower bound. We consider two

different sampling strategies for the rehearsal approach: 1) a random selection of the samples

to retain, and 2) a herding-based selection (Rebuffi et al., 2017b), which selects the samples

closest to their moving barycenter. We provide an example with a memory buffer of size equal

to around 5% of the training dataset, and the rest of the experiments use 1%. Finally, we show

the result for each KD strategy, as well as their various combinations. The KD weight in Eq.

5.6 is proportional to the fraction of rehearsal data in the mini-batch and is defined as:

λKD =

√
bmem

ball

(5.7)

where bmem is the number of rehearsal data in the current mini-batch, and ball is the current

mini-batch size.

Metrics. We evaluate the proposed methods using 4 metrics: the average intent accuracy, Avg
Acc, after each task; the intent accuracy after the last task Last Acc; the average SLU F1 metric

for slot filling (Bastianelli et al., 2020); the average word error rate, AvgWER, after each task.

5.4 Experimental Results

The performance for both class-incremental learning settings, SLURP-3 and SLURP-6, are re-

ported in Table 5.1. First and foremost, we note that, as expected, the fine-tuning approach
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Method

SLURP-3 SLURP-6

Avg

Acc ↑
Last

Acc ↑
Avg

WER ↓
SLU

F1 ↑
Avg

Acc ↑
Last

Acc ↑
Avg

WER ↓
SLU

F1 ↑

fine-tune 46.27 18.36 35.82 49.25 33.56 12.42 46.26 37.88

1% random rehearsal 71.30 61.47 29.13 60.05 66.11 59.37 34.77 55.33

1% random herding

(Rebuffi et al., 2017a)
71.49 61.66 28.62 60.23 67.55 62.55 33.82 56.09

+ audio-KD 72.14 63.03 28.68 61.08 68.40 62.83 32.04 58.15

+ token-KD 71.79 61.54 28.82 61.88 68.36 62.53 32.47 58.20

+ seq-KD 76.12 68.94 28.56 61.50 71.56 64.82 32.50 58.29

Table 5.1: Results in terms of Average Accuracy, Last Accuracy, Average WER and SLU F1

for different strategies.

struggles in both settings, thus incurring catastrophic forgetting. The use of a rehearsal mem-

ory (rows 5% and 1%) proves to be very effective, even with only 1% of retained data. Therefore,

in the following experiments, we consider 1% of data in the rehearsal memory. We also exper-

iment with a more sophisticated sampling strategy based on herding (Rebuffi et al., 2017b),

which achieves noteworthy improvements, in particular for SLURP-6 (+1.44% of Avg Acc).

When we focus on the proposed KDs, it is quite evident that the seq-KD leads to the most

substantial improvement for both Avg and Last Acc metrics (+4.63% and +7.28% on SLURP-

3). Instead, for WER and SLU F1, all three KDs behave similarly. Note that in our setting,

previous intents are not seen anymore, and indeed the KDs help the model remember past

scenarios. Conversely, though we expect the utterances to have some scenario-specific words,

general speech tokens are spread among the tasks, making forgetting less critical for WER.

Nevertheless, for the more challenging SLURP-6, KDs bring a notable enhancement also in

terms of WER and SLU F1.

5.5 Summary

In this work, we define a class-incremental learning setting for a challenging SLU dataset,

SLURP. To mitigate forgetting, we propose three different KD-based strategies working at dif-

ferent levels in the seq2seq model, with the joint use of rehearsal methods. Our extensive

experiments reveal the superior performance of the proposed KD techniques, and that com-

bining multiple KDs results in additional improvements.
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Proposed work

Thus far, we have demonstrated the effectiveness of continual learning methods in the data-

incremental setting of ASR, and the class-incremental settings of ASC and SLU from Chapter

3 to 5 respectively. We have applied both rehearsal and regularization methods in different

continual learning scenarios. Based on the completed work, we would like to first extend the

work of continual learning in SLU in a multimodal formulation to investigate how different

knowledge distillation techniques on different combinations of samples would affect the overall

performance. Then we plan to study a more general setting aside from the completed ones,

which is task-incremental learning, to continually add new capabilities to the SLU model to

solve novel tasks. Furthermore, apart from the existing work on classification tasks in speech

and audio, we would like to dive into a more challenging task-incremental regression task, i.e.,

speech enhancement, to address the continual learning problem where new noise types may

appear over time.

6.1 Multimodal Contrastive Continual Learning in SLU

In the work of continual learning in SLU, we have transformed the intent and entity classifica-

tion problem as a seq2seq ASR task by prepending the intent token to the original transcrip-

tion. As a continuation of this idea, we propose to take into consideration of the text modality

in addition to the audio modality to apply continual learning in both modalities. The overall

proposed architecture is shown in Figure 6.1 with an encoder-decoder architecture.

At the encoder(s) side we would like to introduce 3 losses, two of which are applied to the two

modalities alone, and one encompasses both modalities at once: 1) The Multi-modal alignment

loss tries to align the encoder representations of the speech and text pair for each sample in

the batch since they carry the same information but from a different perspective. This loss is

computed only for the data from the current task, while the data from the rehearsal memory are

not included. The loss relies on a contrastive learning approach. One important thing revolves

around how to compare the two modalities since they have different numbers of tokens, and

33
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Figure 6.1: Proposed architecture for multimodal contrastive continual learning.

the hidden size could be the same (728 for both BERT and wav2vec 2.0). One possible way is

to use just the first token of the two modalities (for example the intent token for the text and

another token for the speech, although it’s not straightforward to choose it as for vision where

they use the [CLS] token) and project them into a shared space through two fully-connected

(FC) layers and apply a standard contrastive loss as below (N is the batch size, zk
im

and zk
txt

are

the projected tokens), and this approach is presented in (Kwon et al., 2022):

ℓcontrastive = −
1

N

N∑
k=1

[log
exp(zk

im
∗ zk

txt
/τ)∑k

n=1 exp(z
n
im
∗ zk

txt
/τ)

+ log
exp(zk

im
∗ zk

txt
/τ)∑k

n=1 exp(z
k
im
∗ zn

txt
/τ)

] (6.1)

Another possibility averages the two feature representations in the time domain by means of a

mean pooling operation, and then applies the same contrastive loss. In this case, no additional

parameters are to be learned (i.e., no FC layers). This approach is showcased in (Ye et al., 2022).

A third approach could be a hybrid between the previous two: the intent BPE token is projected,

whereas the audio signal tokens are averaged out in the temporal dimension. In this way, we

don’t have to consider a single token for the audio.

Overall, this loss tries to discern classes inside a specific task, thus promoting intra-task class

representation learning. It does not deal with forgetting, but it seeks to learn optimal feature

embeddings, which is a desideratum regardless of the setting at hand (continual learning or

non-continual learning).

2) We include two KD-based losses, one for each modality, with the aim to force the current

model to follow the learned features of the previous model. These two losses are only computed

for the rehearsal buffer samples. In this way, our model should produce similar embeddings
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for the rehearsal samples, whilst the features for the new samples (i.e., current task) should be

something dissimilar. We force the model to stress this behavior even more with the next loss.

This model promotes inter-task class representation learning, and tries to moderate forgetting.

3) We apply an additional contrastive loss that in principle should work with the two modalities

individually. The idea here is to use the samples from the current task as anchors, whereas

the data from the rehearsal memory are seen as negative samples. In this way, we hope the

model will be able to push apart the embeddings belonging to the past tasks (rehearsal samples)

from the ones of the current task. This idea has been presented in (Fang et al., 2021) for self-

distillation KD, and then exploited and adapted in continual learning (Cha et al., 2021). In this

case, the batch is composed of both rehearsal and new samples.

Note that loss 1) is applied to the new samples, loss 2) is applied only to rehearsal data, and 3)

to both rehearsal and new samples.

6.2 Task-incremental SLU

Thus far, we have covered the data-incremental and class-incremental settings in continual

learning for multiple speech and audio tasks. The domain of task-incremental learning still

leaves underexplored. As discussed in Chapter 2, task-incremental learning is a more general

setting where our goal is to continually add new capabilities to the model to solve new tasks. By

transferring the knowledge learned from previous tasks, task-incremental models are expected

to deal with increasingly more new tasks (Hossain et al., 2022).

We plan to expand the SLU work under the task-incremental setting, as some subtasks under

SLU are correlated, which could be a good property to test the task-incremental learning sce-

nario. One example is intent classification and slot filling. As two essential tasks for SLU, most

existing works in this field are focused on joint intent classification and slot filling (Chen et al.,

2019; Weld et al., 2022). In our planned work, we would like to explore the task-incremental

SLU, where the model is firstly learning intent classification and then continually adding slot

filling functions to itself.

From the implementation side, we propose to follow the Whisper (Radford et al., 2022) for-

mat, where a task identifier (e.g. ⟨IC⟩, ⟨SF⟩) is appended as a prompt to the beginning of the

sentence, as part of the sequence of input tokens to the decoder. Similar as what we have

done in the completed work, the model is expected to predict both the intent or entity class

and the task type itself. From the dataset side, there are multiple datasets that involve both

intent classification and slot filling tasks, including SLURP (Bastianelli et al., 2020) and SNIPS

(Coucke et al., 2018). We plan to start with these datasets to reduce the complexity of initial

experiments.
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6.3 Continual Learning in Speech Enhancement

So far we have worked under the data-incremental and class-incremental settings, and we have

demonstrated that the joint use of rehearsal and regularization methods have achieved a supe-

rior continual learning performance. The demonstrated and proposed works so far are all about

classification tasks, including both sequence modeling and utterance modeling ones. Taking a

further step, we would like to further investigate how continual learning works in regression

tasks, where we would start with speech enhancement as an example. Such a scenario can also

be regarded as task-incremental, as we do not have explicit labels to classify and data from

different tasks are from different distributions.

Speech enhancement has been an important front end for many speech processing systems,

aiming to improve the quality and intelligibility of speech by reconstructing and restoring

the signal after degradation. In recent work, unsupervised continual self-training has been

explored, which applies an iterative updating paradigm between teacher models and student

models (Tzinis et al., 2022). The similar training paradigm can also be applied in continual

learning, where the teacher and student model are defined by different out-of-domain (OOD)

datasets. Data from previous tasks are retrieved from the rehearsal memory. Under continual

learning setting, one common scenario for speech enhancement is that we are continually col-

lecting noisy data from different noise types or environments. The goal is to enhance multiple

types of noisy speech by adapting the unseen noise types without forgetting the knowledge of

the seen noise types. This scenario is also useful for personalized speech enhancement, where

continuous streams of data from the same speaker are collected under different environments.

Another scenario is inspired by the fact that one of the challenges in speech enhancement

is that speech with low Signal-to-Noise ratios (SNR) is much harder to enhance compared to

those with high SNRs. Therefore, starting with enhancing high-SNR data is an easier task.

After that, continuously lowering the SNR of the data is increasing the difficulty of the noise

conditions, which makes it more challenging for the speech enhancement model.

On the fly, other related topics about continual learning in speech enhancement remain wor-

thy of exploration. For example, our existing work about speech enhancement has shown that

(Yang et al., 2022a; Zeng et al., 2023; Yang et al., 2022b) low-level acoustic features can play a

significant role in improving the performance of speech enhancement, especially when consid-

ering the temporal and phonetic relationship between frames to weight the acoustic features

by phoneme types. For the image classification task, prior work has shown that continual

learning performance is largely affected by the spurious features that it selects (Lesort, 2022).

Following this direction, we would like to further investigate the impact of various acoustic

features in the continual learning of speech enhancement, and how to improve the feature

selection scheme to mitigate the catastrophic forgetting effect in speech enhancement.
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Thesis Timeline

Thesis timeline for 2023-2024

May 2023 • Thesis Proposal

Now-Aug 2023 • Multimodal Contrastive Continual Learning in SLU

Now-Dec 2023 • Investigate Task-incremental Learning in SLU

Jan-May 2024 • Continual Learning in Speech Enhancement

Apr-May 2024 • Thesis Completion & Thesis Defense
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