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Abstract

Designing artificial intelligence models that are robust to adversarial perturbations of their
inputs is a highly desirable objective, as such models would not only be less prone to security
breaches but also better aligned with human reasoning and perception. Neural Automatic Speech
Recognition (ASR) is vulnerable to these adversarial perturbations but currently lacks defenses
with strong evidence for robustness to state-of-the-art attacks. This contrasts with image tasks for
which several defense algorithms have shown increasingly good results even against adaptive ad-
versaries. Another odd aspect of speech robustness is the lack of transferability between different
models for most adversarial attacks. The specifics of ASR as a task certainly play an important
role in this odd situation: at their core speech utterances are time series in an infinite-dimensional
Hilbert space with an underlying semantic structure, while transcription outputs belong to an infi-
nite metric space.

The objective of this thesis is to explore the dependencies between adversarial perturbations
and the context in which it is studied (nature of the task, set of outputs, etc.), in order to assess
their threat against speech recognition models and the possibility for robust ASR. Specifically, (1)
we show that adversarial robustness is closely related to training methods and model architectures.
We propose novel methods to study this relationship without the cost of training robust models, by
measuring the randomness in robustness on undefended models and by quantifying the number of
adversarial perturbations on a hypersphere. (2) we quantify the threat posed by adversarial attacks
on ASR, both under white-box and black-box threat models. We introduce an evaluation frame-
work and apply it notably to show that self-supervised speech models are uniquely vulnerable to
transferable attacks. We also take into account the specifics of voice assistants trained on user
data and investigate applications of adversarial perturbations for privacy attacks. (3) we investi-
gate two approaches to increase ASR robustness. First, we show that the Randomized Smoothing
defense paradigm enables us to combine the strengths of general machine learning defense guar-
antees and domain-specific speech processing tools. Using it we achieve state-of-the-art ASR
robustness against state-of-the-art white-box attacks for several model architectures. Then we
introduce a novel framework called adversarial masked prediction, that lets us robustly pretrain
self-supervised speech models.
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Chapter 1

Introduction

Artificial intelligence models nowadays show impressive performance in many domains. When
evaluated on standardized benchmarks, they may display comparable if not superior performance
to humans. Yet in some aspects, these models are extremely different from humans. Perhaps the
most famous of these differences is their vulnerability to adversarial examples, modified inputs
that would seem indistinguishable from naturally occurring inputs but would trigger erratic be-
haviors from the models. Designing systems that are robust to such perturbations is considered
a desirable achievement for several reasons, the main one being security concerns. Agents can
generate adversarial examples using gradient-based or black-box methods, and an agent with ma-
licious intent could use them to force models to fail in critical situations. The possibilities are
many and worrying: fooling voice activation systems, making cars crash by hiding road signs,
or having army drones confuse hospitals and military bases. More generally, adversarially robust
models have also been shown to better align with human reasoning and perception and can be seen
as a weak but well-defined form of alignment between the AI model’s actual and intended behav-
ior. Unfortunately, even in simple settings, adversarial robustness is very difficult to achieve, and
partial successes have always come with a drop in performance.

One important hurdle on the road to robust models is the fact that adversarial examples are still
not completely understood to this day. Numerous works have proposed "explanations" of the phe-
nomenon, but they tend to contradict each other on core aspects of the problems. Are adversarial
examples artifacts of imperfect learning algorithms, or relevant patterns that play a role in model
performance? Do they arise from overparametrized model classes like deep neural networks, or
from the datasets these models are trained on? Is adversarial robustness fundamentally at odds
with performance or contributing to it? Most of those points of view are supported by empirical
evidence, despite contradicting each other. That apparent paradox reveals a lack of knowledge,
which is illustrated when considering the task of Automatic Speech Recognition (ASR).

Among Machine Learning tasks, ASR has multiple distinctive characteristics. At their core
speech utterances are time series with an underlying semantic structure. They are not part of a
finite-dimensional vector space, but rather of an infinite-dimensional Hilbert space. The outputs
that ASR models predict are also elements of an infinite set of text transcriptions. Despite these
particularities, ASR models are vulnerable to adversarial attacks, but with important differences
compared to more straightforward tasks such as image classification. For instance, the transfer-
ability of adversarial examples between models plays a major role in the practical concerns they
cause. However, this transferability is largely absent when it comes to targeted attacks on ASR
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models. Inversely, general-purpose defenses like adversarial training have yet to show success in
ASR. Therefore adversarial examples, while affecting all fields of AI via very similar attack al-
gorithms, also display properties that are specific to a context: nature of the task, set of outputs,
etc. The current state of knowledge does not explain the mechanisms behind or extent of such
context-specific aspects.

The objective of this thesis is to explore these aspects and help disentangle the seemingly con-
tradictory nature of adversarial examples, to assess their threat against speech recognition models
and the possibility for robust ASR. We carried out our work with two key principles in mind: the
search for adversarially robust models should be conducted in-depth and in-context. By in-depth
we mean that commonly accepted results or methodologies should not be taken for granted. While
recent works tend to focus on defenses at scale on large datasets, we show that some phenomena
can more easily be studied in simpler settings (chapter 3). We use different robustness metrics
from simple accuracy under attack (chapter 4). We explore the ripple effects of adversarial attacks
on other security aspects like privacy attacks (chapter 5).

By in-context we mean that aspects of adversarial attacks and defenses cannot solely rely on
standardized benchmarks and general-purpose algorithms. Speech recognition robustness is inher-
ently different from image classification robustness. In addition, different ASR architectures are
very different from each other under adversarial attacks (chapter 5). Even proxy-based attacks,
which have proven extremely challenging on past ASR models, are possible in some specific cir-
cumstances (chapter 6). On the other hand, defenses against ASR adversarial attacks benefit from
leveraging domain-specific knowledge (chapter 7). Finally, training robust ASR models is easier
under some learning paradigms than others (chapter 8).

1.1 Outline
A detailed outline of our contributions is presented below.

• Chapter 2 establishes the formal setting for adversarial attacks and defenses and discusses
relevant previous work.

• Part I: Towards fine metrics of adversarial robustness A fundamental limit to our knowl-
edge of adversarial examples is the set of tools and metrics we use to evaluate robustness.
In this first part, we illustrate some of these limits and propose different, finer metrics. To
point out these limits we focus on the most studied field for adversarial robustness: image
classification. The validity of those lessons for speech is the focus of later chapters.

– In chapter 3 we introduce the intriguing phenomenon of accidental robustness. We
show that a certain amount of adversarial robustness can happen with random prob-
ability given a fixed training setting. This phenomenon is hard to notice using tra-
ditional metrics on traditional datasets. We use it to design a probabilistic approach
to robustness-optimal hyperparameter search. Accidental robustness partially rehabili-
tates small datasets, which in adversarial robustness research are often considered unre-
liable. It also emphasizes some limits of adversarial accuracy in measuring robustness.

– This leads us to propose different robustness metrics in chapter 4. Rather than measur-
ing whether an input is vulnerable to one or more adversarial perturbations (adversarial
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accuracy), we define proxy metrics of how many perturbations this input is vulnerable
to on a hypersphere around the input. Such metrics include the angle between random
directions and the closest adversarial perturbations in L2 norm, and the minimal num-
ber of pixels to change from a random configuration in L∞ norm. Armed with these
tools we revisit multiple previous works, such as state-of-the-art defenses and others
that are considered "broken". We show that sparsity can emphasize finer differences in
robustness than adversarial accuracy. We also revisit accidental robustness and show
that angular metrics help observe it on larger sets.

• Part II: Evaluating threats against speech recognition We have tools to explore adversar-
ial robustness more finely, but still lack insight into the ASR-specific aspects of adversarial
attacks, which we now investigate. We consider not only the nature of the task but the dif-
ferent threat models, as well as specific threats to major applications of ASR in practical
settings.

– First, we evaluate ASR under direct optimization attacks in chapter 5. We run a com-
prehensive study of how different architectures and training paradigms are vulnerable
to white-box audio attacks. We notably show that the recent improvements in model ac-
curacy have not been accompanied by an increase in robustness. We dedicate a deeper
analysis to the recent Whisper model in particular and show a discrepancy between its
impressive robustness to random noise and domain change and its unremarkable lack
of adversarial robustness. We discuss how this widening gap between performance and
safety increases the overall vulnerability of ASR systems. In addition, we show that
white-box adversarial attacks can also have indirect impacts on ASR security, notably
regarding privacy attacks. Applications of ASR like personal assistants are particularly
vulnerable to this family of attacks due to their customer data acquisition pipeline.

– In chapter 6, we switch to the more realistic threat model of proxy-based or transfer-
able attacks. In contrast with negative results established in previous works, we show
that such attacks are possible on many recent ASR models. Through an ablation study,
we link this new vulnerability to the rising popularity of self-supervised ASR models.
While such training paradigms encourage distributionally-robust representations, we
show that this benefit paradoxically makes models less robust to transferable attacks.
Consequently, the scenarios in which ASR models can be fooled tend to become more
realistic over time.

• Part III: Adversarially robust speech recognition Elements discussed in the previous part
create a gap between ASR and general knowledge of robustness, like our angular metrics
or robust adversarial defenses. In this part, we discuss approaches to bridge that gap and
propose frameworks for applying general robustness principles while taking into account the
particular aspects of speech recognition and audio inputs.

– Chapter 7 shows how combining speech processing tools and general-purpose adver-
sarial defenses can lead to robust models. The randomized smoothing defense for ro-
bustness, which adds Gaussian noise to inputs, is in theory task and model-agnostic, but
in practice leads to an important drop in model performance. We demonstrate that tools
proposed by the speech community help mitigate that drop. For instance, we propose
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speech enhancement pre-processing and ROVER post-processing on ASR to improve
randomized smoothing, resulting in sequential smoothing, the current state-of-the-art
defense on the LibriSpeech dataset.

– In chapter 8 we evaluate the applicability of adversarial training to build robust ASR
models. While adversarial ASR training is challenging with most fully-supervised
architectures, we show that it is applicable during the pretraining of self-supervised,
Transformer-based models. We propose a framework called adversarial masked pre-
diction to pretrain robust models without drastic increases in computational cost. Using
this method we train AdvHuBERT, a speech encoder with improved robustness when
finetuned for ASR. We quantify that model’s tradeoff in clean performance.

• Finally, chapter 9 sums up our contributions and their implications, and suggests particularly
interesting research directions for future work to build upon this thesis.

1.2 Supporting publications
This work is supported by several publications, articles accepted at future conferences, and articles
currently under review. Some chapters overlap with several articles, and some articles overlap
with several chapters. The detailed list of publications is provided below, in chronological order of
submission.

1.2.1 Main publications
• Olivier and Raj [2021]: R. Olivier and B. Raj. Sequential randomized smoothing for ad-

versarially robust speech recognition. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, Punta Cana, Dominican Republic, Nov. 2021.
Association for Computational Linguistics (Chapter 7)

• Olivier and Raj [2022]: R. Olivier and B. Raj. Recent improvements of asr models in the
face of adversarial attacks. Interspeech, 2022 (Chapter 5, Chapter 6)

• Shah et al. [2022]: M. Shah, R. Olivier, and B. Raj. Uncovering the robustness potential
of neural architectures by measuring the probability of high adversarial accuracy. Under
review, 2022 (Chapter 3)

• Olivier and Raj [2023a]: R. Olivier and B. Raj. How many perturbations break this model?
evaluating robustness beyond adversarial accuracy. In Proceedings of the 40th International
Conference on Machine Learning, Proceedings of Machine Learning Research, Honolulu,
Hawaii, USA, 23–29 Jul 2023a (Chapter 4)

• Olivier and Raj [2023c]: R. Olivier and B. Raj. There is more than one kind of robustness:
Fooling whisper with adversarial examples. Interspeech, 2023c. URL https://arxiv.
org/abs/2210.17316 (Chapter 5, Chapter 7)
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• Olivier et al. [2023a]: R. Olivier, H. Abdullah, and B. Raj. The surprising vulnerability of
self-supervised speech recognition models to transferable adversarial perturbations. Under
review, 2023a (Chapter 6, Chapter 7)

• Olivier and Raj [2023b]: R. Olivier and B. Raj. Adversarial masked prediction for robust
self-supervised speech models. Under review, 2023b (Chapter 8)

1.2.2 Other related publications
• Shah et al. [2021a]: M. A. Shah, R. Olivier, and B. Raj. Towards adversarial robustness via

compact feature representations. In ICASSP 2021 - 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 3845–3849, 2021a. doi: 10.1109/
ICASSP39728.2021.9414696 (Chapter 3)

• Shah et al. [2021b]: M. A. Shah, R. Olivier, and B. Raj. Exploiting non-linear redundancy for
neural model compression. In 2020 25th International Conference on Pattern Recognition
(ICPR), pages 9928–9935, 2021b. doi: 10.1109/ICPR48806.2021.9413178 (Chapter 3)

• Olivier et al. [2021]: R. Olivier, B. Raj, and M. Shah. High-frequency adversarial de-
fense for speech and audio. In ICASSP 2021 - 2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 2995–2999, 2021. doi: 10.1109/
ICASSP39728.2021.9414525 (Chapter 7)

• Olivier et al. [2023b]: R. Olivier, F. Teixeira, K. Pizzi, A. Abad, I. Trancoso, and B. Raj. Ex-
ploring loss-based features for membership inference on asr. Under review, 2023b (Chapter
5)

9



Chapter 2

Background

2.1 Adversarial attacks

2.1.1 General considerations
While Szegedy et al. [2014] is famously a pioneering article on adversarial attacks against deep
learning models, as Biggio and Roli [2018] point out the roots of the field are older by several
years. There are multiple works focused for instance on ways to fool spam filters with minimal
changes that can be computed with adversarial machine learning [Dalvi et al., 2004, Wittel and
Wu, 2004, Lowd and Meek, 2005, Zhou et al., 2007]. Known as evasion attacks, these threats have
given rise to the search for effective defenses against such attacks and robust machine learning
models [Globerson and Roweis, 2006, Biggio et al., 2008, Kolcz and Teo, 2009].

However, Szegedy et al. [2014] shifted the focus of adversarial machine learning onto deep
neural networks and showed that these models can be fooled with a single gradient step on the
input that the human eye could not notice. This work gained considerable traction, and in the
following years, several refinements on that original attack were proposed, up to the point where
undefended models typically achieve 0% accuracy under attack. These attacks have also expanded
the definition of what is considered an adversarial example.

Goodfellow et al. [2015] introduce the Fast Gradient-Sign Method (FGSM), in which the per-
turbation step follows the sign of the gradient pixel-wise. The DeepFool attack [Moosavi-Dezfooli
et al., 2016] runs multiple gradient steps until the input is misclassified. Other attacks modify a
minimal number of pixels instead [Papernot et al., 2016a]. The Projected Gradient Descent [Madry
et al., 2018] and the Carlini&Wagner [Carlini and Wagner, 2016], the bases behind current adver-
sarial robustness evaluation standards, also differ considerably. Moreover, while the aforemen-
tioned attacks affect numerical inputs in academic contexts, multiple works have instead focused
on attacks that can operate "in the real world", or practical attacks. This can include patches in the
shape of glasses that fool face recognition systems [Sharif et al., 2016] or stickers on stop signs to
break traffic sign classifiers [Eykholt et al., 2018]. Other attacks have targeted different tasks such
as Speech recognition [Carlini and Wagner, 2018]

In this rapidly expanding field, it would be extremely challenging to propose a formalism flex-
ible enough to account for all attacks and practical enough to allow tractable evaluation. The
remainder of this section introduces elements of formalism that are sufficient for our needs and
will be consistently referred to in this thesis.
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2.1.2 Threat models
The notion of adversarial threat model [Chakraborty et al., 2018] refers to the underlying assump-
tions in an adversarial attack. It covers multiple notions: the objective of the attack (targeted vs
untargeted), its constraints (the set of admissible perturbations), and the information at its disposal
(white-box vs black-box attacks).

We consider in the following a model f that performs a supervised task. Given an input-label
pair (x, y), the objective of f is to minimize the error metric e(f(x), y). If the task is classification
then e is the prediction error: e(y, y′) equals to 1 if y 6= y and 0 otherwise. If the task is Speech
Recognition it could be the Word-Error Rate (see Section 2.3).

f is trained over a supervised task by minimizing a loss L(f, x, y) over its training set. (x, y)
are an arbitrary input-label pair in the test set. Adversarial attacks take f , x and (optionally) y as
input and return a perturbation δ.

Targeted vs untargeted A targeted attack tries to force a model to predict a specific output called
target, i.e. to minimize e(f(x + δ), yT ) with yT 6= y the target. On the other hand, an untargeted
attack tries to force misprediction, i.e. minimize e(f(x+δ), y). In practical contexts, this objective
can be called denial of service.

Targeted and untargeted objectives may differ more or less crucially. If the task is binary clas-
sification they are equivalent. With Speech Recognition they are radically different, and targeted
adversarial examples are much more difficult to compute than untargeted ones.

If the true label y is not available to an untargeted attack, then it can be replaced with the
predicted label f(x). For high-accuracy models, this has a limited but non-negligible effect on the
outputs of attacks.

Admissible perturbations The goal of adversarial attacks is to return minor perturbations, that
would be considered insignificant by a human agent. The exact definition of minor perturbations
may differ from one context to another: some attacks try to return imperceptible perturbations, but
this cannot be said of attacks that put glasses on faces [Sharif et al., 2016]. However many attacks
define a fixed set of admissible perturbations ∆ and their goal is to return a perturbation within
that set:

arg max
δ∈∆

e(f(x+ δ), y) or arg min
δ∈∆

e(f(x+ δ), yT ) (2.1)

for untargeted and targeted attacks respectively.
Commonly ∆ would be a ball of radius ε in a norm Lp, with typically p = ∞ or p = 2. ε

is then called the noise budget. Attacks like JSMA [Papernot et al., 2016a] use p = 0. Other
attacks have tried to propose different sets ∆ more aligned with human perception, that take into
account the input x, such as Wasserstein distance [Wong et al., 2019]. However standard Lp norms
constitute good benchmarks for adversarial robustness. In this thesis, we most often consider L2

and L∞-bounded attacks,
Equation 2.1 can be seen as the objective achieved by a perfect attack or worst-case adversary.

Adversarial attack algorithms are surrogates for this worst-case attack.
In the case of classification tasks, e can only take two values. This allows us to identify in ∆,

for a given input x, the subset of successful adversarial perturbations. On the other hand, some
attacks such as Carlini&Wagner are unbounded. In that case, ∆ = Rn but the attack aims at
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returning a perturbation as small as possible. The notion of admissible set then loses most of its
meaning. We can alternatively consider the attack to be always successful, but evaluate it with the
amount of noise it uses: the smaller the perturbation, the better the attack is.

White-box vs black-box White-box and black-box attacks differ in the information they have
access to. White-box attacks assume complete knowledge of the model and specifically can ac-
cess its gradients with backpropagation. These gradients can be used to compute directions of
greatest change on the inputs and optimize the adversarial perturbation δ. FGSM, PGD, and
Carlini&Wagner are all white-box attacks. This setting also assumes knowledge of any defense
mechanism the model uses: this is further detailed in section 2.2.1.

Black-box attacks only assume access to the model as a decision rule: they can feed it in-
puts and access outputs. These attacks use black-box optimization mechanisms, based on ran-
dom search and rejection sampling with varying heuristics and amounts of supervision [Narodyt-
ska and Kasiviswanathan, 2017, Brendel et al., 2018, Su et al., 2019, Croce and Hein, 2020a,
Andriushchenko et al., 2020]. Although white-box attacks are in principle strictly stronger than
black-box attacks, they can be affected by gradient obfuscation effects that black-box attacks are
immune to [Athalye et al., 2018a]. Therefore black-box attacks can be useful when evaluating
adversarial robustness. This is further discussed in section 2.2.1.

Multiple intermediate scenarios can be considered between white-box and black-box settings
and can be called grey-box threat models. A common situation is that the model weights are kept
secret, but all of its training mechanisms and hyperparameters, randomness excluded, are made
public. This scenario is especially relevant because of the transferability effect of adversarial
examples, identified by Papernot et al. [2016b]. This article showed that perturbations computed
on a given example and model often break different models on the same example. Transferability
becomes more effective when models are trained similarly. This effect enables a family of attacks
in which the adversary trains a surrogate model - using grey-box information - then runs white-box
attacks on that model and transfers the obtained perturbations onto the original model. Transferred
attacks are typically weaker than black-box attacks, but are easier to compute - provided that the
surrogate model has already been trained.

We now provide more details about two standard white-box attacks that we will repeatedly use
in the following chapters.

2.1.3 Projected Gradient Descent
The Projected Gradient Descent (PGD) attack was proposed by Madry et al. [2018] and is a gen-
eralization of the FGSM attack [Goodfellow et al., 2015]. Its authors argue that it is the strongest
first-order adversarial attack - i.e. attack that only uses direct gradient information from the model
loss. It is also a versatile attack, that can be targeted or untargeted, and declined in any norm Lp
Given an input x and its label y, this attack optimizes the following objective (which is trivially
adapted for targeted attacks):

arg max
δ∈∆

L(f(x+ δ), y) (2.2)

using projected gradient descent for a number n of gradient update steps. At each step k + 1 the
updates are:

δ′k ← δk + η ∗ sign(∇δkL(f(x+ δk), y)) (gradient ascent) (2.3)
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δk+1 ← P∆(δ′k) (projection step) (2.4)

where η is the step size, and P is the projection operator onto ∆. In the L∞-PGD attack this
projection step would be:

δk+1 ← clipε(δ
′
k) (element-wise clipping) (2.5)

While for L2-PGD it is:
δk+1 ← min(1,

ε

‖δ′k‖2

) ∗ δ′k (2.6)

L∞-PGD with n = 0 and η = ε is equivalent to FGSM. PGD attacks are typically evaluated
with the score e(f(x + δ), y) over the evaluation set - which for classification tasks is nothing but
the model error rate, i.e. the attack success rate.

δ0 can be initiated at 0 or a random admissible point - which improves the success rate. Other
optimization tricks can include momentum [Dong et al., 2018b] or multiple restarts [Uesato et al.,
2018b]. Croce and Hein [2020b] proposed AutoPGD, a parameter-free PGD attack in which the
step size is automatically updated. The PGD attack has been extensively studied in the literature
and is a staple of robustness evaluation. Combined with some other strong attacks, AutoPGD
forms AutoAttack, which is used in the RobustBench benchmark [Croce et al., 2021].

2.1.4 Carlini&Wagner
The Carlini&Wagner (CW) attack [Carlini and Wagner, 2016] optimizes the following objective:

arg max
δ∈Rn

L(f(x+ δ), y) + λ ‖δ‖2
2 (2.7)

This L2 attack is unbounded and only enforces small perturbations through regularization term
λ ‖δ‖2

2. Its intended behavior is to find the smallest successful perturbation, by optimizing the
objective in 2.7 (typically with the Adam optimizer), and using binary search on the regularization
coefficient λ. There are versions of this attack for other norms, but it is more effective in the L2

setting.
The CW attack often requires more steps than the PGD attack to obtain successful examples. It

is however resilient to difficult settings: it has broken numerous weak defenses (section 2.2.1) and
can be adapted for targeted attacks on Speech Recognition, where PGD optimization fails (section
2.4).

2.2 Adversarial defenses
Research on adversarial robustness at its beginnings had taken the form of an arms race. In re-
action to the first attacks, a great amount of work has focused on mitigation mechanisms against
adversarial perturbations, referred to as adversarial defenses. These methods were often based
on "common sense" intuitions and heuristics. Defensive distillation [Papernot et al., 2015] for in-
stance showed great success against early, simple attacks, but was broken by stronger algorithms
[Carlini and Wagner, 2016]. Some works focused on detecting adversarial examples as outliers
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rather than predicting them correctly, using for example trained classifiers [Metzen et al., 2017] or
statistical methods [Feinman et al., 2017]. These methods were ultimately defeated as well [Carlini
and Wagner, 2017].

2.2.1 Obfuscation and adaptive evaluation
A few years of back and forth have eventually underlined some structural flaws in most heuristic
defenses. After the standardization of the PGD and CW attacks as strong robustness benchmarks,
many defense works [Guo et al., 2018, Buckman et al., 2018, Song et al., 2018, Xu et al., 2018,
Samangouei et al., 2018, He et al., 2017] were broken at the same time and with limited effort
by single papers [Carlini and Wagner, 2017, Athalye et al., 2018a, Uesato et al., 2018a]. Athalye
et al. [2018a] in particular have emphasized the phenomenon of gradient obfuscation, in which the
addition of the "defense" makes gradients either harder to backpropagate (with non-differentiable
components) or less informative (with randomness or vanishing gradient effects). Obfuscation
leads to artificially increased performance on adversarial performance by confusing the attacker,
often without doing much to predict correctly the adversarial examples themselves. In other words,
these defenses rely on the gap between actual (weak) attacks and the ideal worst-case adversary
but are ineffective against that worst-case attack.

Multiple works have since then proposed guidelines to properly evaluate adversarial defenses
[Athalye et al., 2018a, Carlini et al., 2019, Tramer et al., 2020]. Such guidelines involve using
black-box attacks or transferred examples, which are typically immune to obfuscation effects. But
the best evaluation method is to design adaptive attacks against every defense, to backpropagate
gradients correctly. For instance, any defense involving random transformations of the inputs
should use Expectation over Transformation [Athalye et al., 2018b] i.e. optimize the expectation
of the transformation, approximated with samples. Designing adaptive attacks against one’s own
work is very difficult, however, and many recent works published at top conferences keep running
misleading evaluations [Tramer et al., 2020].

Another way to circumvent obfuscation problems is to design defenses whose robustness is
certified by mathematical guarantees. This has been an active field in recent years, with several
families of robust defenses. Some rely on model verification, i.e. proof that the function a neu-
ral network computes is stable in the neighborhood of a specific input, using methods such as
Satisfiability Modulo Theories solvers [Ehlers, 2017], Mixed Integer Programming [Tjeng et al.,
2019] or Abstract Interpretation [Gehr et al., 2018]. These methods tend to suffer from very high
complexity when applied to large networks. Others optimize a relaxed, loose bound on the ad-
versarial objective, that enables to run convex optimization algorithms [Kolter and Wong, 2017,
Gowal et al., 2018, Salman et al., 2019, Mirman et al., 2021].

2.2.2 Randomized smoothing
A final family of methods generates probabilistic guarantees instead. Noise addition certified de-
fenses were introduced in Pinot et al. [2019] and Lécuyer et al. [2019], respectively based on
the frameworks of probabilistic mapping and differential privacy. Later Cohen et al. [2019] im-
proved on the formalism and robustness guarantees with Randomized Smoothing, showing in fact
that their L2 bound is tight. The principle of randomized smoothing is to replace a deterministic
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classifier f : Rd → {1, 2, ...,m} with the smooth classifier:

g(x) = arg max
k∈{1,2,...,m}

P[f(x+ ε) = k] (2.8)

with ε ∼ N (0, σ2I). More precisely, since classifier g cannot be evaluated exactly, it is estimated
with a form of Monte Carlo algorithm: many noisy forward passes are run and a majority vote
determines the output label.

The underlying reasoning behind this method is that given a small perturbation δ, and a standard
deviation σ >> ‖δ‖2, probability distributions for x+ ε and x+ δ+ ε are very “close” by standard
divergence metrics. Therefore discrete estimators built around these distributions have equal value
with high probability. So if an attacker crafts an adversarial perturbation δ, it will have a very small
chance of changing the output of g.

When using randomized smoothing, the biggest challenge is to retain good performance on
very noisy data. One can see this defense as a way to shift the problem from adversarial robustness
to white noise robustness. This is typically done with data augmentation during training. Salman
et al. [2020b] propose to use a denoiser network instead, which makes smoothing applicable off-
the-shelf on pretrained networks. Olivier and Raj [2021] use Speech Enhancement for the same
purpose, as well as custom voting strategies, to use smoothing on Speech Recognition.

2.2.3 Adversarial training
While provable defenses come with many advantages, they suffer from overly conservative bounds
or scaling issues. As a consequence, state-of-the-art results for most threat models are held by
adversarial training defenses, a rare example of a heuristic and obfuscation-free approach [Athalye
et al., 2018a] that comes with no formal guarantee but very strong empirical performance.

Essentially, these defenses train the model to be robust to attacks by encountering adversarial
examples during training. This approach is very intuitive and almost as old as adversarial examples
themselves [Goodfellow et al., 2015]. In its earliest version, FGSM attacks were computed on
training inputs and fed to the model instead of the original data points. Borrowing the formalism
in Madry et al. [2018], given the adversarial optimization objective on data distribution D:

min
(x,y)∼D

E[arg max
δ∈∆

L(f(x+ δ), y)] (2.9)

adversarial training optimizes a lower bound of this objective, by replacing the worst-case loss
arg maxδ∈∆ L(f(x + δ), y) with an adversarial example. Since it is a lower bound rather than an
upper bound, no guarantee in this min-max problem can be achieved.

Despite its simple approach, turning adversarial training into an effective defense is difficult.
Its earliest version was not robust to strong attacks. It becomes effective if a strong attack algorithm
is used: the first strong adversarial training defense uses the PGD attack [Madry et al., 2018] and is
still a solid defense baseline to this day. In fact, it has for several years mostly seen minor improve-
ments compared to its original version: improvements to the PGD attack like Dong et al. [2018b]
lead to slightly improved performance, and TRADES [Zhang et al., 2019] trades off standard and
adversarial objectives, which led to a long-held state of the art for L∞ robustness. However Rice
et al. [2020] attribute this improvement to a form of overfitting, and an improved parameter-free
attack [Croce and Hein, 2020b] brought TRADES performance down to the PGD training.

15



Several improvements to adversarial training have been proposed in recent years. It has been
shown to benefit from larger datasets and data augmentation [Gowal et al., 2020, Rebuffi et al.,
2021], and mixes well with self-supervised learning [Schmidt et al., 2018, Alayrac et al., 2019,
Carmon et al., 2019, Zhai et al., 2019, Kim et al., 2020]. It also requires larger model capacity
than standard training to fully exploit its potential [Xie and Yuille, 2020]. Another line of work
has improved the computation time required by PGD attacks, managing to achieve comparable
performance with fewer iterations or even FGSM training, thanks to random initializations or op-
timization tricks [Wang and Zhang, 2019, Wong et al., 2020].

Adversarial training has interesting uses on top of being an effective defense. Xie et al. [2020]
show that it can improve performance on image recognition in some cases. It also improves domain
generalization [Li et al., 2018].

2.3 Speech recognition
By Automatic Speech Recognition (ASR) we refer to the task of associating a speech utterance
with its natural language transcription. This is a complex, temporal classification task with con-
tinuous inputs and a semantic structure in both inputs and outputs. A wide variety of models have
been used over the years, involving for instance Hidden Markov Models [Rabiner, 1989] or hybrid
Neural/HMM models [Levin, 1990, Iwamida et al., 1991, Johansen, 1996, Wang and Sim, 2011].
In the past decade, end-to-end neural models for speech recognition have seen important break-
throughs [Graves et al., 2013, Amodei et al., 2016, Chan et al., 2016, Dong et al., 2018a, He et al.,
2019, Baevski et al., 2020, 2021, Hsu et al., 2021, Radford et al., 2022], and are the focus of this
thesis.

ASR is evaluated by comparing the differences between the predicted and the target transcrip-
tion, typically using Word-Error-Rate (WER) or Character-Error Rate (CER), which are edit dis-
tances in the word and character spaces.

2.3.1 Neural ASR architectures and training methods
Most neural ASR models rely on Long Short-Term Memory (LSTM) networks [Hochreiter and
Schmidhuber, 1997], or more recently on Transformers [Vaswani et al., 2017], or Transformer-
inspired architectures. An example is the Conformer network [Gulati et al., 2020], which inter-
leaves self-attention layers with convolutional layers. Both architectures are still used in different
settings: scaled Transformers usually reach higher performance, but LSTMs may sometimes be
beneficial for streaming applications.

ASR is a sequence-to-sequence task, and as such a common method is to train Attention
Encoder-Decoders (AED) [Chan et al., 2016]. For those models, the major difference with NLP
tasks like Machine Translation is that the encoder takes continuous speech inputs rather than dis-
crete units. Therefore, the tokenizer is replaced with an audio front-end downsampling the audio
to a shorter sequence of local features. That front-end may compute Spectrogram-based encodings
like Mel features or MFCC, or it may be a small CNN directly operating on raw audio.

Contrary to most NLP sequence-to-sequence tasks however, ASR is monotonic: given an (au-
dio) input sequence x[1..n] and a (text) output sequence y[1..m], if yi is aligned with xj then yi+1 can
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only be aligned with xk where k > j. Attention does not enforce such a constraint, but other train-
ing objectives that do have proven competitive. One such example is the RNN-Transducer, first
proposed in Graves et al. [2013]. It consists of an LSTM encoder network that takes the current
audio sample, an LSTM decoder network that takes the previous RNN-T output, a joint network
that combines the outputs of the encoder and decoder, and a final softmax layer that predicts the
current output token. The RNN-T is an efficient architecture with low latency, suited for streaming
ASR on mobile devices [He et al., 2019].

It is even possible to remove the decoder altogether and train encoder-only models for ASR.
This is achieved with Connectionist Temporal Classification (CTC) loss [Graves et al., 2006],
which uses a Viterbi-like algorithm to average the loss over all possible speech-to-text alignments.
Without a decoder, CTC models enforce strong independence assumptions on their output tokens,
which can limit their performance in some settings. Those limitations can be addressed by com-
bining them with a language model [Amodei et al., 2016, Higuchi et al., 2022]. CTC can also be
advantageously combined with AEDs as an auxiliary objective for the encoder [Hori et al., 2017].

For each of those objectives, LSTMs and Transformers are largely interchangeable.

2.3.2 Self-supervised pretraining for ASR
The ASR training objectives above all require speech data labeled with transcription. This require-
ment limits the amount of data available: standard datasets like LibriSpeech contain up to 1khrs
of labeled speech. To overcome this issue, a vast area of research has studied the use of unlabeled
speech data to train ASR. Some methods rely on pseudo-labeling: models trained with supervised
ASR objectives are used to label more data and continue training [Synnaeve et al., 2020, Likhoma-
nenko et al., 2020, Lugosch et al., 2022]. Another popular approach is to use Self-Supervised
Learning (SSL) to pretrain encoders.

SSL consists of training models to solve a "pseudo-task", with labels extracted from the audio
itself [Mohamed et al., 2022]. Major families of SSL objectives are:

• generative training: learn to generate audio with autoregressive or denoising objectives
[van den Oord et al., 2017]

• contrastive learning: learn to match outputs with the right inputs between a batch of distrac-
tors [van den Oord et al., 2018, Baevski et al., 2020, 2021]

• masked prediction: mask part of the inputs, and learn to predict a discrete or continuous label
extracted from those inputs [Hsu et al., 2021, Baevski et al., 2022b]

The vast majority of SSL models introduced in the past three years rely on Transformers. After
pretraining, those models can be further adapted to ASR or other tasks with small amounts of
labeled data. Training methods include fine-tuning with CTC training, freezing the SSL encoder
as an embedding to train an AED on, or using adapters or prompting. On most ASR benchmarks,
the state-of-the-art approaches exploit SSL pretraining on a very large unlabeled corpus, followed
by CTC finetuning Baevski et al. [2021], Hsu et al. [2021], Baevski et al. [2022a], Chen et al.
[2021].
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2.3.3 Our models
We detail the specific models we use throughout this work:

• DeepSpeech2 [Amodei et al., 2016] (chapters 5,7) is a CTC-trained LSTM model trained
on the LibriSpeech dataset.

• We use multiple AEDs:

– the CRDNN model from the SpeechBrain library [Ravanelli et al., 2021] using LSTMs
(chapters 5 and 6)

– the SpeechBrain Transformer model (chapters 5, 6 and 7)

– The Fairseq Speech2Text Transformer [Wang et al., 2020] (chapter 6)

– The Whisper models [Radford et al., 2022], a family of English and multilingual AEDs
trained not on LibriSpeech but on a large, unpublished labeled dataset of 680khrs.

• SSL models are the focus of chapter 6. We directly evaluate several models:

– Wav2Vec2 [Baevski et al., 2021], pretrained with contrastive learning on masked audio
frames

– HuBERT [Hsu et al., 2021], WavLM [Chen et al., 2021] and UniSpeech [Wang et al.,
2021, Chen et al., 2022], trained on masked prediction of discrete labels extracted from
the audio with clustering.

– Data2Vec [Baevski et al., 2022b], where a student model is trained on masked predic-
tion of continuous representations generated by a teacher. The teacher is an Exponential
Moving Average of the student.

All those SSL models are Transformers fine-tuned with CTC. We also use SSL models in
chapters 7 (Wav2Vec2 and HuBERT) and 8 (HuBERT).

2.4 Adversarial examples on speech recognition

2.4.1 White-box attacks
Untargeted attacks on ASR are relatively straightforward. When applying the PGD attack to any
ASR model with a differentiable loss we can easily induce denial-of-service with very small pertur-
bations. With more effort, an attacker can compute such perturbations that transfer across models
and inputs [Neekhara et al., 2019] or do not require white-box access [Abdullah et al., 2021a].

Targeted attacks are much more complex, and require specific algorithms. The earliest attacks
proposed on ASR were the ultrasonic-based DolphinAttack [Zhang et al., 2017] and the Houdini
loss for structured models [Cisse et al., 2017]. In Carlini and Wagner [2018] the authors propose
an extension of their CW attack for audio inputs, computed against the DeepSpeech2 model. This
attack replaces the loss function in Equation 2.7 by the CTC loss. It also proposes some tricks to
improve the SNR, such as computing an initial adversarial example with the vanilla CW attack,
then using its alignment with the target sentence to refine the perturbation with a per-character loss.
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However, available implementations of that attack do not include this second step and we focus on
the vanilla CW attack.

Other works have extended the state-of-the-art with over-the-air attacks [Yuan et al., 2018,
Yakura and Sakuma, 2019, Li et al., 2019]. A recent line of work has improved the imperceptibility
of adversarial noise by using psychoacoustic models to constrain the noise rather than standard L2

or L∞ bounds [Szurley and Kolter, 2019, Schönherr et al., 2019, Qin et al., 2019]. Such attacks
reduce the perception of the noise at an equal budget but do not reduce the SNR.

2.4.2 Black-box and transferable attacks
Black-box attacks on ASR remain challenging. Some methods rely on black-box optimization but
only have shown good results at a small scale [Alzantot et al., 2018, Taori et al., 2019]. Others do
not rely on optimization at all, like Abdullah et al. [2021a] and Abdullah et al. [2023] which apply
perturbations by focusing on inaudible frequencies. Those methods have the advantage of being
automatically transferable, since they are model-agnostic. However, they are always untargeted.

The transferability of targeted, optimization-based ASR attacks is a highly challenging prob-
lem. Some works like Yuan et al. [2018] claim a certain amount of transferability for targeted
attacks; however they embed their adversarial noise in songs, allowing for much more important
amounts of noise while being technically stealthy. In fact, some negative results have been estab-
lished. Abdullah et al. [2021b] shows that on DeepSpeech2-type models, targeted attacks show
no transferability even when models are trained using the exact same hyperparameters apart from
the random seed. In Abdullah et al. [2022] the same authors analyze more in detail the factors
that limit transferability and show that recurrence and spectrogram-based features are important
obstacles. However, even removing those obstacles did not enable them to transfer attacks be-
tween large-scale ASR models. Our work Olivier et al. [2023a] (chapter 6) is the first occurrence
of targeted transferability between strong ASR models.

2.4.3 Defending ASR against adversarial perturbations
Only a few works have proposed defenses against adversarial attacks specifically for speech recog-
nition models. Some, like Yang et al. [2019], have not stood the test of adaptive attacks [Tramer
et al., 2020]. Others focused on methods that have a track record of robustness in other modalities,
like randomized smoothing [Żelasko et al., 2021]. We improve on this work in Olivier and Raj
[2021] (chapter 7) and investigate adversarial training in Olivier and Raj [2023b] (chapter 8)
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Part I

Towards fine metrics of adversarial
robustness
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Chapter 3

Variance in adversarial robustness

Ultimately, one of the most desirable objectives in research on adversarial robustness is to create
defense mechanisms that are versatile, robust, and scalable. In that regard, a sensible approach is
to set strong attacks as benchmarks and evaluate defended models with their results under attack
on large and complex datasets. However, when it comes to gathering knowledge and insight on
adversarial examples, this approach has important flaws. A metric like adversarial accuracy only
reflects a limited perspective on the model’s behavior in the vicinity of its inputs; focusing on
the most challenging datasets makes the analysis of those phenomena even more difficult. Our
objective in this part is to illustrate and alleviate some of those limits.

In this chapter, we introduce an interesting aspect of adversarial robustness. We observe that
in several contexts partial robustness to adversarial attacks can occur during training without any
explicit effort to make models robust. This "spontaneous" robustness often happens with very high
variance: a learning algorithm that does not seem to particularly favor robustness may occasionally
output a partially robust model, with a non-zero probability. We call this phenomenon accidental
robustness. While we show that these are general phenomena that suggest profound changes in our
approach to robustness, accidental robustness is much more easily observable on simple or low-
dimensional datasets. Yet its observation brings insights that can help design robust architectures
at larger scales. As such, it perfectly illustrates how small datasets offer interesting perspectives
for adversarial research, in addition to more complex ones. The fact that adversarial accuracy can
vary so much in identical training settings also illustrates the limits of that metric as a measure of
robustness - a topic that will be followed up in the next chapter.

3.1 Introduction
Fixing a neural architecture and random initial conditions (weight initialization, data shuffling,
etc), standard gradient descent-based optimization will usually yield a high-accuracy model on the
training dataset, and with proper generalization on the test dataset as well. It may also, with a cer-
tain probability, yield a model robust to adversarial attacks on that test set. In other words, certain
achievable minima of the standard training objectives may correspond to minima of the adversarial
training objectives. Those are the models we dub accidentally robust. This statement might seem
banal when devoid of context; however, we experimentally show the following, surprising results:

• In several settings, the variance in accidental robustness can be very high
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• Choices of hyperparameters affect the probability of accidental robustness

• Hyperparameters that increase the odds of accidental robustness tend to be the same across
multiple datasets

• Hyperparameters that increase the odds of accidental robustness tend to align with the ones
improving the results of adversarial training according to previous works [Madry et al., 2018,
Rebuffi et al., 2021]

One interpretation of those results This is that accidental robustness is a method to find "robustness-
friendly" hyperparameters. We argue that neural architecture choices give some robustness po-
tential to classification models: they do not necessarily make them robust to adversarial attacks
everything else equal, but they increase the capacity of the model to show robustness in favorable
conditions. Training models adversarially is simply one way to unveil this robustness potential.

This chapter demonstrates the above results empirically, and to an extent theoretically. It is
organized as follows. In section 3.2, we describe RXOR, a synthetic toy problem that most of our
experiments use. We mathematically establish that choices in the number of neurons, layers, and
activation functions condition the existence of a robust and accurate solution to the optimization
problem. In section 3.3 we propose a methodology for measuring accidental robustness. In section
3.4 we describe our experimental setup. In section 3.5 we evaluate accidental robustness on RXOR
when varying several hyperparameters, and show that hyperparameter choices condition the prob-
ability of accidental robustness. In section 3.5.4 we run similar experiments on the MNIST dataset
and with adversarial training and show extremely similar results between these different settings.
Finally in section 3.6 we show that activation pruning is an example of a post-training method that
can also lead to increased robustness potential.

3.2 RXOR Problem Description
To illustrate the phenomenon of accidental robustness we consider deep neural networks trained
to approximate a real-valued variant of the XOR function. The Boolean XOR function (BXOR)
is a binary operator (usually denoted x1 ⊕ x2) that takes Boolean inputs and outputs True if and
only if one of the inputs is True and the other is False. The function can also be extended to an
arbitrary number of inputs by using the base case BXOR(x1) = x1 and the following recursive
rule for n ≥ 2:

BXOR(x1, .., xn) = BXOR(x1, .., xi)⊕ BXOR(xi+1, .., xn)

Unlike the case of, for example, functions defined over natural images, the BXOR domain spans
the entire input space. Therefore while on image classification there is for each input a region of
input space in which the pixel values may change semantics of the input remain unchanged; in
the case of the Boolean XOR, any perturbation changes the input in a semantically meaningful
way. Due to this property, the Boolean XOR function does not permit adversarial perturbations as
defined in this work. To get around this limitation, in this paper, we use a real-valued variant of the
XOR function (RXOR), which is defined as RXOR(x1) = sign(x1) and for n ≥ 2:

RXOR(x1, .., xn) = RXOR(x1, .., xi) 6= RXOR(xi+1, .., xn)
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where xi ∈ [−1, 1]. It is easy to see that this formulation of the XOR function permits perturbations
that do not change the input in semantically meaningful ways. For instance, if xj 6=i are fixed,
changing xi from 1 to ε > 0 does not change the value of RXOR(x1, .., xi, ..., xn).

The domain of RXOR contains infinitely many elements, therefore it is impossible to train a
model on the entire input domain. Moreover, since the training set of the model is a finite sample
from an infinite set, a non-robust solution is necessarily permitted. This is because any finite
sample from [−1, 1]n will necessarily produce a region around the decision boundary (the standard
bases ofRn) from which no points are sampled; due to which multiple solutions are made possible
of which only one is the true one. This is shown in Figure 3.1 where the yellow region around the
axes represents the unsampled region. For example, if in the training data |xi| ≥ ε > 0 then a valid
solution, given this training data, might consider 0 < xi < ε to have sign -1, that is the decision
boundary is drawn at the edge of the yellow region. If this happens then an adversary might be able
to perturb xi just enough that 0 < xi < ε and cause a misclassification. One could indeed argue
that the input with the perturbed xi is not part of the training data distribution and is an example of
an off-distribution adversarial input.

Based on the preceding discussion, we can define an adversarially robust model as a model
that can make highly accurate predictions even when test data is not in the support of the training
data distribution. Figure 3.1 illustrates an example of training and testing data distributions which
differ as mentioned above. The yellow region is in the support of the test data but not of the
training data. As a result the set of valid solutions i.e. those that achieve high accuracy on the
training data but not necessarily on the test data, is a superset of the set of robust solutions, i.e.
those that achieve high accuracy on the test data. If the prediction accuracy on the training data
is the sole metric, the optimization procedure will not be able to identify the robust solution from
amongst the valid solutions and hence will converge to the solution that is most accessible from
the point of initialization. It follows that the probability that a trained model will be adversarially
robust is equal to the probability that a randomly initialized model is close to a robust solution. In
the subsequent sections, we first describe a Monte Carlo sampling-based method for estimating the
probability that a randomly initialized model will converge to a robust solution, then we present
and analyze the estimates obtained by applying this method to various models trained to compute
RXOR. In our analysis, we aim to isolate trends that can be used to inform modeling choices that
would facilitate the training of robust models.

3.2.1 Influence of hyperparameters on accurate and robust classifiers
Given certain choices of hyperparameters and attack radius ε, there may or may not be accurate
and robust classifiers. For instance, in Figure 3.1 the orthogonal cross classifier is accurate and
robust for some values of ε. We formalize that intuition into theoretical results, which we express
below.

Formally, given a number m we define Fa1,a2,...,am as the set of n-hidden-layer binary neural
classifiers, that have a1 neurons on the first hidden layer, a2 on the second, etc. The final layer
always has one neuron for binary classification. When there is no ambiguity on f , we name hi,j
the j th neuron of the ith layer. We name h′i,j the pre-activation neuron (which is an affine function).
We can establish the existence or non-existence of valid solutions on Xε for certain values of ε, n,
m, ai, and certain activation functions.
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Figure 3.1: 2D RXOR dataset illustration. The yellow section is the adversarial region, i.e. in our
framework set difference between the test data support and the training data support.

Proposition 3.1. For n = 2, with threshold activations, F2,2 contains a classifier that is valid on
Xε for all 0 < ε < 1.

Proposition 3.2. For n = 2, with threshold activations, given 0 < ε1 <
2
3

and 2
3
< ε2 < 1, F2

contains a valid classifier on Xε1 but not on Xε2

Proposition 3.3. For n = 2, with ReLU activations, F3 contains a classifier that is valid on Xε for
all 0 < ε < 1.

We prove all of the above results in Appendix A.1. For the remainder of this chapter, we
focus on empirically establishing which choices of parameters tend to favor robustness, using a
methodology based on accidental robustness.

3.3 Methodology
To estimate the probability of arriving at a robust solution we use a Monte Carlo sampling-based
approach. We begin by selecting an architecture for our neural network and initializing the param-
eters of the network by uniformly sampling a point from a p dimensional L2 norm ball, where p is
the number of parameters of the network. The radius of the norm ball is chosen such that valid and
robust solutions are possible within it. Next, we use Stochastic Gradient Descent (SGD) to opti-
mize the parameters to minimize the prediction error on a training dataset. In this step, we perform
only a small number of SGD updates because we only want to search for a solution in the vicinity
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of the random initialization. This is to ensure that we are visiting a wide range of solutions, in
the case that SGD tends to end on a specific minimum given enough time. The distribution of the
training data resembles Figure 3.1 in that points are sampled uniformly from ([−1,−ε] ∪ [ε, 1])n,
where n is the number of inputs to RXOR and ε is the width of the unsampled region around the
axes. Concretely, we sample data sets Xε1 ...Xεk for ε0 < ... < εk, such that

Xεj = {s� x|x ∈ Rn, xi ∼ U [εj, 1], s ∈ {−1, 1}n, P (si = −1) = P (si = +1) = 0.5} (3.1)

where � represents element-wise multiplication. We then train the model on one of the data
sets, say Xεj , and evaluate its accuracy on all of them. Note that the support of the test sets Xεi<j
includes a region that is not in the support of the training set. Based on the definition of robustness
presented in the previous section, if a model trained on the training set is able to make perfect
predictions on the testing set, we will consider it to be robust. More specifically, we will refer
to a model that achieves 100% accuracy on Xεi as being εi-robust. Of course, all models that are
trained on Xεi will be ε-robust for ε ≥ εi but only some of them might be robust for ε ≤ εi.

For each value of εj , we repeat the above procedure N times to obtain N models that had
different random initialization and have been trained and evaluated on different samplings of the
training set Xεj and Xε1 ...Xεk , respectively. Next, we create a set of valid solutions for each εj ,
denoted by Vεj , containing models that were trained on Xεj achieved 100% accuracy. We also
create, for each εj , sets of robust solutions, Rεj ,ε1 , ...,Rεj ,εk , corresponding to different levels of
robustness and containing models that achieve 100% accuracy on Xε1 , ...,Xεk , respectively. Using
these sets we estimate the following probabilities:

• P (robust|εi, εj) ≈
|Rεj ,εi |
|Vεj |

– the probability of (quasi) randomly arriving at an εi-robust solu-

tion

• P (valid|j) ≈ |Vεj |
N

– the probability of arriving at a valid solution by training on Xεj

• P ∗(robust|εi, εj) ≈
|Vεi |
|Vεj |

– the oracle probability of robustness. This is the upper bound of

P (robust|εi, εj) that is achieved if Vεi<j ⊂ Vεj , i.e. all the solutions achievable by training
on Xεi are recovered by training on Xεj

3.4 Experiments
In our experiments, we use Multi-Layered Perceptrons (MLP) without biases. We removed the
bias parameter because it is not required to compute RXOR and removing it reduces the parameter
count, which in turn reduces the memory and computation requirements of our experiments. We
ran experiments with various model architectures in order to observe the impact of width, depth,
and activation functions on the probability of arriving at a robust solution. We set the radius of the
L2 norm ball from which the initial values of the parameters are sampled to 25. We optimize the
initial parameters by performing 20 updates using SGD with a Nesterov momentum of 0.9.

To train and test the models we create datasets Xε , as described in the previous section, for
ε ∈ E = {0.4, 0.3, 0.2, 0.1, 0.05} with each data set having 1000 points. We denote these 2D
datasets as X 2

ε for ε ∈ E . We train each model architecture on each of the datasets separately but
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we evaluate each trained model on all of the datasets. This allows us to determine what fraction
of models trained on X d

0.4 achieve 100% accuracy on X d
0.1. We will refer to such models as being

ε-robust for ε = 0.1. Of course, all models that are trained on X d
εi

will be ε-robust for ε ≥ εi but
only some of them might be robust for ε ≤ εi.

To estimate the P (robust|i, j) we perform N = 25000 trainings. In each training and testing
set, the initial parameters of the model are sampled randomly from their respective distributions.

3.5 Results

3.5.1 Model Architecture Notation
In this section, we adopt the following notation to refer to the model architecture. We use “MLP-
w1_..._wL-fa” to refer to a MLP with L layers having widths w1, ..., wL and activation function fa.
In the case dropout Srivastava et al. [2014] (with probability p) or batch norm Ioffe and Szegedy
[2015] is used, the notation is changed to “MLP-w1_..._wL-faDropoutp” or “MLP-w1_..._wL-
faBN”, respectively. If skip connections Srivastava et al. [2015] are introduced that connect layer
i1 to i2, i2 to i3 and so on, then the notation becomes “MLP-w1_..._wL-fa-wSkip_i1 > ... > ik”.
The notation used for CNNs is “CNN-n1 × h1 × w1 × f1 − s1_..._wLn1 × h1 × w1 × f1 − s1-fa”
where hi and wi are the height and width of the convolutional kernel, fi is the number of filters,
si is the stride of the kernel and ni is the number of consecutive layers that have the configuration
h1×w1× f1− s1. For example, Conv-1x7x7x32-3_2x7x7x16-3-ReLU represents a model with 3
layers, the first of which has a kernel of size 7x7, stride 3 and 32 filters while the remaining layers
have the same kernel size and stride, but 16 filters instead of 32.

3.5.2 Probability of Robustness of Minimal Models
Here we present results from experiments conducted on minimal models i.e. having the number
of parameters that are necessary and sufficient for solving RXOR. The minimal model for 2D
inputs consists of 1 hidden layer with 3 ReLU units as discussed in section 3.2.1. Figure 3.2
shows how P (robust|εi, εj) and P ∗(robust|εi, εj) vary as the training and testing data margins,
εj and εi respectively, are varied for 2D data. We see that for a fixed εj , both P (robust|εi, εj) and
P ∗(robust|εi, εj) decrease rapidly as εi is decreased to values less than εj . However, P (robust|εi, εj)
falls faster than P ∗(robust|εi, εj) and as a result as εi decreases,

Vεi\Vεj
Vεi

i.e. the proportion of valid
solutions for Xεi that are recovered by training on Xεj , also decreases. Stated another way, for a
given εj , as εi is decreased not only does the number of possible εi-robust solution decreases but
the ability of the training mechanism to actually find these solutions diminishes. This indicates
that perhaps better training and sampling methods might improve the odds of arriving at εi-robust
solution while keeping εj fixed. On the other hand, we note that for a given εi both P (robust|εi, εj)
and P ∗(robust|εi, εj) increase as εj is decreased, which implies that regardless of the value of εi,
reducing εj can improve the odds of finding an εi-robust model.

From these experiments, we see that there are two factors that lower the probability of finding
ε-robust models. Firstly, the number of valid solutions to Xε decreases rapidly as ε is decreased.
Secondly, there is a substantial gap between P (robust|εi, εj) and P ∗(robust|εi, εj), indicating that
better sampling and optimization methods are required to close this gap. In the remainder of this
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Figure 3.2: P (robust|εi, εj) and P ∗(robust|εi, εj) curves for different values of εi (Test Data Mar-
gin) and εj(Train Data Margin) for the minimal model for 2D RXOR.

section, we will focus on the first factor. Specifically, we shall present experimental results that
indicate the effect of modeling choices, such as network width, depth, and activation function,
have on P (robust|εi, εj) and P ∗(robust|εi, εj). We include the latter in our analysis to differentiate
the following two cases: (1) a robust solution cannot be found if the training and testing distri-
butions are very different, but can be found if the distributions are made similar, and (2) a robust
solution can not be found even if the training and testing distributions are identical, i.e. the model
architecture is insufficient for modeling the data.

3.5.3 Influence of Modeling Choices on Probability of Robustness
In this section, we present experimental results that show the influence different modeling choices
have on P (robust|i, j) and P ∗(robust|i, j). The modeling choices we consider here are the width
of the network i.e. number of units in each layer, and the depth of the network i.e. the number of
layers. In Appendix A.2.1 we extend our analysis to the choice of activation function, the dropout
probability, the use of batch normalization, and the use of skip connections. To improve the clarity
of presentation, in the remainder of this section we do not show the curves for P (robust|εi, εj) and
P ∗(robust|εi, εj) but, instead, we summarize the curve for each training margin (εi) by computing
the area under it and presenting it as a bar chart in Figure 3.3. For a given εj , we denote the area
under the P (robust|εi, εj) and P ∗(robust|εi, εj) curves as AUCεj and AUC∗εj respectively.

Width

Figure 3.3a shows AUCεj and AUC∗εj for models consisting of one hidden layer containing 3, 6,
and 9 ReLU units and trained on 2D data. We note that as the width of the network is increased
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P (robust|εi, εj) also increases, albeit at a decreasing rate. Nevertheless, the impact of increasing
the number of units from 3 to 6 is substantial – AUCεj almost double and P (robust|0.05, 0.4)
increases from almost 0% to 3% and P (robust|0.1, 0.4) increases from 0.5% to 12%. These im-
provements take randomly achieving ε-robustness for small ε from being near impossible to being
reasonably probable – one can expect to find a 0.9-robust model for every 9 models trained onX0.4.

Turning our attention to AUC∗εj , we note that AUC∗εj , and consequently P ∗(robust|εi, εj), in-
creases very rapidly as the width is increased. We also note that improvement in P ∗(robust|εi, εj)
outstrips the improvement in P (robust|εi, εj), and this gap only grows as the width of the network
increases. This indicates that while wide models can find a large number of solutions when trained
on Xεi for small εi, they are unable to recover most of them when they are trained on Xεj>εi .

Depth

Figure 3.3b shows AUCεj and AUC∗εj for four models, namely, MLP-6-ReLU, MLP-3_3-ReLU,
MLP-9-ReLU and MLP-3_3_3-ReLU (see Section 3.5.1). Note that the first two and the last two
models have the same number of parameters, 18 and 27 respectively, so differences in P (robust|εi, εj)
are attributable to a change in the depth of the model. We observe that among models with the same
number of parameters but different depths, the shallower models have higher AUCεj and AUC∗εj
than the deeper models, indicating that both valid and robust solutions are more difficult to find for
the latter models. Furthermore, we note that the impact of increasing the number of parameters
from 18 to 27 depends on whether the additional parameters increased the width of the network
or its depth. As noted in Figure 3.3a and again in Figure 3.3b, if the width is increased we see an
appreciable increase in AUCεj , however, if the depth is increased the change in AUCεj is hardly
noticeable. Finally, we observe that increasing the depth of the model does cause AUC∗εj to in-
crease. This indicates that the additional parameters indeed enhance the ability of the model to
find solutions for small testing margins, εi, but only if the training margin, εj , is close to εi.

The above experiments indicate that to improve the odds of finding robust solutions the width
of the model must be increased and the depth decreased, however, if for some reason the depth
can not be decreased one may ask the question which layer should be widened? If resources are
plentiful then one may simply widen all the layers, but in case of resource paucity then one may
want to know which layers, if widened, lead to the most improvement in the odds of achieving
robustness. To investigate this question we use three-layer models trained on 2D RXOR. The base
model contains three ReLU units in each layer. We generate three wider models from the base
model by increasing the width of each layer, one by one, by a factor of two. The AUCεj and
AUC∗εj for these models data are shown in Figure 3.3c. We note that in most cases, increasing the
width of the first layer seems to improve AUCεj and AUC∗εj .

To summarize, the experimental results presented above have yielded the following insights:
(1) wider models are likely to be more robust than narrower models, (2) deeper models are likely to
be less robust than shallower models, and (3) increasing the width of the earlier layers improves the
odds of robustness. These insights together suggest that the odds of robustness may be improved
by first finding the minimal architecture for the task in terms of the number of layers and then
widening this architecture as much as possible.
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(a) (b)

(c)

Figure 3.3: The influence of various modeling choices on P (robust|εi, εj) as measured by AUCεj

and AUC∗εj for MLPs trained on 2D RXOR data. Subfigure (a) shows the areas for single-layer
MLPs with increasing width, (b) shows the areas for MLPs with increasing depth, and (c) shows
the effect of widening different layers in a 3-layer MLP.
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(a) (b)

(c)

Figure 3.4: The influence of various modeling choices on P (robust|εi, εj) as measured by AUCεj

and AUC∗εj for MLPs trained on MNIST. Subfigure (a) shows the areas for single-layer MLPs with
increasing width, (b) shows the areas for MLPs with increasing depth, and (c) shows the effect of
widening different layers in a 3-layer MLP.
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3.5.4 Generalization to More Complex Data and Models
In section 3.5 we considered models trained on a very simple dataset (2D RXOR). However, the
datasets and models used in practice are much more complex. If the general trends relating dif-
ferent modeling choices to the robustness potential that are observed on the simple models and
datasets generalize to more complex ones, then we can use them as rules-of-thumb when train-
ing models for practical tasks. In order to verify if the trends from 3.5 hold when more complex
datasets and models are used, we repeat the experiments using larger MLPs trained on the MNIST
dataset LeCun et al. [2010]. The methodology for the experiments is similar to the one presented
in 3.3 with the following changes:

1. The notion of the margin used in 3.3 is not applicable to the natural image classification
task and needs to be modified because, unlike the RXOR problem, the decision boundaries
are unknown. Therefore, instead of considering a margin of width ε around the decision
boundary beyond which all data lies, we consider a margin around the data point. This
corresponds to a hypercube having sides of length 2ε to be specific, around each input in
the dataset from which we sample training and testing data points. To sample hypercube
efficiently we run Projected Gradient Descent (PGD) Madry et al. [2018] for a fixed number
of steps to find data points within the 2ε hypercube that are not correctly classified by the
model.

This change necessitates redefining the data sets asXε := {x+δ|δ = arg maxδ:‖δ‖∞≤ε L(f(x+
δ), y)}. where x is an image from the dataset, y is the true label of the image, f is the model
and L is a loss function that indicates how close the prediction, f(x+δ) is to y. If no point is
found within the hypercube for which the model makes an erroneous prediction we conclude
that the model is ε-robust. Due to this change, in the remainder of this section, we use the
training margin, εj , and testing margin, εi, to refer to the margin around the data point and
not around the decision boundary.

2. In practice, however, the condition that every point in the hypercube must be classified cor-
rectly is unrealistic because currently, 100% accuracy is not achievable on these datasets
even for ε = 0. Therefore, We relax the definitions of valid and robust solutions such that
a valid solution is one that achieves accuracy at least τv on the training data, and a robust
solution is one that achieves accuracy at least τr on the testing data. All the experimental
results that follow have been obtained with τv = τr = 0.85.

3. We increase the number of SGD updates performed on randomly sampled parameters. This
is done because the natural image classification task is more complex, and training accurate
models requires more iterations.

Figure 3.4 shows the AUCεj and AUC∗εj for different modelling choices. We see that the rela-
tionship between different modeling choices and, AUCεj and AUC∗εj , that we observed in models
trained on 2D RXOR has carried over to models trained on the much more complex MNIST data.
Specifically, we see that the likelihood of finding a solution that generalizes to smaller εi, i.e. an
εi-robust solution for εi > εj , is increased by increasing the width of the model, particularly of
the earlier layers. On the other hand, increasing the depth of the network and applying batch
normalization reduces the likelihood of finding an εi-robust solution.
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In Appendix A.2.2 we report additional results using the same architectures with more hypa-
rameters, and with Convolutional Neural Networks as well.

3.6 A robustness prior: redundant features elimination
We have discussed the possibility for robustness to occur spontaneously during training, and how
training hyperparameters have a significant influence on the chances that it occurs. This section
illustrates with an additional set of experiments how model compression algorithms may increase
robustness as a "side effect". It is based on results presented in Shah et al. [2021a].

3.6.1 Description
This section proposes a method to remove the influence of superfluous features from the model.
The cornerstone of the approach is the observation that each neuron in the hidden layers of a neural
network is a feature detector for the subsequent subnetwork. Based on this observation, we can
draw an equivalence between neurons and features, which implies that to remove the influence
of a superfluous feature we must remove the neuron that detects it. To identify such neurons we
decompose the features learned by a neural network into two components: the redundant informa-
tion that is already encoded by other features, and the novel information encodes by this feature.
Based on this decomposition we select neurons that provide the maximum amount of novel infor-
mation about the target output and discard neurons that encode redundant or irrelevant information.
We modify a neuron pruning technique called LRE-AMC Shah et al. [2021b] to use our neuron
selection criterion and remove superfluous neurons from several image recognition models.

We do not reproduce the entire feature elimination algorithm here, as model compression is not
our central topic. The interested reader may read Shah et al. [2021b,a] to learn about the complete
procedure. What we are interested in are the results of the compressed models on adversarial
examples.

3.6.2 Experiments
We used CIFAR10 [Krizhevsky et al., 2009] and MNIST [LeCun et al., 2010] datasets to train and
evaluate several well-known deep learning models. Specifically, we trained VGG-16 [Simonyan
and Zisserman, 2014] and AlexNet [Krizhevsky et al., 2012] on CIFAR10 and LeNet [LeCun et al.,
1998] on MNIST. We trained the models from random initialization to convergence on the clean
dataset using stochastic gradient descent, with a learning rate of 0.1 and L2 regularization weight
of 0.005. During training 20% of the training data is used for validation, and if the validation
accuracy does not improve for more than 5 epochs the learning rate is halved.

The adversary performs 100 steps of PGD over Lp balls. On CIFAR10 the adversary explored
L∞ balls of ε ∈

{
4

255
, 8

255
, 16

255

}
and L2 balls of ε ∈ {0.5, 1.0, 2.0} with steps size ε

4
. We configured

LRE-AMC hyperparameters to be τ = 4 and λ = 0.75. During the fine-tuning steps the Adam
optimizer with learning rate 0.0001 and L2 regularization weight of 0.0001 are used. We apply
the Top-Down LRE-AMC scheme: we move up the model, starting from the penultimate layer,
shrinking each layer maximally, eliminating features as long as the accuracy remains above a
threshold t.
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3.6.3 Results

Method −∆P Acccln E[Accrob] Accrob w/ ‖ε‖∞ Accrob w/ ‖ε‖2
4 8 16 0.5 1.0 2.0

VGG16
None 0.0 90.3 1.3 1.4 0.0 0.0 4.0 1.8 0.6

Adversarial training 0.0 74.9 31.6 57.1 37.1 8.6 53.2 27.6 3.5
Randomized smoothing 0.0 82.9 20.6 43.5 13.8 0.8 47.6 16.6 1.0

Compressed model 87.7 85.6 17.7 20.0 17.4 13.3 20.6 19.3 15.8
AlexNet

None 0.0 77.5 2.8 8.9 0.3 0.08 7.23 0.2 0.06
Compressed model 98.3 72.3 11.1 14.6 10.1 9.5 13.2 9.8 9.2

Table 3.1: The table presents the reduction in the number of parameters (−∆P ), the accuracy of
the model on clean data (Acccln), the average accuracy of our CIFAR10 models on adversarially
perturbed data (Accrob w/ ‖ε‖∞), and the accuracy of the model adversarially perturbed data for
various perturbation sizes (Accrob w/ ‖ε‖).

We present our results in Table. 3.1. We see that removing spurious neurons from the network
using our approach greatly improves the model’s robustness to L∞ and L2 bounded attacks, espe-
cially in the case of VGG16-CIFAR10 where using the gradient-based selection criteria improved
the average accuracy of the model, on perturbed data by more than 16% (absolute) compared to
the standard model and by 8% compared to the model compressed with LRE-AMC. On AlexNet-
CIFAR10, vanilla LRE-AMC outperforms our selection criteria. In fact, AlexNet with TD-V pro-
vides the best robust accuracy in all our experiments. Past studies Hendrycks and Dietterich [2019]
have observed similar trends where AlexNet appears to be more robust to perturbations: we may
be seeing the same phenomenon manifested here.

We applied two defenses to VGG16-CIFAR10 for comparison. First adversarial training with
PGD [Madry et al., 2018], using 7 steps of size 2

255
with ‖ε‖∞ ≤

8
255

. Then randomize smoothing
[Cohen et al., 2019] with noise sampled from N (0, 0.25I). We note that for small values of ‖ε‖
these defenses make VGG16 significantly more robust than models pruned with our technique,
however for larger values the accuracy of these models precipitously decreases. At ‖ε‖∞ = 16
and ‖ε‖2 = 2.0 our model has an accuracy that is 4.7% and 12.3% greater than the adversarially
trained model. In addition to being more robust at higher noise levels, the compressed model also
achieves 9.7% greater accuracy on clean data than the adversarially trained model. These results
are achieved while training our model on clean images only.

It is very important to note that, unlike the other methods, our models were trained on clean
images only. In fact, our results seem to suggest that techniques that rely minimally on perturbed
training data can generalize better to different attack methods and configurations than explicit
adversarial defenses, which do not generalize very well to perturbations outside the Lp ball they
are trained with. This once again illustrates the accidental robustness phenomenon, without even
resorting to multiple experiments.
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3.7 Related work
Early research on adversarial attacks and defenses was often conducted on MNIST [Szegedy et al.,
2014, Goodfellow et al., 2015, Papernot et al., 2015]. Some of these works have been criticized
for relying on artifacts [Carlini and Wagner, 2017]. Hence more recent works have focused on
the larger CIFAR10 and ImageNet [Madry et al., 2018, Wong et al., 2020] to design general and
scalable defenses.

Other works have studied how robustness to adversarial attacks may arise without adversarial-
specific training methods in some contexts. Some have for instance shown how data pre-processing
[Guo et al., 2018] or ODE networks [Carrara et al., 2019] may mitigate adversarial attacks. But to
our knowledge, no previous work has proposed a general, systematic study of robustness in unde-
fended models, or studied the variance of this robustness when repeating identical experiments.

3.8 Discussion
We have demonstrated the possibility of the spontaneous emergence of adversarial robustness on
synthetic and real data. We also have shown how the intrinsic variance of this robustness - a
phenomenon we call accidental robustness - can be observed and leveraged on small datasets, for
example for architecture search. More generally they may be used to explore which phenomena,
training methods, and paradigms affect robustness the most: model compression, optimization
methods, etc. We will revisit accidental robustness in the next chapter, as we introduce robustness
metrics that can help make this phenomenon, and others, more easily observable.
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Chapter 4

Evaluating robustness beyond adversarial
accuracy

In this chapter we more specifically address the shortcomings of the most common metric for
adversarial robustness: adversarial accuracy, or accuracy under attack. As is frequently under-
lined, this metric is an imperfect surrogate for worst-case adversarial accuracy, especially in the
presence of gradient obfuscation. Unfortunately, worst-case accuracy itself is not a perfect metric
for robustness, and it leaves out a lot of relevant information. Worst-case accuracy only reflects
whether, in the vicinity of an input point, there is one successful perturbation. This can be mis-
leading in the quest for robustness.

For instance, consider a hypothetical defense that, around every point, eliminates 99% of all
dangerous perturbations, leaving 1% to find. Surely this defense can be considered useful and
has a role to play in designing robust models, but since its adversarial accuracy is 0% it would
likely be considered “broken” and dismissed. In other words, the worst-case accuracy metric is
biased towards defenses that are totally effective for some points, rather than those that are partially
effective around all points. Whether a point has any or no adversarial perturbation is relevant
knowledge, but it leaves out a lot of information. The “broken” defense above may for instance
be useful in real-world contexts, where perturbations are harder to craft than on research datasets.
Moreover, it may hypothetically be complementary to other “broken” defenses that eliminate a
distinct subset of perturbations or improve a defense with non-zero adversarial accuracy.

Our goal in this work is to propose an alternative approach for measuring adversarial robust-
ness. Specifically, we would like to measure not whether around an input x there is at least one
adversarial perturbation, but rather how many such perturbations there are. In other words, we try
to obtain some measure of the size of the adversarial space. Our candidate metric, adversarial
sparsity, is proposed for L2 and L∞-bounded attacks and relies on the geometry of adversarial
examples over the L2 and L∞ hypersphere. In this chapter we first motivate and detail this choice
of metric, then we demonstrate its usefulness in multiple ways. For instance, by revisiting previ-
ous works we show that the usual criteria for qualifying defenses as "broken" are too restrictive.
Some broken defenses, incapable of improving accuracy by themselves, can indeed contribute to
strong ensembles of defenses. We also show that these metrics make the accidental robustness
phenomenon more easily observable, notably in the presence of data augmentation methods which
can improve robustness in ways imperceptible with accuracy.

35



4.1 Introduction
What are possible ways to measure the size of the adversarial set around an input? In high-
dimensional input spaces, there are not many informative and computationally tractable metrics
to estimate this quantity. Traditional measure theory hits considerable difficulties: for instance,
within an L2 ball of radius ε around x, the set of adversarial examples is way too small to be
estimated with rejection sampling.

A naive approach would be to revert to evaluating with a set of more or less strong attacks and
claim for instance that a model robust to FGSM but not PGD likely has fewer adversarial pertur-
bations than a model robust to neither. However, there are good reasons why this approach was
abandoned. Many defenses implicitly rely on gradient obfuscation effects [Athalye et al., 2018a]
which makes attack convergence artificially difficult without actually defending against perturba-
tions. Using only strong attacks, possibly enhanced with adaptive methods, protects evaluation
against such effects.

In our approach, rather than weakening the attack we propose to constrain it to only look at
a subset of the set of admissible perturbations ∆. The question we try to answer is: how large a
typical subset must be to find an adversarial perturbation in it? We define metrics quantifying the
expected size of the subset: the bigger it is, the fewer perturbations there are. We call this metric
adversarial sparsity.

A major challenge is to define a distribution of subsets and a metric adapted to the adversarial
threat model. In section 4.2, we define sparsity formally for L2 and L∞ perturbations. In the L2

case we consider uniform directions u on the L2 sphere, and adversarial sparsity is the expected
angle 〈̂δ, u〉 needed to find a successful perturbation. For L∞ attacks we consider vertices of the
L∞ cube u ∈ {±1}n, and measure the number of dimensions k to modify to find a successful
perturbation. We also discuss in section 4.2 how adversarial sparsity indeed reflects the size of the
successful perturbations set.

Like worst-case accuracy, sparsity is not directly tractable, so we must estimate it using modi-
fied PGD attacks on a random sample of directions. Our algorithm is detailed in section 4.3. Armed
with this tool we revisit multiple models and defenses proposed in prior works on the CIFAR10
dataset (section 4.4). We both include very strong defenses, taken among the strongest models
on the RobustBench leaderboard [Croce et al., 2021]; much weaker defenses that are considered
“broken”; and undefended models trained with various data augmentation schemes. Using sparsity
we discover or strengthen several properties of these models (section 4.5), among which:

• Higher adversarial accuracy does not necessarily mean much fewer adversarial perturba-
tions: many improvements on robustness benchmarks consist of removing a few residual
perturbations around “almost robust” inputs.

• Most of the defenses “broken” by strong attacks do not reduce at all the number of pertur-
bations, indicating that robustness claims on these defenses are spurious.

• Data augmentation methods, known to improve the results of adversarial training [Rebuffi
et al., 2021], in fact increase robustness even without adversarial training - though not enough
to be reflected in adversarial accuracy.
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Figure 4.1: Representation of the decision boundary of some binary classification task (regions in
green and orange) around point x in two cases. In both cases, the model is not robust around xwith
the represented L2 radius ε. However, there are many more adversarial perturbations on the right
than on the left. Adversarial accuracy evaluates both cases at 0, but α, the angle between fixed
direction u and the closest adversarial perturbation, is smaller on the right. Adversarial sparsity is
the expected value of α when sampling u uniformly.

These findings could lead to promising developments in future robust models, and confirm the
interest in alternative evaluation metrics for adversarial robustness. Sparsity is however imperfect:
it has high variance and is computationally expensive. We discuss those limits in section 4.6.

Finally, we also show that adversarial sparsity helps measure the variance in the accidental
robustness phenomenon discussed in Chapter 3 (section 4.7).

4.2 Evaluating robustness

4.2.1 Definitions
Throughout the following sections f designates a machine learning model, and L its loss function.
ε is the radius of the attack, and ∆ is the set of admissible perturbations. Usually ∆ = Bn

k with Bn
k

the n-dimensional hyperball in norm Lk:

Bn
∞ = [0, 1]n (4.1)

Bn
2 = {x ∈ Rn | x2

1 + ...+ x2
n ≤ 1} (4.2)

where xj is the ith coordinate of x.
To make sparsity computations simpler, we will instead only consider the adversarial examples

that use their entire perturbation budget. This means that for k < ∞ ∆ = Snk , using the hyper-
sphere (‖x‖ = 1) rather than the hyperball (‖x‖ ≤ 1). For k = ∞ ∆ = {±1}n, i.e. we consider
only the (finite) set of vertices of the hypercube. This is done with little cost of generality, as strong
attacks like PGD nearly always use all of their perturbation budget (and the simpler FGSM attack
is constrained to do so).

Given a point x and a radius ε, we define the adversarial set as the set of successful admissible
perturbations:

Adv(f, x, ε) := {δ ∈ ∆ | f(x+ ε.δ) 6= f(x)} (4.3)
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In our convention, adversarial perturbations are always unit vectors, to be scaled by factor ε when
applied. Finally, we can redefine adversarial accuracy over a point x within this formalism:

AA(f, x, ε) := 1[Adv(f, x, ε) = ∅] (4.4)

We will also sample points from probability distributions. U(X) designates the uniform distri-
bution over measurable set X .

4.2.2 Adversarial sparsity
Adversarial sparsity quantifies “how big” a subset of ∆ typically needs to be to contain an adver-
sarial perturbation. Formally, we assume access to a sequence of increasing subsets of ∆: with
m1 < m2, ∅ ⊆ ∆m1 ⊆ ∆m2 ⊆ ∆. We can define adversarial sparsity relative to ∆m as:

AS(f, x, ε, (∆m)) := inf{m | ∆m ∩ Adv(f, x, ε) 6= ∅} (4.5)

If we have a distribution D of such sequences, we can define adversarial sparsity as the expected
value of AS

AS(f, x, ε) := E(∆m)∼D[AS(f, x, ε, (∆m))] (4.6)

Intuitively, larger sparsity means more robust models, provided that some reasonable con-
straints are enforced on distribution D. In particular, the distribution should be isotropic, i.e. not
favor any particular direction.

We now give more concrete definitions relative to our two threat models. For L2 perturbations
we consider angular constraints. We sample u ∼ U(Sn2 ) and for α ∈ [0, π] we define ∆α as the
spherical cap of direction u and angle α, that is the set of admissible perturbations that form an
angle at most α with u:

∆α = Sc(u, α) := {δ ∈ Sn2 | δ · u ≥ cosα} (4.7)

ForL∞ perturbations, we sample both a vertex u ∈ U({±1}n) and a permutation of dimensions
σ ∈ Sn. For m ∈ {1, ..., n} we define ∆m as the set of perturbations differing of u only over
dimensions σ(1), ..., σ(m):

∆m := {δ ∈ Sn∞ | ∀k > m δσ(k) = uσ(k)} (4.8)

In other words ∆m is the set of perturbations differing from u by at most m specific pixels
σ(1), ..., σ(m). The permutation σ is required to enforce that all dimensions are equally probable
under the distribution.

4.2.3 Sparsity and number of perturbations
We propose sparsity as an approach to measure the size of the adversarial set. Is there indeed a
relationship between the two? Intuitively this depends on how that set itself is distributed over ∆.
If for instance Adv(f, x, ε) is “one half” of ∆ (e.g. all perturbations where the bottom left pixel
perturbation is positive) then its sparsity will be 0 for half the directions but quite large for many
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others, leading to an expected sparsity that does not accurately reflect the immense size of this
adversarial set. So which conditions should be met for sparsity to be a relevant metric?

Let us consider a simplified case where the set of perturbations is finite: Adv(f, x, ε) =
{δ1, ..., δk}. If we assume that the δi are uniformly sampled over the admissible set, then there
are no preferred directions of high adversarial concentration, as opposed to the example above. In
this case, the link between sparsity and k can be mathematically established. For L2 perturbations,
the expected value of AS(f, x, ε) when sampling δj is:

E[AS(f, x, ε)] =

∫ π
2

0

((1− tα)k + (tα)k)dα (4.9)

with tα = Isin2(α)(
n−1

2
, 1

2
) where I is the incomplete regularized beta function. Meanwhile for

L∞ perturbations:

E[AS(f, x, ε)] =
n∑

m=0

(1− 2−m)k (4.10)

In this case, we can also show that :

n− log2 k

4
≤ E[AS(f, x, ε)] ≤ n− log2 k +

e

e− 1
(4.11)

i.e. sparsity tends to vary like n− log2 k. We defer all proofs to appendix B.1.
In the general case Adv(f, x, ε) is infinite1 and we are interested in its volume relative to ∆,

rather than its cardinal. Both situations can be linked if considering for instance

Adv(f, x, ε) =
k⋃
j=1

Sc(δj, β) (4.12)

ie Adv(f, x, ε) is the union of spherical caps of equal radius β. β can be called the “local adversarial
radius”, i.e. how much a typical adversarial perturbation should be changed to recover the original
input. In that case, the volume of Adv(f, x, ε) is equal to k.V (Sc(u, β)) (assuming disjoint union)
and AS(f, x, ε) would vary by at most β compared to the finite case. In other words, sparsity
depends on both k and β. Therefore comparing the sparsity of two models is akin to comparing
the size of their adversarial sets provided that these sets have similar local radii. We implicitly
make that assumption in our experiments: estimating the local adversarial radius as well as sparsity
would be an interesting extension of this work.

4.3 Algorithms
In this section, we detail the algorithms we use to empirically compute sparsity. We first describe
the modifications we implement in the Projected Gradient Descent (PGD) attack to compute ad-
versarial examples in constrained regions. Then we describe the full sparsity computation method,
which applies PGD with multiple constraints. We sum up the full procedure in L2 norm in Algo-
rithm 1.

1With our definition of the admissible set, Adv(f, x, ε) is finite in the L∞ case. But the same reasoning applies if
we consider the more general set ∆ = Sn∞
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Figure 4.2: Illustration of the angular projection steps on a 2-dimensional sphere, with ε = 1. δ′k is
the perturbation before projection, u is the direction of the cap, and δk+1 is the final perturbation,
projected both in norm and angle.

4.3.1 Constrained PGD
The PGD attack [Madry et al., 2018] is a strong first-order attack, i.e. it only uses model gradient
information. It is fully defined in Chapter 2, in equations 2.2 to 2.6.

To practically compute angular sparsity we need to design a constrained attack, able to project
not on a hyperball but on the subsets defined in section 4.2.2.

For L∞ attacks this is straightforward: given a vertex u, a perturbation σ, and a number of
dimensions m, we append after projection an additional step enforcing the constraints:

∀k > m δσ(k) ← uσ(k) (4.13)

For L2 attacks, the steps are slightly more complex, as we need an angular projection on the
spherical cap of angle α and direction u. This requires us to replace the projection step in equation
2.6 with a projection on a spherical cap (section 4.3.1). This projection consists of the following
steps:

p← δ′k − δ′k · u.u (4.14)

r ← min(
‖δ′k‖2

‖p‖2

sinα, 1) (4.15)

s← δ′k · u.u+ r.p (4.16)

δk+1 ←
min(ε, ‖δ′k‖2)

‖s‖2

s (4.17)

The output of Eq 4.16 is a linear combination of δ′k and u (with positive coefficients) whose
angle with u is min(δ̂′k, u, α). We then rescale this vector as in standard PGD to obtain δk+1. In
Figure 4.2 we visually illustrate how this procedure returns the closest perturbation to δ′k of angle
at most α with u.

We name PGDm and PGDα these constrained attacks in the following.
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4.3.2 Computing sparsity over a point
To estimate sparsity for L2 (resp. L∞) attacks, given a direction u (resp. u, σ) we explore possible
values of α (resp. m) with binary search, and at each step run the constrained attack. We average
over multiple sampled directions to estimate AS (in general 100).

The equivalent L∞ algorithm is similar, replacing only direction u by (u, σ), angle α by a
number of pixelsm and the constrained L2-PGD by the constrained L∞ PGD. The time complexity
of these algorithms is discussed in section 4.6.3.

Algorithm 1: L2 sparsity computation algorithm

Require: model f , point (x, y), K ∈ N, N ∈ N
k ← 0
i← 0
while i ≤ N do

αi0 ← 0, αi1 ← π, ui ∼ U(Sn)
i← i+ 1

end while
while k ≤ K do

i← 0
while i ≤ N do

αi ← αi0+αi1
2

xadv ← PGDαi(f, x, y, ui)
if f(xadv) 6= y then

αi1 ← αi

else
αi0 ← αi

end if
i← i+ 1

end while
k ← k + 1

end while
return 1

n

∑n
0 α

i

4.3.3 Computing sparsity over a dataset
Adversarial sparsity only makes sense if there are adversarial perturbations in the vicinity of an
input x. It is designed to capture the level of vulnerability in non-robust models. We choose to
restrict sparsity computation to the residual subset of inputs where the model is vulnerable. For
instance, if a model is robust over 50 inputs and has sparsity 0.3 over another 50, we will say it
reaches 50% accuracy and residual sparsity 0.3. An alternative could be to default sparsity to a
max value when evaluating a model that is robust around x (Adv(f, x, ε) = ∅): π for L2 attacks,
and dimension n for L∞ attacks.
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1 Model Defenses Clean acc. Adv. acc. Sparsity Clean acc. Adv. acc. Sparsity
2 R-18 None 88 0 0.180 88 0 56.8
3 R-18 Madry et al. [2018] (1 step) 90 62.1 0.559 90.73 40.08 229
4 R-18 Madry et al. [2018] 88.8 67.3 0.553 80.97 47.19 277
5 R-18 Madry et al. [2018] (w/o aug.) 82.8 60.2 0.532 73.96 43.02 273
6 WR-70-16 Rebuffi et al. [2021] (w/ data) 95.74 82.3 0.581 94.16 62.91 213
7 WR-70-16 Gowal et al. [2020] (w/ data) 94.74 80.5 0.590 91.17 62.5 215
8 WR-70-16 Rebuffi et al. [2021] 92.41 80.4 0.545 89.16 65.83 202
9 WR-28-10 Rebuffi et al. [2021] 91.79 78.8 0.529 89.58 61.66 209

10 R-18 Sehwag et al. [2021] 89.5 73.4 0.539 87.08 52.08 231
11 R-18 Rade and Moosavi [2021] 90.5 76.2 0.515 92.08 57.5 209
12 WR-34-10 Augustin et al. [2020] 92.23 76.3 0.525 - - -
13 R-50 Augustin et al. [2020] 91.08 72.9 0.572 - - -
14 WR-34-R Huang et al. [2021] - - - 89.58 57.5 227
15 WR-34-R Huang et al. [2021] (EMA) - - - 89.17 57.5 230

Table 4.1: Evaluation of state-of-the-art adversarially trained models under L2 (ε = 0.5) and
L∞ (ε = 0.03) perturbations. We report Natural accuracy (without attack), adversarial accuracy
(under AutoPGD), and adversarial (residual) sparsity. Model architectures are either ResNet (R)
or WideResNet (WR) . (w/o aug.) means the model was trained without any data augmentation:
most models are trained with at least Crop+Resize augmentation. (w/ data) means that external
data was used to train the model. For some defenses there is only a L∞ or only a L2-trained model
available; for many both exist, in which case we report the results of both.

Defense Test Accuracy L2 Sparsity L∞ Sparsity
None 88 0.180 56.8
JPEG 77.1 0.161 80.9

FS 87.8 0.178 60.1
SPS 74 0.147 77.7

FS+SPS 74.5 0.174 86.6

Table 4.2: Evaluation of ResNet18 with various “broken” defenses under L2 attack with 20 it-
erations and ε = 0.5. We report Natural accuracy (without attack) and angular sparsity for L2

(ε = 0.5) and L∞ (ε = 0.03) perturbations.

4.4 Experiments
We run experiments in L2 and L∞ perturbations on the CIFAR10 dataset [Krizhevsky et al., 2009]
and CNN-based models. Additional results on more datasets and architectures can be found in
Appendix B.2. We use attack radii ε = 0.5 and ε = 8/255 respectively.

4.4.1 Models and defenses
We mainly evaluate defenses over a classic residual CNN architecture: ResNet-18 [He et al., 2016].
We evaluate larger ResNets and WideResNets as well. We consider multiple defense mechanisms:
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Augmentation Accuracy L2 Sparsity L∞ Sparsity
None 88.0 0.180 56.8

Crop+Resize 93.7 0.225 64.0
Cutmix 94.58 0.185 50.8

50% Cutmix 95.83 0.202 57.0
Mixup 93.75 0.157 71.1

50% Mixup 92.5 0.202 69.4
Cutout 94.16 0.225 62.2

50% Cutout 93.75 0.225 62.6
Ricap 92.2 0.272 105

50% Ricap 91.67 0.253 83.6

Table 4.3: Evaluation of ResNet18 with data augmentation schemes. The augmentation is applied
either on all inputs or 50% of inputs

Adversarial training

Adversarial training consists in applying adversarially perturbed inputs during training rather than
or along with natural inputs. It is one of the most robust defenses against PGD attacks. We use
multiple pretrained models using state-of-the-art defenses based on adversarial training [Gowal
et al., 2020, Augustin et al., 2020, Rebuffi et al., 2021, Rade and Moosavi, 2021, Huang et al.,
2021]. These defenses are well ranked in the Robustbench leaderboard [Croce et al., 2021] for
L2 attacks on CIFAR10. Some use additional extra data for pretraining. We also train ResNet-18
models with PGD training, following Madry et al. [2018], with 1 or 10 attack steps.

Preprocessing

Early defenses often used input preprocessing during testing to “erase” adversarial noise. These
defenses have mostly been beaten by stronger or adaptive attacks. We revisit some of them: JPEG
compression and decompression [Guo et al., 2018], Feature Squeezing, and Spatial Smoothing
[Xu et al., 2018]. The latter two were proposed as complementary defenses. This makes analysis
with sparsity particularly interesting to determine whether each defense has a partial effect on
robustness and would benefit from ensembling.

Data augmentation

Xie et al. [2018] suggest that random transformations can mitigate adversarial attacks. This de-
fense is also considered broken when using strong attacks [Athalye et al., 2018a]. Additionally,
Rebuffi et al. [2021] showed that data augmentation can significantly improve the performance of
adversarial training.

We wonder if data augmentation affects robustness by itself. We train multiple models with
standard training and data augmentation schemes used in Xie et al. [2018] and Rebuffi et al. [2021],
and evaluate them with sparsity.
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4.4.2 Attack
Preprocessing methods (JPEG, Feature Squeezing, Spatial Smoothing) may pose obfuscation prob-
lems when computing adversarial attacks during sparsity estimation. Hence, we follow Shin and
Song [2017] and use Differentiable JPEG, which we backpropagate through. We use the Straight-
Through estimator [Athalye et al., 2018a] against the other two.

In addition to sparsity, we evaluate adversarially trained models using the AutoAttack [Croce
and Hein, 2020b] and ε = 0.5 or ε = 8/255. To reduce computation time we run a slightly
cheaper AutoAttack, using only APGD-CE and APGD-DLR. All other models (weakly defended
or undefended) achieve 0% adversarial accuracy, which we do not report in result tables.

4.5 Results
The results of adversarially defended models are reported in Table 4.1. We report averaged values
of sparsity over the first 1000 vulnerable inputs in the CIFAR10 test set and, for each input, 100
random directions.

4.5.1 Comparing strong defenses by sparsity
At first sight, we can already observe in Table 4.1 that sparsity is overall consistent with adver-
sarial accuracy. Adversarially defended models, whose accuracy is above 40%, have much higher
sparsity than the undefended baseline. Models trained with strong adversarial training (lines 3-15)
all reach L2 (resp L∞) sparsity greater than 0.5 (resp 200). In comparison, the baseline model
achieves 0.180 (resp. 56.8).

However, among the robust models (lines 3-15), sparsity and accuracy variations are not well
correlated. In fact, when it comes to L∞ perturbations, the model with higher accuracy has often
lower sparsity on the residual subset! We illustrate this phenomenon by plotting for robust models
sparsity as a function of accuracy in Figure 4.3. An explanation would be that improvements in
adversarial training from a baseline model A focus on robustly classifying the easiest points, i.e.
those for which few perturbations fool A. Those points have higher sparsity - thus classifying them
well drops the residual sparsity for the remaining points.

4.5.2 Comparing broken defenses by sparsity
In Table 4.2 we compare the sparsity of the vanilla model and models defended with one or more
of the “broken” preprocessing-based defenses. Using the strong AutoAttack attack rather than the
attacks these defenses’ authors had evaluated, we can break them on all inputs (0% adversarial
accuracy) for both L2 and L∞ attacks. This weakness to strong attackers was, for all defenses, first
pointed out in the articles that successfully broke them [Athalye et al., 2018a, He et al., 2017].

The fact that some defenses are effective against weak attacks like FGSM but not against
stronger attacks has two possible explanations. One is that such defenses protect against a subset of
all existing perturbations, but not all of them: a stronger attacker can find more subtle perturbations
that evade the defense. Another is that defenses don’t actually protect against perturbations at all,
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Figure 4.3: Sparsity as a function of adversarial accuracy for all robust models, in both L2 norm
(blue) and L∞ norm (red). The values used are the same as in Table 4.1

but merely make them perturbations harder to find for attackers by obfuscating gradients [Athalye
et al., 2018a].

Adversarial sparsity offers a simple way to discriminate between these two situations. We
expect a partially effective defense to increase sparsity, but not accuracy. An obfuscation-based
defense on the other hand would not improve either of these metrics.

On L2 attacks, in Table 4.2 we observe that none of these defenses lead to a significant im-
provement in sparsity. Any L2-robustness claim regarding these methods is therefore likely to be
relying on spurious obfuscation effects. Results are however different on L∞ attack. While Fea-
ture Squeezing does not increase sparsity, JPEG compression and spatial smoothing do (+20.9 and
+18.7 respectively). These defenses are therefore effective against some perturbations. Moreover,
feature smoothing does boost robustness when combined with Spatial Smoothing, which was one
of the claims of Xu et al. [2018]. We argue that the recent claims that most proposed defenses
rely solely on subtle obfuscation effects should be revised. In a few examples, we have shown
that these defenses offer non-negligible protection against some perturbations. Even if past works
have identified obfuscation effects in these defenses using different methods, such as adaptive
evaluation [Athalye et al., 2018a], they do not explain all of their effect on robustness. Sparsity is
complementary to adaptive attacks when evaluating defenses.

4.5.3 Testing data augmentation on standard models
In Table 4.3 we report the adversarial sparsity of various models trained with data augmentation.
We observe that each of them increases sparsity on both L2 and L∞ perturbations. The only
exception is CutMix [Yun et al., 2019].

Interestingly CutMix is also the best augmentation for robustness when combined with adver-
sarial training, according to Rebuffi et al. [2021]. Moreover, RICAP, which largely outperforms
all other augmentations for robustness with standard training in our experiments, is the worst-
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(a) Standard ResNet18 model (b) Adversarially trained model (training ε = 0.5)

Figure 4.4: Evolution of L2 sparsity and adversarial accuracy of ResNet18 models as a function of
the attack radius ε

(a) Standard ResNet18 model (b) Adversarially trained model (training ε = 0.031)

Figure 4.5: Evolution of L∞ sparsity and adversarial accuracy of ResNet18 models as a function
of the attack radius ε
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performing one for adversarial training! A possible explanation is that despite improving robust-
ness, data augmentation interferes with adversarial training: the best augmentations for robustness
won’t necessarily combine harmoniously with the best training schemes. This explanation is con-
sistent with past works which had shown that augmentation leads to no robustness improvement
[Rice et al., 2020]. One of the contributions of Rebuffi et al. [2021] was to overcome this issue
with methods like weight averaging.

Our results suggest that the potential of RICAP augmentation for robustness is still underex-
plored. Given its considerable effect on the distribution of adversarial examples, it is likely that
a version of RICAP+Adversarial training could outperform CutMix+Adversarial training if the
aforementioned interference effects are overcome.

4.5.4 Influence of the attack radius
Another interesting application of sparsity is to provide a smoother robustness metric than accu-
racy. We illustrate this in Figures 4.4a and4.5a, where we plot both sparsity and accuracy for L2

attacks for increasing values of the attack radius ε, and a standard ResNet18. We observe that
while accuracy drops to zero after a small value of ε, sparsity decreases much more slowly, only
converging to 0 asymptotically.

This property lets us compare models on a much larger range of perturbations. In Figures
4.4b and 4.5b we plot the equivalent plot for an adversarially trained ResNet18. On large ε values
accuracy provides little information, being null or close to null for both standard and robust models.
On the other hand, we easily observe that sparsity is over five times higher for the adversarially
trained model. This shows that training models adversarially with a given attack radius is beneficial
even for much larger radii.

In Figures 4.4b and 4.5b we also observe an interesting fluctuation in the sparsity curve. Al-
though sparsity overall decreases when the attack radius increases overall, the training radius
ε = 0.5 (L2) or ε = 8/255 (L∞) appears to be a local sparsity maximum. One interpretation is
that for some points, the effect of adversarial training is to remove adversarial perturbations from
the unit hypersphere, but not inside it. This leads to a strange effect where the model gets a bit
more vulnerable when decreasing the attack radius. Because adversarial perturbations in sparsity
are restricted to points on the hypersphere, it is particularly affected.

4.6 Analysis

4.6.1 Margin of error when estimating sparsity
Angular sparsity AS cannot be directly computed but must be approximated with the sample mean
estimator over multiple directions. To assess the margin of error in this estimation we compute for
multiple models, the standard deviation of L2 sparsity over 100 directions, for 1000 input points.
We find that these deviations are consistently lower than 0.022. Using the general formula for
margins of errors z ∗ σ√

n
, we conclude that our estimates with 100 directions provide estimates

within a ±0.002 margin with 95% confidence. In section 4.6.2 we provide additional information
on the sparsity variance, this time with respect to input points.
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(a) L2 sparsity

(b) L∞ sparsity

Figure 4.6: Histogram of sparsity values for standard and adversarially trained ResNet18 mod-
els. It illustrates that sparsity variance with respect to input points is very large, especially for
adversarially trained models.

4.6.2 Point-wise variance
When varying the input point there are significant variations in the value of the metrics. Taking
the vanilla model evaluated over 100 inputs, for L2 (resp. L∞) sparsity we observe a standard
deviation of 0.144 (resp. 52.8) with respect to data points. Keeping in mind the considerations in
section 4.2.3, this hints that the adversarial set is considerably larger for some points than others.
The deviation is even larger for adversarially trained models. This is clearly visible in Figure 4.6,
where we plot the histogram of sparsity values of a standard and adversarially trained ResNet18
models.

Interestingly, there seems to be a correlation between sparsity on the vanilla model, and accu-
rate prediction on a robust (adversarially trained) model. Using a threshold-based classifier on the
vanilla model sparsity to predict whether the robust classifier predicts them correctly, we can reach
a precision of 67% at Equal Error Rate. This demonstrates an additional property of adversarial
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sparsity: to discriminate points that are “easy” to learn with a robust decision boundary (the points
with a sparse adversarial set) from harder ones.

4.6.3 Time complexity of sparsity computation
On CIFAR10, computing adversarial sparsity around an input point with 100 directions, 10 search
steps, and 20 PGD iterations takes a few seconds for a ResNet-18 model on an Nvidia RTX 2080
Ti. For reference, we find it shorter than running the AutoPGD attack [Croce and Hein, 2020b]
with default hyperparameters in its worst-case scenario (i.e. when there is no adversarial example).

Dependence on input dimension

Everything else equal, the duration of sparsity computation in a given direction is proportionate to
the duration of one backward pass on the model. It is therefore not significantly longer on Ima-
geNet than on CIFAR10 when the same model architecture is used, the only difference being the
input size. Of course, reaching good performance on ImageNet requires (to this day) larger mod-
els than on CIFAR10: the current state-of-the-art models have about 2B parameters [Dosovitskiy
et al., 2021], while our largest models in this work have less than 100M. This would impact the
practical cost of sparsity computation.

One could also think that the number of samples required to confidently evaluate sparsity is
much larger in higher dimensions. However, our algorithm does not require to sample in “every”
direction, or enough to break the “curse of dimensionality”. Sparsity in practice has low variance
with respect to the direction (see Section 4.6.1). Therefore only a few samples are required to
estimate with a reasonable margin of error.

Improving the complexity of sparsity

While attacks over multiple directions can be computed in batches, binary search constitutes the
major bottleneck of this algorithm. Some heuristics could help speed up sparsity computation. For
example, we could use batched n-Ary search with fewer directions to find a first approximation of
sparsity, then confirm/refine it with more directions. As we have mostly worked with reasonably
sized models and inputs we have not experimented with such heuristics.

4.7 Measuring variance in accidental robustness with sparsity
In the previous chapter, we discussed how adversarial robustness varies over identical trainings
in several cases. We however only experimented with synthetic datasets as well as MNIST. The
reason was that on larger datasets like CIFAR10, accidental robustness cannot be observed with
standard training (the adversarial accuracy under any challenging radius is always 0). Sparsity
helps us observe accidental robustness in such settings.

We train 100 ResNet18 models over CIFAR10 for 30 epochs, without any data augmentation.
Each model achieves between 86% and 88% accuracy. We then compute sparsity over the first 100
points of the test set.

Over all models, and averaged over all data points, we report sparsity values between 0.165 and
0.196 with mean 0.176 and deviation 0.005. This average is consistent with the sparsity achieved

49



in Table 4.1, line 2. Moreover, we can confirm that these differences are not due to an overfitting
effect on these 100 points. We take the most robust (sparsity 0.123) and least robust (0.089) models
based on these metrics, and recompute their sparsity on 100 different points. We achieve 0.088 and
0.126 respectively, indicating consistent differences in sparsity over the test set between these two
models.

The difference in robustness induced by sparsity can also be observed with inter-model trans-
ferability, as perturbations computed on robust source models and/or applied to non-robust target
models tend to transfer better. For each model, we compute adversarial examples over 10 input
points, then transfer these examples onto all other models. For all 4950 source/target pairs of
models, we measure full transferability, i.e. whether all 10 examples fool the target model. On
average it is the case for 92% of all pairs. However, if we constraint that the source model is in
the top 10 least sparse models, and the target in the top 10 most sparse, only 78% of pairs show
full transferability. From the most to least sparse on the other hand, we have full transferability for
98% of pairs. This shows that the least sparse models are indeed more robust.

4.8 Related Work

4.8.1 Geometry of adversarial examples
The idea to explore the spherical geometry of adversarial examples has some precedents in the
literature. Tramèr et al. [2017] take a linear algebra approach and estimate the dimension of a
subspace of adversarial examples around a perturbation. Khoury and Hadfield-Menell [2018], and
to an extent Samangouei et al. [2018] explore the data manifold and attempt to explain adversarial
examples as out-of-manifold points that models have trouble classifying. Such approaches that
consider adversarial perturbations as artifacts have been challenged by works such as Ilyas et al.
[2019] which demonstrate that adversarial perturbations are features that models can learn, and as
such are reasonable input points.

We do not make claims about the “nature” of adversarial examples, but simply propose metrics
to quantify them. This makes this work closer to Tramèr et al. [2017] in its principle, although
sparsity is different than dimension estimation. Parallels may also be drawn with Deep Hyper-
sphere Embeddings [Liu et al., 2017], which have been shown to have some robustness properties
[Pang et al., 2020].

4.8.2 Alternatives to adversarial accuracy
Minimal perturbation: it is common to compute the closest adversarial example to a given input
as a metric for robustness around this point. Some attack algorithms are based on that approach
Carlini and Wagner [2016]. This notion differs from sparsity in that it removes the notion of attack
bound and perturbation constraint altogether: instead, all points are potential adversarial examples
and the attacker finds the "best" one. A model could have a very small minimal perturbation but
still have high sparsity for large radii.

Probabilistic robustness: Robey et al. [2022] introduce a relaxation on "worst-case" robustness,
by training models to be robust to most perturbations sampled uniformly, rather than all of them.
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Stemming from similar motivations to our work, probabilistic robustness differs from sparsity sig-
nificantly in its approach, as it is "non-adversarial" robustness. Where we sample geometric regions
to constrain the adversary, probabilistic robustness samples perturbations directly. Indeed, Robey
et al. [2022] show that probabilistic robustness and adversarial robustness are largely uncorrelated,
contrary to sparsity and accuracy.

Local Intrinsic Dimensionality (LID): Ma et al. [2018] analyze the local dimension of the sub-
manifold of adversarial perturbations around an input. They use this metric to better understand the
properties of adversarial regions. sparsity differs from LID as it does not assume that adversarial
examples lie on a manifold. We probe regions and try to find adversarial examples in them, while
LID starts from an adversarial example and probes the "adversarial region" around it. These ap-
proaches are intuitively complementary, in that sparsity estimates "how many" adversarial regions
there are and LID "how big" those regions are. This duality is an interesting research topic for
future work.

4.9 Discussion
In this chapter, we have proposed a novel metric, adversarial sparsity. We have shown that it is
complementary to adversarial accuracy and offers more insight into “weak” defenses. We have
used it to exhibit intriguing properties of adversarial perturbations and defenses. With sparsity,
we have also shown that methods like data augmentation have an impact on accidental robustness.
While accuracy under attack should likely remain the primary metric for benchmarking strong
defenses, we believe that using finer metrics in the evaluation process can benefit the research
field.

Sparsity can be seen as fixing the "spikiness" of accuracy with respect to each point. When
it comes to Speech recognition, our main focus in all following chapters, even in non-adversarial
settings accuracy is a poor metric to use. Getting all words correct in a transcription is highly
challenging, and we benefit from measuring instead the proportion of correctly transcribed words.
This information is captured by the Word-Error-Rate. We use that metric primarily in all of our
work on speech recognition, thus using some of the insights that sparsity provides on images.

It would of course be possible to directly use sparsity on ASR. This however would induce
a significant computational cost. It is worth exploring the motivations justifying that effort: how
much of a danger do adversarial attacks represent for ASR? The next part focuses on answering
that question.
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Part II

Evaluating threats against speech
recognition
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Chapter 5

White-box attacks on speech recognition

After studying evaluation methods for robustness in general in Part I, we dive into attacks on
Automatic Speech Recognition (ASR) in particular. The adversarial robustness of neural ASR has
been an active research topic for several years and has brought about many interesting research
directions (see section 2.4). However, ASR models are more versatile than image classification
models: many different architectures, training objectives are still actively used (section 2.3). In
addition, complex deployment methods and real-time transcription constraints make adversarial
attacks tricky to run on ASR models. Robustness evaluation has often been local and limited to
outdated model architectures, with threat models varying significantly between different studies.
As a result it is hard to extract generalizable insights on ASR robustness from existing works.
Our main objectives in this part are to systematize the evaluation process of adversarial attacks on
ASR and to empirical robustness properties with well-defined application domains, that encompass
recent state-of-the-art architectures.

Like Part I, this chapter focuses on white-box attacks (section 2.1.2), the upper bound of all
attack algorithms, and the golden standard of adversarial evaluation. We answer questions such
as: are some ASR architectures more robust than others? Does scaling training data and iterations
increase adversarial robustness? And more generally, is the ASR field currently heading towards
more or less robust models? We also evaluate the practicability of white-box attacks, which have
the shortcoming of requiring model gradients. We show that this threat model remains of signif-
icant interest when applied to popular open-source models, and even has ripple effects on threats
like privacy attacks. The extent to which the vulnerabilities we discuss here extend to contexts
where model gradients are unavailable is the focus of the next chapter.

5.1 Introduction
Adversarial attacks against ASR models have been around for years and their results on baseline
models like DeepSpeech2 [Amodei et al., 2016] or toy datasets like Speech Commands [War-
den, 2018] are well known [Carlini and Wagner, 2018, Alzantot et al., 2018]. Research on Speech
Recognition has since then hit multiple milestones by adopting Transformer models [Vaswani et al.,
2017], looking into various architectures [Gulati et al., 2020] and even self-supervision [Baevski
et al., 2020]. Yet most works on ASR attacks still often evaluate them on the same baseline models
or a very limited number of models [Taori et al., 2019, Qin et al., 2019, Xie et al., 2021]. Rare ex-
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ceptions typically focus on specific types of attacks, like universal perturbations [Lu et al., 2021].
This leaves a number of fundamental questions largely unanswered: how do LSTMs and Trans-
formers compare in terms of robustness? What about encoder-decoders and encoder-only models?
Does self-supervised pretraining, a staple of recent ASR systems, affect adversarial vulnerabili-
ties? What about increasing the amount of training data, or changing the languages of that data?
Works like Abdullah et al. [2021b] have shown that ASR adversarial examples are different from
image ones in key aspects, and must therefore be the object of specific research. In that regard,
setting the foundations for a standardized, systematic evaluation of attacks on speech models is an
essential first step.

Our first contribution in this chapter consists in laying out some of these foundations (section
5.2). We evaluate targeted and untargeted white-box attacks on the LibriSpeech test-clean set
against multiple standard models trained on the same data but varying in architecture, loss, training
paradigm, and size. These results both set a standard to beat in future attack and defense works
and let us draw some (cautious) conclusions on the relative robustness of ASR architectures.

Though they bring valuable insight, those experiments still focus on models trained in "simple"
settings (one dataset of fairly clean audio) and may not be representative of the ASR models that
real-world applications tend to use. We fix this limitation by focusing on the recent Whisper model
[Radford et al., 2022] in sections 5.3 and 5.4. A key property of Whisper training is the scaling of
its training data. Thanks to its massive training on diverse sources of audio, Whisper achieves very
impressive robustness against noise and out-of-distribution data. We however show that in terms
of adversarial robustness, this approach yields no benefits against untargeted attacks, and limited
improvements against targeted attacks (section 5.3). Another novel feature of Whisper training
is its massively multilingual training data. We show that this approach is not without drawbacks:
multilingual Whisper models can easily be fooled to detect the wrong language (section 5.4). This
very simple attack is sufficient to entirely mistranscribe sentences in low-resource languages. We
even propose a universal version of this attack, with a single perturbation that can fool multiple
speech utterances.

How much danger can those white-box attacks cause in practice? Whisper is open-source: if it
is vulnerable to adversarial attacks, then its deployment in real-world applications could turn these
potential dangers into real liabilities. Besides, causes for concern are unfortunately not limited to
direct applications of white-box attacks. We also show that they can be used indirectly for privacy
attacks (section 5.5). Specifically, we show on some models that a model’s loss on adversarially
perturbed inputs is a powerful feature to run membership inference (MI) attacks [Shokri et al.,
2017] on those inputs, i.e. determine whether the utterance or its speaker is part of the model’s
training data. MI can be used by ill-intended parties to determine the presence of specific speakers
in the training set of an Automatic Speech Recognition (ASR) model. This may pose a privacy
breach if the mere presence of an individual in this dataset provides sensitive information about
them. Thus privacy concerns are an additional reason why adversarial robustness in models may
be desirable.

One of the limitations to a standard evaluation of ASR attacks until this point was the lack of a
practical codebase to do so. Another of our contributions consists in releasing an ASR robustness
framework, which we term robust_speech. Based on SpeechBrain [Ravanelli et al., 2021],
this package can apply the same attack algorithms to most neural architectures and datasets, which
is an important step towards setting the foundations of standardized adversarial attacks on ASR.
More details about robust_speech are provided in Appendix C.1
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5.2 Comparing the robustness of neural architectures

5.2.1 Experimental setup
Dataset

We use the LibriSpeech dataset [Panayotov et al., 2015] for evaluation. All the models we evaluate
in this section are trained on that dataset. We evaluate our adversarial attacks on the clean test set.
For the more computationally expensive CW attack, we restrict our evaluation to 100 utterances
only.

Models

In order to minimize the time and the computational footprint of our experiments, we evaluate
pretrained models directly provided by SpeechBrain [Ravanelli et al., 2021]. Some models output
characters (31 output neurons), others output subwords with 5000 Byte Pair Encodings (BPE). All
subwords (resp. character) models share their vocabulary and tokenizer. We do not use external
language models for decoding. The detailed hyperparameters of all models are available in our
source code.

We use two subword Seq2Seq encoder-decoder models (section 2.3.1). One uses Transform-
ers and the other LSTMs. Each was trained with both the CTC Loss on the encoded states and
Attention+Cross-Entropy Loss. When generating attacks we use either the Cross-Entropy Loss or
the CTC loss, effectively treating each network as two different models sharing their latent encoded
space.

We also evaluate DeepSpeech2 [Amodei et al., 2016], an LSTM CTC model with character
outputs rather than subwords, in order to better analyze the impact of the network’s output size on
adversarial vulnerabilities.

Finally, we use multiple variations of Wav2Vec 2.0 [Baevski et al., 2020]: BASE models fine-
tuned on 960h and 100h respectively, and the large model fine-tuned on 960h. For each of these
models, in order to align the output space with our character vocabulary, the final projection was
briefly fine-tuned on 100h for one epoch. This was sufficient to achieve the expected performance
of these models on LibriSpeech.

Adversarial attacks

We use the untargeted Projected Gradient Descent (PGD) attack (section 2.1.3). We consider both
the L∞ and L2 for the choice of a norm in Eq. 2.2. We control the perturbation size of the latter
by fixing the Signal-Noise Ratio (SNR) of the attack as a hyperparameter. For each input, we set ε
accordingly:

ε =
‖x‖2

10
SNR
20

(5.1)

. For L∞ PGD, we directly set ε as a hyperparameter.
We also apply the Carlini&Wagner (CW) attack (section 2.1.4) as a targeted attack. The attack

objective (Equation 2.7) is optimized with Adam [Kingma and Ba, 2015]. The additional L∞
constraint ε is first set large, then progressively decreased.
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Attack methodology

We evaluate all attacks against all models whenever applicable. For PGD attacks we vary the hy-
perparameters controlling the amount of noise distortion; however, we keep all other hyperparam-
eters constant. This includes the number of iterations in optimization attacks, which is respectively
equal to 100 (PGD) and 5000 (CW). These values are greater or equal to those used by their orig-
inal authors. Our targeted attacks use a set of three possible target sentences. For each input, we
select the target whose length is the closest to the true label.

Metrics

To evaluate our attacks we rely on several metrics:

• For untargeted attacks, the Word-Error Rate (WER) of the model on the adversarial exam-
ple with respect to the true label. The higher, the stronger the attack.

• For targeted attacks, the WER on the adversarial example with respect to the target sentence.
The lower, the stronger the attack. We also report the accuracy, or success rate of these
attacks, i.e. the fraction of inputs for which a successful adversarial example was found.

• The Signal-Noise Ratio (SNR) of the perturbation: the higher the SNR, the less perceptible
the noise. 20dB can be considered a threshold for an "acceptable" noise level that does not
disturb human comprehension; 30 − 40dB is an estimate of "imperceptible" noise. Both
these thresholds are approximate, as human perception does not align well with Lp norms.

5.2.2 Results and discussion

Model Output Clean Carlini&Wagner
type WER WER↓ SNR (dB) Accuracy

SpeechBrain LSTM Seq2Seq subword 5.02 16.98 21 66%
SpeechBrain LSTM CTC subword 6.15 4.63 27 91%

SpeechBrain Transformer Seq2Seq subword 4.11 0 37 100%
SpeechBrain Transformer CTC subword 5.88 0 38 100%

DeepSpeech2 (LSTM CTC) character 9.44 0 40 100%
Wav2Vec2-BASE-100h (Transformer CTC) character 6.27 0 35 100%
Wav2Vec2-BASE-960h (Transformer CTC) character 3.53 0 35 100%

Wav2Vec2-LARGE-960h (Transformer CTC) character 2.85 0 32 100%

Table 5.1: results of all models on clean data and under the (targeted) Carlini&Wagner attack. For
CW We report the WER, SNR, and attack accuracy (i.e. success rate). Small WER values mean
successful attacks.

We plot the results of the PGD attack in Figure 5.1, while the CW attack results are displayed
in Table 5.1.

56



(a) WER as a function of SNR for the L2-PGD attack

(b) WER as a function of SNR for the L∞-PGD attack

Figure 5.1: Attacks results for the untargeted (a) L2-PGD attack, and (b) L∞-PGD attack, for
different SNR values.

57



The analysis of the PGD plots shows large variations in the WER of different models under
attack. The relative ranks of all models are consistent between L∞ and L2 attacks. The only ex-
ception is the Transformer CTC encoder, which compared to other models is more robust to L∞
attacks than L2 attacks. CW results on the other hand show a clear gap between the Transformer
models and the LSTM models: the former always predicts the attack target on adversarial examples
with low noise (SNR ≥ 30dB), while the latter require more noise for imperfect target transcrip-
tions. The Imperceptible attack achieves almost identical results (not reported), with SNRs varying
by up to 3dB.

Overall three trends emerge from these results:

• Encoders-decoder are harder to attack than encoder-only models. Seq2Seq models get lower
WER than CTC models on PGD and lower SNR on CW attacks. The Transformer models
model has a lower PGD WER than the Transformer encoder.

• Transformers are harder to attack than LSTMs with PGD, but easier with CW, as evidenced
by the comparison of the SpeechBrain models, both Seq2Seq and CTC.

• Character LSTM models are easier to attack than subword models: the CW SNR and success
rate are higher for DeepSpeech2 than the LSTM model. For transformers (SpeechBrain and
Wav2Vec2) the difference is not perceptible

The higher robustness of encoder-decoders may simply be a result of their higher depth, which
is a known cause of gradient obfuscation [Athalye et al., 2018a]. The fact that CW is effective
against Transformer Seq2Seq models points towards that explanation: this attack’s objective is
especially powerful at circumventing optimization issues. The inconsistent results of PGD and
CW against LSTMs and Transformers are harder to explain and certainly deserve more attention
in future works. At the very least it shows that the performance boost of Transformers does not
clearly carry over in terms of robustness. It also emphasizes the need to evaluate multiple models
when crafting new attacks, and multiple attacks when building new models.

5.3 Effects of scaling on robustness
After evaluating models trained on the simple LibriSpeech dataset and with little real use, we
move on to models that are actually deployed in numerous real-world applications. This section
describes the adversarial evaluation of the Whisper model family [Radford et al., 2022], and our
conclusions on the effect of data and model scaling on adversarial robustness.

5.3.1 Experimental setting
Models

Whisper exists in 5 model sizes. We run our attacks on all models from tiny (39M parameters) to
large (1550M). All models are Transformer sequence-to-sequence models, with an encoder turning
speech inputs into contextual representations, and a decoder mapping them to language tokens.
There are four English-only models trained on 438kh of supervised English training data, and five
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multilingual models trained with an additional 243kh of multilingual data, for both transcription
and translation. Initial tokens in the decoder can specify the task and the language. A language
detection module generates the latter if it is not specified and if the model is multilingual. We do
not change any of the default inference hyperparameters: for example, the beam size is 5 for all
models.

For comparison, we also report attack results on the SpeechBrain Transformer model used in
section 5.2, with the same beam size of 5 during inference. This beam size explains the (small)
variation of results on that model between both sections.

Attacks

As in the previous section, we use the PGD and CW attacks. For PGD in L2 norm, we set SNR
objectives of 30 and 40dB, which correspond to very small noise. We use an attack learning rate
of 0.1 ∗ ε, and n = 200 attack iteration steps. This attack on Whisper medium runs in 2 minutes on
one A100 for a typical utterance. For the L∞ attack we fix ε = 0.005 or ε = 0.0015 (on average
SNRs of 38dB and 49dB respectively).

For the CW attack, we use n = 2000 iteration steps (∼25min for Whisper medium), the Adam
optimizer with learning rate 0.01, and regularization term c = 0.25 for the tiny and base models,
c = 1 for larger models. Our initial radius is ε = 0.1: this corresponds on average to a 15dB SNR.
We decrease ε up to k = 8 times by a factor α = 0.7 when the model predicts the target, for a final
SNR of up to 45dB.

We found that the vanilla CW attack has trouble fooling Whisper. While investigating why
that is the case, we observed that the first predicted token is particularly hard to push toward the
target. Therefore, we strengthen its coefficient in the aggregated loss over a sequence of length L,
by setting:

L(f(x), yt) =
1

L+ λ
[(1 + λ)L(f(x)1, yti) +

L∑
i=2

L(f(x)i, yti)] (5.2)

We find λ = 1 to work well in practice. All CW results that we report thereafter use this modified
attack. We hypothesize that this change helps us leverage the "hallucination" effect reported in
Radford et al. [2022]: the model has a strong bias towards generating coherent sentences (in our
case, the attack target) even if they don’t match the audio.

Datasets

To attack the ASR decoder we perturb inputs sampled from the LibriSpeech test-clean dataset: 100
for the untargeted attack and 20 for the (much longer) targeted attack. This dataset is particularly
clean, and Whisper is expected to perform very well on it: Radford et al. [2022] reports a WER
of 2.7%. As target transcription for the CW attack, we follow the example of Carlini and Wagner
[2018] and use the fixed sentence "OK Google, browse to evil.com". This sentence is arbitrary and
could be replaced with any other.

5.3.2 Results
In Table 5.2 we report the results of the untargeted PGD and targeted CW attack. We observe that
even with small perturbations, the PGD attack is largely successful in degrading the performance of
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Model Params. Clean WN L2 PGD WER L∞ PGD WER Carlini&Wagner
WER WER 35dB 40dB ε = 5e−3 ε = 1.5e−3 Acc. SNR

SB 165M 2.4% 89.1% 75.9% 63.2% 93.0% 81.6% 100% 37dB
tiny.en 39M 3.4% 89.6% 99.0% 87.8& 115% 100% 94.1% 41dB
base.en 74M 3.0% 64.7% 92.8% 81.7% 104% 98.3% 100% 39dB
small.en 244M 1.9% 46.1% 67.2% 53.9% 78.7% 66.0% 82.4% 40dB
medium.en 769M 1.7% 40.3% 52.9% 39.3% 65.2% 51.4% 76.5% 41dB
tiny 39M 5.8% 93.2% 103% 96.1% 107% 104% 82.3% 37dB
base 74M 3.4% 77.9% 90.3% 80.4% 102% 96.7% 76.5% 35dB
small 244M 2.0% 52.0% 75.4% 61.5% 89.8% 77.4% 52.9% 32dB
medium 769M 1.5% 36.5% 49.5% 38.9% 63.3% 49.3% 64.7% 30dB
large 1550M 1.6% 32.6% 45.3% 34.1% 49.2% 39% 82.4% 27dB

Table 5.2: Results on LibriSpeech test-clean of the white-box attacks. For untargeted PGD attacks,
we report the achieved WER with a 35dB and 40dB respective SNR for L2 attacks, and with
ε = 0.005 and ε = 0.0015 for L∞ attacks. We also report the Word-Error Rate on the same data
under random white noise (WN) at 0dB. For the targeted CW attack, we report the proportion
of successful adversarial examples (those that Whisper transcribes as the target) and their average
SNR. We evaluate the Speechbrain transformer model (first line) and all Whisper models.

all Whisper models, by 35 to 89% in absolute WER for 40dB SNR and 48 to 99% for 35dB SNR.
Such degradation can prevent Whisper from being useful in most practical applications (e.g. video
captioning with a 45% WER is unsatisfying). L∞ PGD attacks are equally or more successful,
with very small radii (in practice similar to SNRs of 38-49dB).

We observe that attack results on the SpeechBrain Transformer model are very close to those
of the Whisper small model, of similar size and clean performance. We can conclude from this
that the Whisper training method does not lead to any improvement in adversarial robustness on
untargeted attacks, compared to models of similar architecture trained in-distribution on fewer
data. In contrast, Whisper models perform considerably better than this baseline under white
noise, which we report in the same Table. This illustrates the difference between robustness to
average (random) and worst-case (adversarial) perturbations.

As for targeted attacks, in 50% to 90% of all sentences the CW attack succeeds in making the
model predict the target with very little noise. This does show an increase in robustness compared
to the baseline, but Whisper remains largely vulnerable to targeted attacks. Models of all sizes
can be fooled, but multilingual models are harder to attack. Most models are fooled with an SNR
above 35dB; for the bigger multilingual models the SNR drops but remains above 25dB. This could
indicate that multilingual training helps make models robust to targeted attacks, though not robust
enough to evade most attacks.

To help visualize the aforementioned results, we reproduce the results of Table 5.2 in Figure
5.2, by plotting the WER as a function of model size for all models, for clean data, noisy data,
and L2-PGD adversarial data. They emphasize that model size brings some robustness improve-
ment, but at equal size, Whisper-style massive training is only beneficial against white noise, not
adversarial noise.
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(a) Clean data (b) Data corrupted with white noise (0dB)

(c) Data corrupted with L2 adversarial noise (35dB) (d) Data corrupted with L2 adversarial noise (40dB)

Figure 5.2: WER of Whisper models and a baseline on inputs perturbed with different types of
noise.

5.4 Effects of multilinguality on robustness
Another property of Whisper models is to handle sentences in multiple languages at once, by
feeding the decoder a prompt containing a language identification token. This token is inferred
if not provided. We show that an attacker can use this feature to their advantage, by fooling the
model to detect the language.

5.4.1 Experimental setting
Language confusion attack

Whisper’s language detector is essentially a classifier trained with cross-entropy loss. We use the
PGD targeted attack to push the prediction from the original language to another target language.
We evaluate how this affects subsequent ASR performance. We set an SNR of 45dB and n = 30
iteration steps.

Given that this is a simple attack objective, we also try applying a more restrictive threat model
and run a universal attack. We optimize a single δ to fool not just one but all inputs x. Specifically,
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we train a 30-second long parameter δ to fool the following objective:

max
‖δ‖p<ε

Ex∈DL(f(x+ δ), y) (5.3)

To optimize it we combine several utterances into a small "training set" D, and train with PGD
for several epochs. We then evaluate how that perturbation affects ASR performance on a test set
disjoint from this training set. This universal attack uses an SNR of 40dB, and fits δ for 2000
epochs over the 70 training sentences using one iteration step per input and a learning rate of
0.001 ∗ ε.

Dataset

To attack language detection, we use the multilingual CommonVoice dataset [Ardila et al., 2020].
We sample 100 sentences from the test set of each of the following seven languages: Armenian,
Lithuanian, Czech, Danish, Indonesian, Italian, and English. Whisper was trained on varying
amounts of these languages, making them representative of the distribution of its training data.
We use three target languages: English, Tagalog, and Serbian, which are also present in very
different amounts in the Whisper training set. For the universal language confusion attack, the
attack training set consists of 70 sentences (10 per source language), disjoint from the seven test
sets, and the target language is Serbian.

5.4.2 Results

Figure 5.3: WER of the multilingual Whisper medium on subsets of the CommonVoice dataset
in 7 languages, under language confusion attacks. We fool the model with white-box attacks into
wrongfully detecting either English (yellow), Tagalog (pink), or Serbian (green). We also fool it
with a universal attack to predict Serbian (black) The x-axis corresponds to the amount of training
data Whisper was trained on for the true language of the inputs.

In Figure 5.3 we plot the WER of the Whisper medium model under the language confusion
attack, as a function of the amount of Whisper training data in the true language. We report our
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results for three possible attack targets: English, Tagalog, and Serbian. We observe that in a large
majority of cases, this very simple attack is sufficient to degrade significantly the WER of the ASR
model. When the true language is poorly represented in the Whisper training data, as for Arme-
nian and Lithuanian, the WER jumps over 100%. For higher-resource languages (Czech, Danish,
Indonesian) the attack can degrade the WER to 75% or higher. For the best-represented languages,
like English or Italian, the attack is a bit less effective but still degraded the performance by 16%
to 60% absolute WER points. Intuitively, when the source and target languages are identical the
attack has no effect, as observed with English.

We achieve this performance degradation with very low noise (45dB SNR) and an extremely
simple attack with 30 iterations of PGD. This shows how brittle a multilingual model with language
detection can be, especially over low-resource languages. While looking at the actual outputs on
these low-resource languages under attack, we observed that the prediction is a mostly nonsensical
mix of the true and target language.

Even the universal attack is largely successful in confusing Whisper, despite using a single
perturbation for all inputs and all source languages. It achieves a Word-Error Rate degradation
of 20 to 40% for all languages. This perturbation can be used off-the-shelf on any input, without
additional computation. With its SNR of almost 40dB it remains almost imperceptible.

The influence of the choice of target language on attack success is hard to derive from our
results. The Serbian attack target has a stronger effect on most source languages, but Danish
and Indonesian are exceptions. Studying whether linguistic proximity between source and target
languages would be an interesting follow-up to this work.

5.5 Applications of white-box attacks: the example of member-
ship inference

5.5.1 Limitations and implications of adversarial vulnerabilities in ASR
The threat models we have evaluated in this work cannot be applied to 100% of ASR applications.
Apart from the universal language confusion attack on Whisper, whose WER degradation does
not match white-box attacks, our adversarial algorithms need time to generate noise tailored for
each input. Moreover, they modify inputs in the digital space, not under real-world acoustic con-
ditions. As a result, applying these attacks over the air as people speak rather than in the digital
waveform space remains challenging. However, other works have extended adversarial attacks to
be generated over the air [Qin et al., 2019, Schönherr et al., 2020] and in real-time [Lu et al., 2021,
Xie et al., 2021]. Applications of those works to SpeechBrain, Wav2Vec2, and Whisper may be
possible and would extend our results to many more threat models.

In addition, our simple threat models are sufficient to fool ASRs in several practical situations.
For instance, if ASR is used to filter speech inputs, e.g. to remove hateful content from an online
platform, new uploads can evade said detection with an untargeted attack. Other possible applica-
tions include censorship triggering (using targeted attacks to fool Whisper into perceiving hateful
content where there is not) or even data poisoning if for instance Whisper is used to generate new
text corpus from audio.

In this section, we propose an additional application of white-box ASR attacks in order to
induce privacy leakage, by increasing the success rate of membership inference attacks. This
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section is based on results presented in Olivier et al. [2023b]. We do not provide all details of the
methodology or results here - they are left to Appendix C.2 - and focus on the aspects most relevant
to understanding how adversarial attacks can leak private information.

5.5.2 Membership inference pipeline
First presented by Shokri et al. [2017], membership inference (MI) is the problem of determining
whether a given data record was used to train a machine learning model. MI is usually described as
an attack on a model’s training data, as it allows an external party (or attacker) to gain information
about specific data records. Still, MI can be used benevolently, e.g., to check if a data record has
been used in a model’s training without the appropriate consent.

The spectrum of implementations and applications of MI is wide. Our MI pipeline is defined
as follows: let M be an ASR model, trained with a dataset DASRtrain . Our goal is to determine
which data records of a datasetDMItest are contained inDASRtrain (i.e., were seen by the model during
training). To this end, we first extract features. We apply a combination of feature extractors
f1, ...fJ , which are calculated on M ’s output for a given input x and a target transcription y. This
results in the feature vector F (x, y) = (f1(x, y), f2(x, y), ..., fJ(x, y)).

Then, we build a MI binary classifier C, that takes F (x, y) as input and outputs a binary la-
bel predicting whether x was in DASRtrain . By construction, in MI we typically do not assume full
knowledge of the evaluated model’s training setting, but partial knowledge such as its architec-
ture but not its training data. Hence we train C using supervision from a shadow model M̄ , whose
training dataset we assume is known to the attacker. We construct balanced train and test classifica-
tion datasets consisting of utterance-transcription pairs either positive, i.e., in DASRtrain or negative.
Negative utterances are sampled from the same set of speakers as positive utterances to ensure that
our attack is performed at the utterance level, and not at the speaker level. After training C on M̄
with a training split DMItrain , we evaluate it on M with a test split DMItest .

Many previous works like Shah et al. [2021c] have focused on black-box features for Member-
ship Inference: they can be computed only with model outputs. In contrast, we mainly consider
what we term grey-box features: they can be computed from the non-processed (i.e., non-decoded)
output logits of the model. We consider that these features contain a higher amount of information
on membership, than features computed from a post-processed output, as long as they are properly
modeled [Carlini et al., 2022]. In this work we consider as loss-based features, the losses used
to train a Seq2Seq ASR model: the attention loss (Att), which corresponds to the KL divergence
between the output log-probabilities and the target transcription; and the CTC loss [Graves et al.,
2006]. These features correspond to a gray-box model access setting.

Perturbed-input MI

In an effort to characterize the decision boundary around a given data point and potentially improve
the MI decision, we also extend those features by perturbing the input signal, using Gaussian and
Adversarial noise. We propose to explore the "worst-case" directions, in which the decision bound-
ary is particularly close. We run a panel of PGD adversarial attacks in the L∞ norm with different
hyperparameters and compute features for all returned perturbations. We detail this procedure in
Algorithm 2. To run PGD attacks, we require access not only to the loss but to the weights, so we
consider adversarial features to assume white-box access to the target model.
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We also perturb input data with random Gaussian noise (grey-box access). Gaussian per-
turbations are agnostic to the model and data, and let us evaluate the model’s “average” be-
havior when getting further from the input in arbitrary directions. We use decreasing levels
of Signal-to-Noise-Ratio (SNR), thus moving the perturbed signal away from the original in-
put. For each SNR value, we select multiple random perturbations, whose MI results we sum-
marize by their mean and standard deviation. This procedure is summarised in Algorithm 3.

Algorithm 2: Adversarial-based feature com-
putation.
Require: Input x, set radii E , #steps N , step size η,

model M(·), target transcription y, feature extrac-
tor F (·)

1: feats← [ ]
2: for ε ∈ E do
3: δε ∼ U(−εI, εI)
4: for n ≤ N do
5: g = sign

(
d
dδε
L(M(x+ δε), y)

)
.

Gradient
6: δε ← clipε(δε + ηg) . Optimization &

projection
7: end for
8: feats[ε]← F (M(x+ δε), y)
9: end for

10: return feats

Algorithm 3: Gaussian noise-based feature
computation.
Require: Input x, set of SNRs S, #runs N , model

M(·), target transcription y, feature extractor F (·)
1: feats← [ ]
2: for snr ∈ S do
3: featssnr ← [ ]
4: for n ≤ N do
5: δ ∼ N (0, I) . Sample Gaussian noise

6: δsnr ←
√

‖x‖22
snr×‖δ‖22

× δ . Scale noise to

SNR
7: featssnr[n]← F (M(x+ δsnr), y)
8: end for
9: feats[snr]← (mean(featssnr), stddev(featssnr))

10: end for
11: return feats

Type of Input Accuracy AUC
Natural 87.2 ± 0.39 92.7 ± 0.09

Gaussian 87.5 ± 0.23 93.8 ± 0.15
Adversarial 86.8 ± 0.26 93.1 ± 0.13

Nat. + Gauss. 89.4 ± 0.33 94.8 ± 0.14
Nat. + Adv. 89.1 ± 0.23 95.1 ± 0.09

Nat. + Gauss. + Adv. 89.4 ± 0.36 95.0 ± 0.16
Natural 87.4 ± 0.23 92.3 ± 0.17

Gaussian 85.9 ± 0.36 93.1 ± 0.19
Adversarial 85.9 ± 0.41 91.7 ± 0.14

Nat. + Gauss. + Adv. 88.1 ± 0.17 94.2 ± 0.19

Table 5.3: Results for experiments with full and partial knowledge of the training data. The features
used are the attention and CTC loss, applied to natural and perturbed inputs. Above the line are
full-knowledge results using the target model to train the MI classifier, and below are partial-
knowledge results using a shadow model. For every experiment, we report the mean and standard
deviation for different metrics, obtained by fitting the MI classifier 10 times with different random
seeds.

65



5.5.3 Experiments
We run a number of MI experiments with and without shadow models, using the above features. All
of our experiments are conducted on the LibriSpeech dataset, using subsets to train the evaluated
and shadow model as well as the MI classifier. All of our models are Transformer AEDs. We report
major results in Table 5.3. A fuller report of our experiments, as well as a complete experimental
setting with all hyperparameters detailed, is provided in Appendix C.2.

The first 6 lines correspond to a full-knowledge setting where we train the MI classifier on the
target model. The last 4 lines correspond to a partial knowledge scenario using a shadow model to
train the MI classifier. In every case, both Attention and CTC loss are used as features.

In the full-knowledge setting, we can observe that Gaussian or adversarial inputs by themselves
provide results that are comparable to the natural inputs. However, when combining natural inputs
with one or the other we observe a significant increase in both accuracy and AUC (+2% in absolute
value, or a 20% drop in error). Our best results are achieved when combining all features. This
suggests that adversarial perturbations bring some additional features that the MI classifier can
leverage. Partial knowledge results follow a similar trend, with the combination of natural and
both perturbed inputs giving us the best overall results, allowing for an accuracy close to 88%, a
1% degradation over the full-knowledge attack. Our results confirm that adversarial perturbations
are useful features that improve the performance of membership inference attacks.

5.6 Related work

5.6.1 Adversarial attacks on robust and multilingual ASR
The interactions between robustness to adversarial perturbations and other types of noise have not
been explored for ASR so far. They however have been studied for image classification. Some
works have unified adversarial and random noise under a semi-random regime and derived theo-
retical robustness bounds [Fawzi et al., 2016, Rice et al., 2021]. Moreover, a model robust to white
noise can be indirectly useful in adversarially robust pipelines [Lecuyer et al., 2019, Cohen et al.,
2019].

We also study specific attacks on multilingual ASR models. Other works have shown the
fragility of multilingual language models under perturbations of text inputs [Rosenthal et al., 2021].
For ASR, some past work has compared the robustness of monolingual models trained in different
languages [Markert et al., 2021].

Membership inference in speech recognition

Since it was first proposed, MI has been studied under different assumptions and domains, with a
large predominance in the computer vision/natural language processing domains [Hu et al., 2022,
Jayaraman et al., 2021, Choquette-Choo et al., 2021]. On the other hand, MI for ASR has been
the focus of only a few studies. One of the first examples is the work of Miao et al. [2021],
who extract speaker features and errors to train a shadow model to evaluate if a speaker’s data
was used during training. This was followed by the work of Shah et al. [2021c] who instead
focus on the utterance level. While Miao et al. [2021] uses GloVE embeddings to compare the
output and target transcriptions, and use these as MI features, Shah et al. [2021c] uses WER, and
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individual types of transcription errors, together with the ratio between the length of the output and
target transcriptions. Differently, Tseng et al. [2022] focus on MI for self-supervised ASR models,
where they leverage utterance- and speaker-level similarity scores. All these works only consider
a strict black-box access to the model, potentially enriched by the model’s confidence or the best k
hypothesis. In this work, we go beyond the considered black-box settings to find an upper bound
on what can be inferred if white-box access is possible.

Membership inference with perturbed inputs

An interesting subset of MI works, instead of only considering the model’s output and loss for a
data point x, also try to determine how the model’s loss varies in its neighborhood. For instance, the
authors in Jayaraman et al. [2021] suggest querying the target model multiple times on a sample x
perturbed with different Gaussian noises. In a similar spirit, the algorithm presented in Choquette-
Choo et al. [2021] queries for augmentations of x that likely have been used during training and
the algorithm in Zhang et al. [2022] uses information on the record’s adversarial robustness. In
this work, we also leverage these ideas and propose two input perturbation-based approaches for
MI attacks on ASR.

5.7 Discussion
Throughout this chapter, we have proposed a systematic evaluation of the adversarial robustness
of ASR models and the effect on their robustness of a number of design choices. One common
thread to our results is that the directions currently undertaken by the speech modeling community
are not favorable to more secure ASR. Transformers are to a large extent more vulnerable than
LSTMs. Massive training has little effect on adversarial robustness, and increasing model size
has limited effect only. Multilingual training a la Whisper tends to raise additional vulnerabilities.
Self-supervised models like Wav2Vec2 are not particularly more robust than fully supervised ones.

All of those results are conditioned on certain threat model assumptions, and in particular on
the availability of model gradients. We have shown that those assumptions enable some significant
threats already, with carryovers to data privacy on top of direct adversarial attacks. However, to get
a complete picture of ASR robustness we must know which attacks remain possible when relaxing
our threat model assumptions. Such black box attacks are the object of the next chapter.
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Chapter 6

On the conditions of attack transferability
on speech recognition

A recurring assumption of this thesis so far has been that a potential attacker has access to the pa-
rameters of their target model, and can therefore fool it by running gradient-based attacks. While
we have pointed out in Chapter 5 that this assumption is often valid, and that this validity tends
to increase over time, it remains common for ASR models to be released behind a commercial
API (Speechmatics, Voci, Microsoft Azure, etc) or even embedded in a personal assistant device
(Amazon Alexa, Google Home, etc). To fool those models, an attacker needs algorithms to run
black-box attacks (section 2.4.2). Key methods to run such attacks include using black-box opti-
mization, attacks without optimization at all, or using gradient optimization on a proxy model and
leveraging the transferability of adversarial attacks (section 2.1.2), as illustrated in Figure 6.1a.
Such attacks remain challenging when applied to most ASR models.

For instance, our experiments have shown that a number of black-box optimization and optimization-
free attacks, effective on some outdated models, do not carry over well to recent model architec-
tures and training methods. We report those experiments in Appendix D.1. Meanwhile, as we have
mentioned in Chapter 2.4.2, previous works have shown that transferable attacks are extremely
challenging on ASR models, at least on some architectures [Abdullah et al., 2021b, 2022]. Our
objective in this chapter is to measure the extent of that difficulty on more recent architectures.

To our surprise, we find that a large number of recently proposed models are considerably more
vulnerable to targeted transferable attacks than other models to transferable attacks. This chapter
focuses on quantifying this vulnerability, explaining it, and discussing its implications.

6.1 Introduction
In this chapter, we study the robustness of modern transformer-based ASR architectures. We show
that, in contrast with previously evaluated architectures [Abdullah et al., 2021b, 2022], many state-
of-the-art ASR models are in fact vulnerable to the transferability property. Specifically, our core
finding can be formulated as follows:

Pretraining transformer-based ASR models with Self-Supervised Learning (SSL) makes
them vulnerable to transferable adversarial attacks.

SSL is an increasingly popular learning paradigm in ASR (Figure 6.1b), used to boost model
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performance by leveraging large amounts of unlabeled data. We demonstrate that it hurdles ro-
bustness by making the following contributions:

• First, we motivate our study by conducting initial experiments on a variety of different ar-
chitectures and transfer attacks between multiple pairs of models (section 6.2). We observe
that SSL models are the only ones to display transferability, albeit limited.

• Second, we push the limits of attack transferability by increasing the strength of our attack
algorithm. We generate 85 adversarial samples by attacking two proxies at once (section
6.3). We show that these samples are effective against a wide panel of public transformer-
based self-supervised ASRs (section 6.4). This includes ASRs trained on different data than
our proxies. Our attacks can achieve a Signal-Noise Ratio of 30dB - not quite as imper-
ceptible as the strongest white-box attacks [Qin et al., 2019], yet surprising for transferable
attacks. On the other hand, models trained for ASR from scratch are much less affected.
This suggests that SSL pretraining is the cause of the vulnerability to transferred attacks.

• Then, we provide more evidence that SSL-pretraining is the reason for this vulnerability
to transferable attacks (section 6.5). We do so using an ablation study on Wav2Vec2-type
models, either pretrained or trained from scratch and similar in all other aspects. We use
each model as a proxy to generate adversarial examples, which we attack all other models
with. We show that SSL pretraining in both proxy and private models indeed contributes
to the transferability of adversarial attacks and that factors such as the amount of unlabeled
data play an important role.

• None of the experiments above are sufficient to explain why SSL would make adversarial
perturbations more transferable. In section 6.6, we propose an explanation for this curious
phenomenon. We argue that targeted transferable ASR attacks require the proxy and private
models to learn highly similar features; and that pretext tasks used in SSL training encourage
such proximity between different model representations.

(a) Transferability (b) SSL ASR

Figure 6.1: Diagrams illustrating (a) the transferability of an adversarial attack between a proxy
and a private model, and (b) the training procedure of SSL ASR models
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6.2 Motivation
In this section, we illustrate the challenges of transferable and targeted adversarial attacks on ASR.

6.2.1 Transferability between ASR models
Methodology

We use the models we analyzed in Chapter 5, and evaluate pairwise transferability. We select a
private model (we wish to attack it but assume no access to its weights) and a proxy model (we
have access to that model’s weights). We run a CW attack on a proxy model and compute the WER
of the target on the private model.

In practice, we use the adversarial examples we computed in (white-box results in Table 5.1).
We use every possible model pair as proxy and private model.

Between the prediction and the attack target yt, a low Word-Error Rate indicates a successful
attack. Our metric to measure transferred attack success is therefore the word-level targeted attack
success rate, defined as

TASR = max(1−WER(f(x+ δ), yt), 0) (6.1)

Results

Model\Proxy LSTM
LSTM
CTC

Trans-
former
Seq2Seq

Trans-
former
CTC

Deep-
Speech2

W2V2
BASE-
100h

W2V2
BASE-
960h

W2V2
LARGE-
960h

LSTM S2S 83.0 14.2 0 0 0 0 0 0
LSTM CTC 0 85.4 0 0 0 0 0 0

Transformer S2S 0 0 100 12.5 0 0 0 0
Transformer CTC 0 0 0 100 0 0 0 0

DeepSpeech2 0 0 0 0 100 0 0 0
W2V2 BASE-100h 0 0 0 0 0 100 38.9 26.6
W2V2 BASE-960h 0 0 0 0 0 51.9 100 37.4

W2V2
LARGE-960h

0 0 0 0 0 7.1 8.6 100

Table 6.1: Word-level targeted success rate of the CW attack with multiple proxies and models
of varying size and training data. Each row corresponds to a different model evaluated, and each
column to a different proxy model. Italic results correspond to non-black-box attacks: the proxy
and model are either the same model or share some weights or pretrained representation. Bold
results correspond to successful attack transferability.

In Table 6.1 we report the TASR of each model pair. We observe that apart from the main
diagonal (white-box attacks) almost all attacks have 0% success rate. This confirms the difficulty
to achieve transferable attacks on ASR. Among the few exceptions are attacks between CTC and
LAS models of identical architecture. However, in our experiments those models actually share
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weights: the CTC model is the encoder of the LAS model with an appended projection layer.
Therefore those results also do not correspond to a full attack transferability scenario between
different models. Besides, even in those cases, the success is very low (< 15%).

However, results are different between Wav2Vec2 models. We first observe that perturbations
transfer well between Wav2Vec2 BASE models using different finetuning data:, we achieve attack
success rates of 38.9% and 51.9%. Those results also do not correspond to a full transferability
scenario as the models were finetuned from the same base pretrained representation. However, the
transferability is also important from the Wav2Vec2-LARGE proxy to the Wav2Vec2 BASE models
(26.6% and 37.4%), while those models were trained entirely separately!

To our knowledge, this is the first case of targeted and transferable adversarial attack on ASR
models. Intuitively, we could be tempted to attribute this peculiar attack transferability between
Wav2Vec2 models to the fact that the proxy and target, have similar architectures, contrary to
our other model pairs; or to the specificity of their architecture and training, such as their self-
supervised pretraining method. Section 6.2.2 shows that the former factor is insufficient to explain
transferability; the rest of this chapter investigates the latter.

6.2.2 Evaluating transferability under constant architecture
In order to achieve attack transferability, is it sufficient for the proxy and private model to share
their architecture, training method, and training data? In this section, we show that it is not.

First, we refer to existing work reported in Abdullah et al. [2021b]. The authors evaluated trans-
ferability between models, using a similar attack method to ours in section 6.2. However, one key
difference is that they only used versions of the DeepSpeech2 model that they trained themselves
on LibriSpeech data, changing only the random seed at the beginning of training. Specifically,
they trained 5 different DeepSpeech2 models, and run attacks between each pair of different mod-
els. The attack success rate was systematically 0 in each experiment. This shows that keeping the
architecture constant is not sufficient to achieve attack transferability. The models in those exper-
iments were closer in their hyperparameters than our Wav2Vec2 models: the BASE and LARGE

models use different model widths, depths, and training iterations.
The fact that those results were achieved on DeepSpeech2 (an LSTM model) may suggest

the confounding influence of model architecture. Maybe between two Transformer models of
similar architecture and data we could observe transferability? To find that out we compute similar
transferability experiments between Whisper models (section 5.3.1). All models have identical
architectures apart from their size, and all English-only (resp. multilingual models) were trained
on the same data.

In those experiments, we observed that on Whisper models as well, targeted attacks do not
seem to transfer. More specifically, the attack TASR was consistently 0% between every distinct
proxy/model pair. It seems that so far, only Wav2Vec2 models are subject to attack transferability.
We hypothesize that this has to do with their specific training method and notably the use of self-
supervised learning (SSL). In section 6.3 we explore the limits of that transferability by generating
a strong adversarial dataset using SSL proxy models.
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6.3 Experimental setting
In our core experiment, we fool multiple state-of-the-art SSL-pretrained ASR models with targeted
and transferred adversarial attacks. We generate a small set of targeted audio adversarial examples
using fixed proxy models. We then transfer those same examples to a large number of models
available in the HuggingFace Transformers library. Table 6.2 specifies how much unlabeled and
labeled data these models were trained on. We provide the full experimental details in Appendix
D.2.

6.3.1 Generating adversarial examples on proxies
We describe our procedure to generate adversarial examples. To maximize the transferability suc-
cess rate of our perturbations we improve the standard CW attack in section 2.1.4 in several key
ways:

• To limit attack overfitting on our proxy, we combine the losses of two proxy models: Wav2Vec2
and HuBERT (LARGE). Both models were pretrained on the entire LV60k dataset and fine-
tuned on 960h of LibriSpeech. As these models have respectively a contrastive and predictive
objective, they are a representative sample of SSL-pretrained ASR models. The sum of their
losses is used as the optimization objective in Equation 2.7.

• We use 10000 optimization steps, which is considerable (for comparison Carlini and Wag-
ner [2018] use 4000) and can also lead to the adversarial noise overfitting the proxy models.
To mitigate this effect we use a third model, the Data2Vec BASE network trained on Lib-
riSpeech, as a stopping criterion for the attack. At each attack iteration, we feed our adver-
sarial example to Data2Vec and keep track of the best-performing perturbation (in terms of
WER). We return that best perturbation at the end of the attack.

Because this procedure is computationally expensive, we only apply it to a subset A of
85 utterances of less than 7 seconds. We sample them randomly in the LibriSpeech test-
clean set. We select attack targets at random: we sample a completely disjoint subset B of
utterances in the LibriSpeech test-other set. To each utterance in A we assign as target the
transcription of the sentence in B whose length is closest to its own. This ensures that a very
long target isn’t assigned to a very short utterance or vice versa.

6.3.2 Metrics
We keep using the word-level targeted attack success rate as our primary metric.

It is also interesting to look at the results of the attack in terms of denial-of-service, i.e. the
attack’s ability to stop the model from predicting the correct transcription y. Here a high WER
indicates a successful attack. We define the word-level untargeted attack success rate as

UASR = min(WER(f(x+ δ), y), 1) (6.2)

We can also compute the attack success rate at the character level, i.e. using the Character-
Error-Rate (CER) instead of the Word-Error-Rate. Character-level metrics are interesting when
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using weaker attacks that affect the model, but not enough to reduce the targeted WER significantly.
We use them in our ablation study in section 6.5.

Finally, we control the amount of noise in our adversarial examples with the Signal-Noise Ratio
(SNR). When generating adversarial examples we adjust the L∞ bound ε (equation 2.7 to achieve
a target SNR.

6.3.3 Models
Self-supervised learning

The principles of SSL-pretrained ASR models, whose robustness to attacks we evaluate in this
work, are described in section 2.3.2. The models we focus on follow the neural architecture of
Wav2Vec2 [Baevski et al., 2020]. Raw audio inputs are fed directly to a CNN. A Transformer en-
codes CNN outputs into contextualized representations, that a final feed-forward network projects
in a character output space. The model is fine-tuned with CTC loss [Graves et al., 2006].

A number of different models follow this architecture, including Wav2Vec2, HuBERT [Hsu
et al., 2021], Data2Vec [Baevski et al., 2022b], UniSpeech-SAT [Wang et al., 2021, Chen et al.,
2022] or WavLM [Chen et al., 2021]. These networks only have very minor differences in their
architectures. BASE models have 12 transformer hidden layers and 90M parameters. LARGE

models have 24 layers and 300M parameters. Finally, XLARGE models have 48 layers for a total
of 1B parameters.

While the networks are similar, the training pipelines of these models differ substantially. All
models are pretrained on large amounts of unlabeled data, then fine-tuned for ASR on varying
quantities of labeled data. The pretraining involves SSL objectives, such as Quantization and Con-
trastive Learning (Wav2Vec2), offline clustering and masked predictions (HuBERT), or masked
prediction of contextualized labels (Data2Vec). Unispeech combines SSL and CTC pretraining
with multitask learning. WavLM adds denoising objectives and scales to even greater amounts of
unlabeled data.

Other baselines

We evaluate all SSL-pretrained models mentioned in section 6.3.3, along with several others
for comparison: the massively multilingual speech recognizer or M-CTC [Lugosch et al., 2022]
trained with pseudo-labeling, and models trained from scratch for ASR: the Speech-to-text model
from Fairseq [Wang et al., 2020] and the CRDNN and Transformer from SpeechBrain [Ravanelli
et al., 2021].

6.4 Results
We report the results of our adversarial examples in Table 6.2 for ε = 0.015, corresponding to a
Signal-Noise Ratio of 30dB on average. In Appendix D.5.1 we also report results for a larger ε
value. Our adversarial examples have been released on the HuggingFace hub1.

1https://huggingface.co/datasets/RaphaelOlivier/librispeech_asr_adversarial
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Model Unlabeled Labeled Clean Attack success rate
data data WER (word level)

targeted untargeted
Wav2Vec2-LARGE LV60k LS960 2.0% 88.0% 100%
HuBERT-LARGE LV60k LS960 1.9% 87.2% 100%
Data2Vec-BASE LS960 LS960 2.5% 63.4% 100%
Wav2Vec2-BASE LS960 LS960 2.6% 55.7% 100%
Wav2Vec2-BASE LS960 LS100 3.4% 53.9% 100%
Wav2Vec2-LARGE LS960 LS960 2.3% 50.7% 100%
Data2Vec-LARGE LS960 LS960 1.9% 66% 100%
HuBERT-XLARGE LV60k LS960 1.8% 80.9% 100%
UniSpeech-Sat-BASE LS960 LS100 3.5% 50.4% 100%
WavLM-BASE LV60k+VoxPopuli+GS LS100 2.9% 21.7% 100%
Wav2Vec2-LARGE LV60k+CV+SB+FSH LS960 3.3% 67.3% 100%
Wav2Vec2-LARGE LV60k+CV+SB+FSH SB 6.3% 41.5% 100%
Wav2Vec2-LARGE CV-multi CV-multi 15.6% 17.7% 100%
Wav2Vec2-LARGE CV-en CV-en 7.69% 19.7% 100%
Wav2Vec2-LARGE CV-fr CV-fr 100% 0% 100%
M-CTC-Large None CV-en 21.7% 7.5% 76.4%
Speech2Text None LS960 3.5% 7.3% 63.3%
SB CRDNN None LS960 2.9% 5.9% 86.39%

SB Transformer None LS960 2.3% 6.49% 90.56%

Table 6.2: Results of the transferred attack on different ASR models (SNR = 30dB). The first
three lines correspond to the proxies used to generate the adversarial examples. On all other mod-
els, the adversarial examples are transferred. We report for each model how much data was used
for SSL pretraining and ASR finetuning. We also report its Word-Error-Rate on the LibriSpeech
test-clean set, and the targeted and untargeted word-level attack success rate (see section 6.3.2)

On 12 out of 16 models, we observe that the attack achieves total denial-of-service: the un-
targeted success rate is 100%. Moreover, on the first 6 models (proxies aside), the targeted attack
success rate ranges between 50% and 81%: the target is more than half correctly predicted! These
results are in flagrant contradiction with past works on DeepSpeech2-like models, where even the
slightest change in training leads to a total absence of targeted transferability between proxy and
private model. Our private models vary from the proxies in depth, number of parameters, and even
training methods, yet we observe important transferability. However, these 6 models have all been
pretrained on LibriSpeech or Libri-Light with SSL pretraining, i.e. the same data distribution as
our proxies.

The following five models were pretrained on different datasets. One was pretrained on a com-
bination of Libri-Light, VoxPopuli, and GigaSpeech; two on Libri-Light, CommonVoice, Switch-
Board, and Fisher; and two on CommonVoice either multilingual or English-only. The transfer-
ability success rate on these five models ranges from 18% to 67%, which is significant. Even
the CommonVoice models, whose training data has no intersection with Libri-Light, are partially
affected.
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Although our inputs and attack targets are in English, we apply them to a French-only Com-
monVoice Wav2vec2. This model, incapable of decoding clean LibriSpeech data, is also unaffected
by our targeted perturbation. It therefore seems that, while multilingual models are not robust to
our examples, a minimal performance on the original language is required to observe transferabil-
ity.

The final 4 models for which the targeted transferability rate is null or close to null, are those
that were not SSL-pretrained at all (including M-CTC which was pretrained with pseudo-labeling).
These four models also partially resist the untargeted attack.

It emerges from these results that some recent ASR models, specifically those pretrained with
SSL, can be vulnerable to transferred attacks. These results diverge significantly from previous
works like Abdullah et al. [2021b, 2022] which showed no transferability between different mod-
els. Table 6.2 hints that SSL pretraining plays an important role in transferability, but does not
prove it: to do so we would need to compare models of identical architecture and performance,
pretrained and trained from scratch, both as proxy and target. This is what we do in the next
section.

6.5 Ablation study
In this section, we conduct a thorough ablation study and establish rigorously that SSL pretraining
makes ASR models vulnerable to transferred attacks. We also measure the influence of several
other factors on transferability. This ablation study requires the generation of many sets of ad-
versarial examples, using varying models as proxies, which would be computationally difficult
with the improved attack introduced in section 6.3.1. Since we do not seek optimal performance,
throughout this section we run the CW attack in section 2.1.4 with 1000 optimization steps.

6.5.1 Influence of self-supervised learning
In this section, we compare Wav2Vec2 models with varying amounts of pretraining data: 60k
hours, 960h, or none at all. We use each model both as a proxy to generate adversarial noise and
as a private model for evaluation with all other proxies.

As Wav2Vec2 models fine-tuned from scratch are not publicly available, we train our own
models with no pretraining, using the Wav2Vec2 fine-tuning configurations on 960h of labeled
data available in Fairseq [Ott et al., 2019]. These configurations are likely suboptimal and our
models achieve test-clean WERs of 9.1% (LARGE) and 11.3% (BASE), much higher than the
pretrained+fine-tuned Wav2Vec2 models. This performance discrepancy could affect the fairness
of our comparison. Therefore, we add to our experiments Wav2Vec2 BASE models fine-tuned on
1h and 10h of labeled data only. These models achieve test-clean WERs of 24.5% and 11.1%.
Therefore we can observe the influence of SSL pretraining by taking model architecture and per-
formance out of the equation.

Our attacks are not as strong as in section 6.3.1, and only have limited effect on the targeted
WER. Therefore we evaluate results at the character level, which offers much finer granularity.
For reference, we observe that the CER between two random pairs of sentences in LibriSpeech is
80-85% on average. Therefore attack success rates higher than 20% (i.e. CER < 80% with the
target) indicate a partially successful attack. We report those results in Table 6.3. Results in italic
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correspond to cases where attacked model is the proxy or was fine-tuned from the same pretrained
representation and therefore do not correspond to a transferred attack.

Model\Proxy
BASE
LS960
960h

BASE
LS960

10h

BASE
LS960

1h

LARGE
LS960
960h

LARGE
LV60k
960h

BASE
None
960h

LARGE
None
960h

BASE LS960 960h 96.37% 64.11% 53.41% 47.08% 44.7% 2.62% 2.53%
BASE LS960 10h 42.64% 99.12% 72.91% 43.14% 42.67% 2.65% 3.54%
BASE LS960 1h 69.3% 81.12% 99.50% 41.21% 36.68% 3.03% 3.04%

LARGE LS960 960h 44.61% 13.46% 8.32% 67.03% 37.34% 2.39% 2.54%
LARGE LV60k 960h 29.24% 5.68% 3.19% 25.19% 97.13% 2.59% 2.47%

BASE None 960h 7.84% 4.05% 3.83% 11.19% 7.16% 99.57% 19.05%
LARGE None 960h 8.12% 4.55% 3.46% 11.15% 7.52% 22.93% 99.94%

Table 6.3: Character-level targeted success rate of the attack with Wav2Vec2 proxies and models
of varying size and training data. Each row corresponds to a different proxy and each column to a
different private model. The format is [Model-size pretraining-data -finetuning-data]

These results show unambiguously that SSL pretraining plays a huge role in the transferability
of adversarial attacks. Adversarial examples generated on the pretrained Wav2Vec2 models fine-
tuned on 960h are partially successful on all pretrained models (success rate in the 25-46% range).
They are however ineffective on the ASR models trained from scratch (4-8%). Similarly, models
trained from scratch are bad proxies for pretrained models (2-3%) and even for each other (19-
22%).

It follows that SSL pretraining is a necessary condition for transferable adversarial examples
in both the proxy and the private model. We confirm it by plotting in Figure 6.2a the evolution of
the target loss while generating one adversarial example. We display the loss for the proxy model
(blue) and two private models. The loss of the pretrained private model (red) converges to a much
lower value than the non-pretrained model (yellow).

SSL pretraining is however not a sufficient condition for attack transferability, and other factors
play a role as well. For instance, the BASE model fine-tuned on just 10h and 1h are ineffective
proxies: so strong ASR models are likely better proxies than weaker ones.

6.5.2 Influence of pretraining data
As observed in section 6.4 models that were (pre)trained on different data than the proxies can
still be affected by transferred attacks. We analyze this effect in more detail in this section. We
focus on five Wav2Vec2-LARGE models. One is pretrained and fine-tuned on LibriSpeech. One
is pretrained on LibriLight and fine-tuned on LibriSpeech. Two are pretrained on LV60k, Com-
monVoice, SwitchBoard, and Fisher, and fine-tuned respectively on LibriSpeech and SwitchBoard.
Finally, one is pretrained and finetuned on CommonVoice (English-only). As in the previous sec-
tion, we evaluate every combination of proxy and target models.

We report the results in Table 6.4. We observe that most pairs of proxy and private models lead
to important partial transferability. The major exception is the CommonVoice-only model, which
does not succeed as a proxy for other models (0-8% success rate). In contrast, it is vulnerable
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(a) With dropout (b) Without dropout

Figure 6.2: Evolution over attack steps of the loss on one adversarial input for three models: the
Wav2Vec2 LARGE proxy and two targets, respectively with and without SSL pretraining. We run
attacks (a) with dropout in the proxy model, and (b) without dropout in the proxy model.

to attacks transferred from other models, including those that do not have CommonVoice in their
training data. We also note that models pretrained on Lbri-Light or more (60+khs) are better
proxies, and more vulnerable to attacks, than the LibriSpeech-only and CommonVoice-only model.
In other words, the vulnerability that we point out is worsened rather than mitigated by increasing
amounts of available data.

Model \Proxy LS960
LS960

LV
LS960

LV-CV-
SB-FSH
LS960

LV-CV-
SB-FSH
SB300

CV
CV

LS960 LS960 64.3% 41.9% 44.3% 39.8% 8.3%
LV LS960 26.3% 96.1% 79.8% 55.6% 2.9%

LV-CV-SB-FSH LS960 32.4% 83.2% 93.6% 69.3% 5.5%
LV-CV-SB-FSH SB300 19.8% 47.9% 81.1% 88.5% 0%

CV CV 26.11% 58.34% 48.0% 43.1% 98.1%

Table 6.4: Character-level success rate of the attack with different proxies and models. Each row
corresponds to a different proxy and each column to a different private model. The format is
[pretraining-data fine-tuning-data]. All models follow the Wav2Vec2-LARGE architecture.

6.5.3 Model size and training hyperparameters
We now extend our ablation study to models pretrained with different SSL paradigms. We report
the results in Table 6.5. We observe that adversarial examples also transfer between models trained
with different paradigms. Moreover, at equal pretraining data, all models are not equal proxies,
and the HuBERT LARGE model (pretrained on 60kh) is the best proxy by a large margin.
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Model \Proxy
W2V2
BASE
LS960

W2V2
LARGE
LS960

W2V2
LARGE
LV60

D2V
BASE
LS960

D2V
LARGE
LS960

HB
LARGE
LV60

HB
XLARGE
LV60

W2V2 BASE LS960 96.37% 47.08% 44.7% 20.61% 24.9% 55.55% 47.46%
W2V2 LARGE

LS960 44.61% 67.07% 37.34% 16.8% 20.89 56.87 42.21

W2V2 LARGE LV60 29.24 25.19 97.13 13.73 16.05% 71.78% 46.61%
D2V BASE LS960 37.9% 34.49% 47.15% 98.44% 24.2% 58.75% 46.71%

D2V LARGE LS960 28.72% 28.27% 47.75% 25.03% 94.53% 68.97% 51.02%
HB LARGE LV60 23.83% 27.19% 49.27% 14.92% 30.08% 97% 56.83%

HB XLARGE LV60 26.55% 33.31% 51.68% 17.53% 30.5% 83.92% 87.66%

Table 6.5: Character-level success rate of the attack with different proxies and models. Each row
corresponds to a different proxy and each column to a different private model. The format is
[Model-type Model-size pretraining-data] where model types are Wav2Vec2 (W2V2), Data2Vec
(D2V) and HuBERT (HB). Each model was fine-tuned on 960h of LibriSpeech training data.

6.6 A hypothesis on the cause of and obstacles to transferability
We have established a link between adversarial transferability and the SSL pretraining of ASR
models. In this section, we propose a hypothesis explaining that link. We first show in section
6.6.1, with empirical justification, that attacks with a very precise target are much harder to transfer
everything else being equal, explaining why targeted ASR attacks are usually non-transferable.
Then in section 6.6.2 we suggest ways in which SSL alleviates these difficulties, thus recovering
some transferability.

6.6.1 At equal white-box success, very targeted attacks do not transfer
Targeted attacks on CIFAR10 force the model to predict one out of 10 different labels. Targeted
attacks on ASR models force the model to transcribe one of all the possible transcriptions: With
sequences of just five English words, the number of possibilities is equal to 1700005 ∼ 1026. We
can call such an attack "very targeted", by contrast to more "mildly targeted" attacks on CIFAR10.

We hypothesize that the target precision, or "how targeted" the attack is, negatively affects
its transferability success rate, explaining why targeted ASR attacks do not transfer easily. To
demonstrate it empirically, we can imagine an experiment where an attacker tries to run a very
targeted attack on CIFAR10. We hypothesize that in such a case, the transferred attack success
rate would drop even if the white box attack success rate remains high. Inversely, if we designed a
"mildly targeted" attack on ASR models, we would expect it to achieve a non-trivial transferability
success rate. We designed experiments for both cases, which we summarize below. Complete
experimental details and results are provided in Appendix D.3.
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Very targeted attacks on CIFAR10

We run an attack on a ResNet CIFAR10 model. We do not just enforce the model’s most probable
output (top1 prediction) but the first k most probable outputs (topk prediction). For example with
k = 3, given an image of an airplane, the attack objective could be to modify the image such that
the most probable model output is "car", the second most probable is "bird" and the third is "frog".
Our attack algorithm sets a "target distribution" of classes, then minimizes the KL divergence of
the model’s probabilistic outputs and the target, using Projected Gradient Descent. The success
rate is evaluated by matching the top k predictions and the top k targets.

We compute the L∞ attack success rate (ε = 0.03) for both white-box and transferred attacks as
a function of the "target precision" k. For k = 1, we measure a transferability success rate above
30%. However, as k increases, the transferability success rate drops close to 10%, which is the
success threshold that a random model would achieve. In other words, the transferability becomes
null as k increases. Meanwhile, the white box attack success rate remains above 95%. Therefore
very targeted attacks on images do not transfer.

Mildly targeted attacks on ASR

We train five small Conformer models on LibriSpeech. On each of them, we generate targeted
adversarial examples. The target objective is simply to prepend the word "But" to the original
transcription. This makes for a much less targeted attack as is traditionally done with ASR. The
attack success rate is evaluated simply by checking the presence of the word "But" at the beginning
of the prediction. We restrict evaluation to inputs whose transcription does not start with that word.

For each model, we generate 100 adversarial examples and evaluate them on all 4 other models.
We thus obtain 20 different transferability success rates. The average of these scores is 18% with a
standard deviation of 4.7%. Therefore mildly targeted attacks on ASR transfer substantially better
than regular, very targeted attacks. Equivalent experiments with very targeted ASR attacks are
reported in Abdullah et al. [2021b]: the word-level transferability success rate is 0%.

6.6.2 Very targeted transferability requires important feature overlap
Why would very targeted attacks transfer less? As Ilyas et al. [2019] show, statistically meaningful
patterns in the training data may be "robust" (i.e. resilient to small perturbations) or non-robust. By
leveraging non-robust features attackers can generate adversarial perturbations - and as these fea-
tures can be learned by any models, these perturbations will transfer. The underlying assumption
behind this framework is that all models learn the same features. In practice, two separate models
do not learn identical features due to randomness in training. But if they are "close enough", i.e. if
the feature overlap between both models is important, then transferability will be observed.

Therefore, it makes perfect sense that more targeted attacks would transfer less. The more pre-
cise and difficult the attack objective is, the more features the attacker will depend on to achieve
it. This increases the amount of feature overlap needed between the proxy and private model for
the attack to transfer. In the case of targeted ASR attacks, the required overlap is considerable. We
hypothesize that SSL pretraining increases the feature overlap between ASR models. As empir-
ically verifying it would pose important difficulties, we propose a high-level justification of that
hypothesis.
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ASR training aims at learning a representation that enables speech transcription. A subset
of all features is sufficient to achieve this objective: for instance, there are lots of redundancies
between low-frequency and high-frequency features, and a human listener can easily transcribe
speech where most frequencies have been filtered out. The set of features learned by ASR models
is therefore underspecified: two models even very similar identically may learn representations
with little overlap.

Self-Supervised Learning on the other hand does not only learn useful features for transcrip-
tion but features needed for predicting the input itself : parts of the input are masked, then they
(or their quantized or clusterized form) are predicted using context. Arguably this much more am-
bitious objective requires the network to learn as many features as possible. In fact, the goal of
such pretraining is to learn useful representations not just for ASR but any downstream task - i.e.
"exhaustive" representations. Intuitively, different models trained in that way would share many
more features than ASR models trained from scratch - leading to more transferable adversarial
examples.

6.7 Related work
The transferability of adversarial attacks has been known for many years in Image Classification
[Papernot et al., 2016b]. On ASR it has been limited to simple attack objectives, like preventing
WakeWord detection in Alexa [Li et al., 2019] or signal processing-based attacks [Abdullah et al.,
2021a, 2023]. When it comes to optimization-based attacks on large ASR models, transferability
claims are usually limited and focus on untargeted attacks [Wu et al., 2022]. In very specific
cases there have been limited claims of targeted, transferable attacks, such as Yuan et al. [2018];
however, this work does not focus on imperceptible attacks with small amounts of noise, but rather
attacks embedded in music. When it comes to standard targeted optimization attacks, Abdullah
et al. [2021b] have shown that they display no transferability on DeepSpeech2 models, even when
the proxy and the attacked model are trained with identical hyperparameters apart from the initial
random seed.

Past ASR adversarial attacks usually focus on a handful of neural architectures, typically Deep-
Speech2 [Amodei et al., 2016], sometimes Listen Attend and Spell [Chan et al., 2016]. Only re-
cently have attacks been extended to multiple recent architectures for a fair comparison between
models [Lu et al., 2021, Olivier and Raj, 2022, Wu et al., 2022]. Most related to this work is Wu
et al. [2022], which focuses on the vulnerability of SSL speech models. They however focus on
attacking the base pretrained model with untargeted noise that remains effective on downstream
tasks. We study targeted attacks, with a much deeper focus on transferability between different
models. Olivier and Raj [2022] have hinted that Wav2Vec2 models are vulnerable to transferred
attacks, but only report limited results on two models and do not investigate the cause of that
phenomenon. We attribute it to SSL pretraining and back our claims empirically.

Abdullah et al. [2022] have identified factors that hinder transferability for ASR attacks, such
as MFCC features, Recurrent Neural Networks, and large output sizes. Since Wav2Vec2 is a CNN-
Transformer model with character outputs: this gives it a better prior than DeepSpeech2 to achieve
transferable adversarial attacks. However, according to that paper, this should be far from sufficient
to obtain transferable attacks: our results differ in the case of SSL-pretrained models.
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6.8 Discussion
In this chapter, we have shown that SSL, a line of work gathering attention in the ASR community,
is a source of vulnerability. Direct access to the weights of SSL-pretrained models is no longer
required to fool them to predict outputs of the attacker’s choice. To an extent, knowledge of their
training data is not required either.

As it is likely that SSL will be used to train ASR systems in production, and given the existence
of over-the-air attack algorithms, our results pave the way for practical, targeted attacks in the real
world. By no means do these results imply that this line of work should be aborted, but they
emphasize the pressing need to focus on robustness alongside performance. This is the focus of
the next part.
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Part III

Adversarially robust speech recognition
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Chapter 7

Randomized smoothing for speech and
audio

So far we have studied the question: Do we need adversarially robust ASR models. We have
proposed analysis tools (like angular metrics in part I) and elements of answer (by identifying
threats in part II). We however have ignored the question of the possibility for robust ASR models.
Designing defense mechanisms for Speech tasks, and Speech Recognition in particular, is our
focus in this part.

In this chapter, we study Randomized Smoothing (section 2.2.2), a very promising defense due
to its versatility and simplicity. Where adversarial training, is time and resource-consuming even
for image recognition, and Relaxed or exact provable defenses are heavily architecture-dependent,
the Randomized Smoothing paradigm is at its core model-agnostic and time-efficient. By adding
Gaussian noise to the inputs, we obtain a random but smooth and certifiably robust function. Of
course, there is no free lunch, and a toll is paid in model performance: by applying the defense we
shift the robustness challenge from small but worst-case perturbations to random but much larger
input distortions.

Fortunately, the Speech Processing research community has been investigating robustness to
noise for much longer than adversarial perturbations have been around. Simultaneously applying
Randomized Smoothing for robustness and leveraging audio-specific methods to mitigate the per-
formance tradeoff seems like a very promising approach. We explore such combinations in the
current work.

7.1 Introduction
To use randomized smoothing on ASR while retaining good clean performance (section 7.2, we
consider speech enhancement methods to make the defended model more accurate on Gaussian-
augmented inputs. We also replace the majority vote with a strategy based on the “Recognizer
Output Voting Error Reduction” (ROVER) [Haihua et al., 2009] method. Depending on whether
we apply training data augmentation, we provide both an off-the-shelf defense and one that requires
specific fine-tuning.

We first apply our defenses to a DeepSpeech2 and a Transformer model, trained and evaluated
on the LibriSpeech dataset (section 7.3). We test them against strong attacks like the CW attack
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[Carlini and Wagner, 2018] and the (untargeted) PGD attack [Madry et al., 2018]. We run adaptive
versions of these attacks to avoid obfuscation effects. Our best model shows strong robustness
against these attacks: to achieve partial transcription of the target sentence, attack algorithms re-
quire 10 times larger perturbations. Under equal noise distortions, the Word-Error-Rate (WER) on
the ground truth under denial-of-service attacks improves by 30 to 50% for our model compared
to the baseline. In section 7.4, we extend our analysis to more advanced ASR models like Whis-
per and Wav2Vec2, as we did in Chapter 5. We show that contrary to undefended ASR, under
randomized smoothing clean performance improvements do carryover in terms of robustness.

Finally, in section 7.5 we use speech processing for a slightly different purpose. We investigate
a potential limit of Randomized smoothing: its agnosticism to the particular vulnerabilities of the
model it is applied to. Given information about the distribution of adversarial perturbations, we
may wish to alter the noise distribution applied to the inputs accordingly, with digital filters. We
investigate high-pass filtering of the Gaussian noise and find it to be very effective in specific
contexts, such as speaker classification.

7.2 Randomized smoothing for speech inputs
The variable length of speech inputs is not an issue to use randomized smoothing. The main
consequence is that the L2 norm of a perturbation scales with the utterance length. Since Signal-
Noise Ratio is normalized by utterance length, this does not significantly affect our experiments.
Regardless of the nature of the output space, the reasoning that Gaussian distributions centered on
an utterance x and an adversarially perturbed one x+ ε are close remains valid. This tends to show
that the overall noise-additive method still makes natural and adversarial points similar from the
model’s perspective.

7.2.1 Gaussian noise-robust speech models
As mentioned above, when using randomized smoothing it is critical to retain good performance
on Gaussian-augmented inputs. This is not a trivial objective, especially with ASR models. We
consider the following techniques, applicable for most tasks using speech inputs.

Augmented Training Cohen et al. [2019] train image classification models with Gaussian aug-
mentation. This approach is applicable to speech tasks as well. However, when it comes to neural
ASR models we find that training them entirely on Gaussian-augmented data leads to difficult con-
vergence issues. Instead, we used a pretrained model on clean data that we fine-tune with Gaussian
augmentation for 3-5 epochs. We find that it helps training converge and leads to similar or better
results on noisy data in a much shorter time.

Speech enhancement Speech enhancement algorithms help improve speech quality. After adding
Gaussian noise, we can use speech enhancement to restore the original audio quality. We tried
multiple standard enhancement methods and found a priori SNR estimation (ASNR) [Scalart and
Filho, 1996] to be the most effective.

Salman et al. [2020b] proposed denoised smoothing for image classification, using a custom-
trained network as denoiser. The ASR equivalent would be to use neural enhancement methods
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such as SEGAN [Pascual et al., 2017]. In our experiments, it does not reach the same performance
(in terms of WER in the end-to-end ASR pipeline), most likely because state-of-the-art speech en-
hancement models are tailored to real-world-like noise conditions and are not trained on Gaussian
noise. It is possible, though not certain, that a generative model trained on Gaussian noise would
improve the enhancement results: Pascual et al. [2017] argue that they outperform first-order filters
like ASNR specifically for complex noise conditions.

7.2.2 Voting strategies on text outputs
Even with augmented training and/or enhancement, when feeding noisy inputs to ASR models the
output distribution has high variance. Running multiple forward passes and "averaging" the outputs
can help reduce that variance and improve accuracy. But this requires a good voting strategy on
text outputs.

We first discuss some elementary strategies and their potential drawbacks, then describe the
ROVER-based vote that we use. All of these strategies are empirically compared in section 7.3.2.
We denote the sampled transcriptions as t1, ..., tn, and t is our final transcription.

One-sentence estimation A solution that has the merit of simplicity is to not vote at all. Using
only one input, we can hope that the sentence we get is "close" to the most probable sentence (in
terms of Word-Error Rate for instance) and just return it as our output. This is the strategy used by
Żelasko et al. [2021].

Majority vote Following Cohen et al. [2019] for classification we can vote at sentence level:
t = argmaxt′∈{t1,...,tn}card({i/ti = t′})

Designed for classification, majority vote is not adapted to probabilistic text outputs. The set T
of all possible transcriptions is infinite, and even with our most stable models and a relative noise
of -15 dB, 100 noise samples typically output 100 different transcriptions. Even without setting up
rigorous statistical tests, it is clear that outputting the likeliest transcription, or just a "likelier than
average" one, with high probability would require thousands of ASR iterations, which in practice
is not feasible. In other words, majority vote is barely better than one-sentence estimation, for a
high computation cost.

Statistics in the logits space For a given input utterance length, some ASR architectures, such
as CTC-trained models, first generate fixed-length logits sequences l1, ..., ln, then apply a best-path
decoder d to generate transcriptions ti = d(li). It is then possible to aggregate these logits over the
random inputs, for example by averaging them, then to apply the decoder: t = d( 1

n

∑
i li).

One potential issue with this strategy as a defense is that it distances itself from the randomized
smoothing framework, where the use of discrete outputs to vote on is critical. To get a concrete idea
of how this could be a problem, one should remember that adversarial examples can be generated
with high confidence (aka very large logits). Such a phenomenon could disrupt the statistic by
over-weighting the fraction of inputs that are most affected by an adversarial perturbation.

ROVER The Recognizer Output Voting Error Reduction system was introduced by NIST in
Haihua et al. [2009], as an ensembling method that mitigates the different errors produced by

85



multiple ASR systems. Contrary to majority vote it works at the word level rather than the sentence
level, by selecting at each position the word present in most sentences. ROVER should be fed the
time duration of each word in the audio space, which we can extract using audio-text alignment
information provided by the ASR models (see section 7.3.1). ROVER works in two steps. First,
it aligns all k sentences word-by-word and aggregates them into one Word Transition Network
(WTN), i.e. a graph where nodes represent timesteps, and edges between two timesteps are word
(or silent) candidates. Alignment is done iteratively: the first sentence serves as a base WTN,
then for i = 2, ..., k ROVER merges sentence i with the base WTN using Dynamic Programming
tool SCLITE, using a process close to Levenstein distance: it finds the minimal cost alignment
using operations of substitution, insertion, and deletion. These alignment steps make use of audio
alignment information as well as word and sentence scores, to output a final WTN. At this step,
ROVER votes on the aligned words using (in our version) the frequency of each word. It also
accepts metrics based on word confidence.

In our work, we introduce an alternative use of ROVER, as a voting system on the text outputs
of the same probabilistic model rather than for ensembling multiple models. We mostly use it as
a black box, by feeding to ROVER multiple output sequences. When evaluating its confidence-
based variation (using DeepSpeech2’s softmax outputs as confidence scores) we found not to bring
any improvement in our use case, therefore we report results using the word frequency-guided
algorithm. The main drawbacks of this method lie in the time penalty of the voting module when
using a large number of inputs. We further discuss that limitation and our choices for the number
of random inputs in appendix E.

7.3 Fully-supervised Speech Recognition Experiments

7.3.1 Setup
Dataset We run all our experiments on the 960 hours LibriSpeech dataset [Panayotov et al.,
2015], and report our results on its test-clean split. As adversarial attacks can take a considerable
amount of time to compute, we evaluate attacks on the first 100 utterances of this test set.

Models We test our methods on several model architectures (see section 2.3.3 for details)

• The DeepSpeech2 model [Amodei et al., 2016] pretrained on the clean LibriSpeech training
set. We fine-tuned it on Gaussian-augmented data for one epoch, using always the same de-
viation used at inference for smoothing. For decoding, we use greedy search, as we find that
increasing the beam size has very little impact on WER for this model. This is a relatively
lightweight model that we use for ablation experiments. The CTC decoder provides frame
alignments for each transcription character: we use them to infer word duration (needed for
ROVER) with good precision.

• An end-to-end Transformer architecture. Training and hyperparameter search for trans-
former models can be computationally expensive, so we use the off-the-shelf SpeechBrain
Transformer [Ravanelli et al., 2021] trained on LibriSpeech and do not fine-tune this model
on Gaussian noise. This transformer implementation does not output character alignment.
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It however provides word-level attention scores with the encoded audio. We can align each
word with the highest-scoring audio vector, and obtain a word-level alignment.

Attacks We evaluate our defenses against white-box attacks:

• The untargeted PGD attack (section 2.1.3). Rather than fixing a value for its perturbation
budget ε over all sentences, it is more interesting to bound the relative amount of noise
compared to the input, that is the signal-noise-ratio (SNR) expressed in decibels:

SNR(δ, x) = 20 ∗ log10(
‖x‖2

‖δ‖2

) (7.1)

When running PGD attacks, we set an SNR threshold, then derive for each utterance the L2

bound ε =
‖x‖2

10
SNR
20

.

• The targeted and unbounded CW attack (2.4) against the DeepSpeech2 model. We fixed 3
target sentences of different lengths, constant in all our experiments. We try to perturb each
input utterance until the model generates one of the targets (the one of closest length). For
example, all utterances of less than 3-8 words are perturbed to predict the target "Really short
test string".

Our defenses use randomized (Gaussian smoothing) and non-differentiable (speech enhance-
ment) pre-processing steps. We follow the recommendations of Athalye et al. [2018a] and adapt
our attacks to alleviate these effects, using the Straight-through estimator for non-differentiable
modules and Expectation over Transformation for randomness: we average the gradients returned
by 16 backpropagation steps.

We illustrate the need for such attacks in additional results in appendix E.1.

Defenses Our models are defended with Gaussian noise, ASNR enhancement, voting strategies,
or a combination of all of these. The noise deviation is set to σ = 0.01 or σ = 0.02 depending on
the experiments, which corresponds for the vast majority of utterances to a signal-noise ratio in the
10-14dB and 7-11dB respectively.

Against adversarial examples, we compare our models with each other, as well as with the
undefended DeepSpeech2 model and a baseline defense using MP3 Compression [Carlini and
Wagner, 2018].

Evaluation metrics We evaluate our models under untargeted attacks with Word Error Rate
(WER) on the ground truth: the lower the WER the better the defense. With targeted attacks, we
also report WER both on the ground truth and the attack target. More importantly, since the CW
attack is unbounded our primary evaluation metric is the Signal-Noise-Ratio (SNR).

7.3.2 Results
We first show that our defended models, which add Gaussian noise to all inputs, retain low WER on
this noisy but non-adversarial data. Then we report their performance against adversarial attacks.
We show that they successfully recover all attacks that use near-imperceptible noise.
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Model σ = 0 σ = 0.01 σ = 0.02
Baseline DeepSpeech2 9.7% 27% 63%

Transformer 5.7% 12% 35%
DeepSpeech2+σ-AUG - 11% 16%

Enhancement, DeepSpeech2+ ASNR - 17% 33%
augmentation DeepSpeech2+σ-AUG + ASNR - 12% 18%

Transformer+ ASNR - 9.1% 19%
DeepSpeech2+ Maj-100 - 27% 69%
DeepSpeech2+ Avg-100 - 25% 62%

Voting DeepSpeech2+ ROVER-8 - 21% 52%
DeepSpeech2+ ROVER-16 - 20% 50%
DeepSpeech2+ ROVER-32 - 20% 50%

Proposed models DeepSpeech2+ ASNR + ROVER-16 - 14% 26%
DeepSpeech2+σ-AUG + ROVER-16 - 9% 12%
Transformer+ ASNR + ROVER-16 - 8.1% 15%

Table 7.1: Word Error Rate (%) for DeepSpeech2 on the LibriSpeech clean test set under various
defenses on clean utterances when adding Gaussian noise of deviation σ. σ-AUG stands for Gaus-
sian augmentation of deviation σ in training - the same deviation used at inference. ASNR means
A priori SNR filtering of inputs. Maj-N,Avg-N,ROVER-N refer to majority vote, logits averaging
and ROVER voting strategies, using N forward passes.

Performance under Gaussian noise We report the performance of our model on noisy inputs
(but no attack) in Table 7.1.

Augmentation and Enhancement We evaluate Gaussian augmentation on DeepSpeech2 and
ASNR on both our architectures. Both techniques lower the word-error rate significantly under
σ = 0.01, 0.02, with an advantage for the former. Interestingly, combining both techniques at
once (on a DeepSpeech2 model trained on noisy and enhanced data) does not really improve re-
sults compared to using augmentation only. This suggests using ASNR enhancement as a "fallback
option" in situations where retraining a model is not acceptable. This off-the-shelf method nonethe-
less provides competitive performance when using state-of-the-art architectures like Transformer.

Voting strategies We compare all our proposed voting strategies on DeepSpeech2 outputs. As
expected, majority vote brings no significant improvement over one-sentence estimation (i.e. the
baseline). Logit averaging is somewhat effective; however, it does not compare to ROVER, by far
the best voting method even with fewer sentences.

Proposed models As a consequence, we propose two smoothing-based defenses:

• a trained defense using smoothing, augmentation, and ROVER. On DeepSpeech2, with
σ = 0.01 (resp. 0.02) it reaches a WER of 9 (resp. 12)

• an off-the-shelf defense using smoothing, ASNR enhancement, and ROVER. Applied to
DeepSpeech2 this defense suffers from a higher WER of 14 (resp. 26) but is still relatively
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Figure 7.1: WER achieved against PGD attacks by the baselines (Vanilla model, MP3 compres-
sion) and the proposed trained (DeepSpeech2 with Smoothing, augmented training, and ROVER)
and off-the-shelf (DeepSpeech2/Transformer with Smoothing, ASNR, and ROVER) defenses, with
Gaussian deviations 0.01 and 0.02. We plot the results when varying the PGD SNR bound: a lower
SNR means a larger perturbation.

effective. With Transformer it performs much better with a WER of 8.1 (resp 15).

Performance under attack In Figure 7.1 we plot the results of our defenses and baselines
against the untargeted PGD attack, as a function of the SNR used to bound the attack. They demon-
strate the effectiveness of ASR smoothing: compared to the vanilla DeepSpeech2 the Word-Error-
Rate improves by 20 to 50 points for all PGD attacks bounded by SNR ≥ 20dB for our proposed
models, with both σ = 0.01 and σ = 0.02. When SNR = 25dB is sufficient to reach total denial-
of-service (WER = 100) on DeepSpeech2, and 20dB for the MP3 compression baseline, the same
feat requires SNRs of 10− 15dB to defeat our defenses.

Table 7.2 reports the results of the targeted CW attack. As expected for an unbounded attack,
it is partially able to break our defenses (low WER on its target), but at a high cost. The SNR it
requires to achieve these results is as low as 10 − 14 under σ = 0.01 and 5 − 8 with σ = 0.02!
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Model No CW attack
attack GT TGT SNR

Vanilla 8 100 0 27dB
MP3 compression 9 100 3 16dB
Trained (σ = 0.01) 11 100 8 14dB
Off-the-shelf (σ = 0.01) 17 100 4 10dB
Trained (σ = 0.02) 14 100 6 8dB
Off-the-shelf (σ = 0.02) 31 100 6 5dB

Table 7.2: Word Error Rate (%) for DeepSpeech2 on the first 100 utterances of the LibriSpeech
clean test set, for clean inputs and under the CW attack for the baselines and the proposed trained
and off-the-shelf defenses, with Gaussian deviations 0.01 and 0.02. We report both the WER on
the ground truth (GT) and the attack target (TGT), and the SNR required to achieve it.

This compares to 27dB for the undefended DeepSpeech2 and 16dB for the MP3 baseline. With
the higher σ in particular, the adversarial noise becomes very much audible to the human ear. The
tradeoff in clean (no attack) accuracy is fairly low for the trained defense even with σ = 0.02 (+5%
WER). It is higher for the untrained, off-the-shelf defense, with which using a lower deviation may
be required for practical applications.

7.4 Leveraging advances in Speech recognition modeling
Randomized smoothing presents the remarkable property of turning the adversarial robustness
problem into a noise robustness problem. Under that framework, excellent model accuracy un-
der Gaussian noise can be turned into excellent performance under L2 adversarial attacks. This
property is useful as performance under random noise is a highly active area, and progress in that
area can be leveraged for security purposes. We have shown in this chapter how traditional speech
processing is an effective way to boost adversarial robustness. On the image modality, Salman
et al. [2020b], Carlini et al. [2023] have shown that improvements in scale and generative AI can
also be used for robustness.

We wonder whether scale also helps with ASR robustness in the context of sequential smooth-
ing. Whisper, for instance, shows excellent performance under Gaussian noise, as we have shown
in section 5.3.1. Could it be a natural fit for randomized smoothing? SSL models pretrained on
large unlabeled datasets are also known to be more noise-robust.

In Figure 7.2, we run on the Whisper base.en and small.en models, as well as Wav2Vec2,
HuBERT, and Data2Vec models pretrained on LibriSpeech and LibriVox, the same PGD attack as
in section 7.3.2, with and without smoothing at σ = 0.02. We compare them with our previously
established off-the-shelf and trained models. We observed that those improved models indeed
lower the WER under untargeted attacks when combined with randomized smoothing. This is a
sharp contrast with section 5 in which we established that in the absence of any defense mechanism,
the improvements of ASR have not carried over on robustness.

Overall, our results illustrate the high effectiveness of randomized smoothing as a defense that
can leverage general performance improvements and turn them into robustness increases.
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Figure 7.2: WER achieved against PGD attacks by applying sequential smoothing on Whisper
English base and small, Wav2Vec2 base and large, and HuBERT and Data2Vec large. The latter
two are pretrained on LibriVox and the Wav2Vec2 models on LibriSpeech. We use σ = 0.02,
ASNR filtering, and ROVER-8 for all those models. We plot the WER of the models proposed in
section 7.3 for comparison.

7.5 Smoothing high-frequency patterns and speaker classifica-
tion experiments

The strength of randomized smoothing is that it makes almost no assumption on the characteristics
of the input domain, or the nature of classifier f : linear, neural, or random models would be treated
in the same way and fall under the same bounds. However, we argue that this strength is also a
weakness, in the sense that no knowledge about classifiers and their adversarial vulnerabilities can
be used to refine its predictions. We propose a general method to inject knowledge in smoothing,
illustrated with a particular example of such knowledge.

Ilyas et al. [2019] showed that predictive patterns in data can be naturally divided between
robust and non-robust. Wang et al. [2019] suggest that such non-robust patterns are enabled by
high-frequency components, at least in the case of Convolutional Neural Networks (CNN). We
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Figure 7.3: dB-spectrogram values of the natural
and adversarial examples, as well as their dif-
ference, averaged on the small-LS test set (see
7.5.2). The examples were generated from an
undefended model.

Figure 7.4: Spectrogram representation of the
signal-to-noise ratio of an adversarial noise
computed on a LibriSpeech utterance. The
example was generated against an undefended
classification model.

observe the same effect on the LibriSpeech speaker classification task (see section 7.5.2). To that
end, we attack an undefended model, and we compute the spectrogram representations of natural
and adversarial examples. We display those representations, averaged on the test set in Fig. 7.3,
as well as the signal-noise ratio (SNR) per frequency on an example utterance in Fig. 7.4. The
SNR in Fig. 7.4 makes it clear that low-frequency components are better preserved than their high-
frequency counterparts. However, the range of highly affected components is not restricted to a
small fraction; on the contrary, looking at Fig. 7.3, out of 200 frequency components only the 1-40
range is lightly affected (by less than a few percent).

7.5.1 High-frequency smoothing
The targeted effect of adversarial attacks on some frequency components naturally leads us to
wonder how to use that phenomenon to our advantage when designing defenses. We propose
to that end an approach called high-frequency smoothing. It consists in changing the nature of
noise ν, from a frame-wise independent Gaussian distribution to one that specifically targets high
frequencies. However, we want to keep the essential properties of the Gaussian distribution that
make Gaussian smoothing so effective. To that end, we propose to apply a high-pass filter to the
Gaussian noise. We use an elementary filter ν ′n = νn−νn−1

2
, i.e. we substract from noise νn its

moving average of order 2. This is a pre-emphasis filter with z-transform z(1 − z). We refer to
this defense as MAD smoothing ("Moving Average Difference").

Our intuition is that, at equal Gaussian deviation σ, applying ν or ν ′ is equally effective at
smoothing potential perturbations, as they lie in the bandwidth of the high-pass filter. However,
the latter then has the advantage of a smaller noise amplitude, which makes prediction easier for
our learning algorithms. This gives MAD smoothing the edge in terms of robustness-performance
tradeoff. We now wish to verify this intuition empirically.
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7.5.2 Experimental Setup
MAD and Gaussian smoothing can be compared not only on ASR but on any task with audio
inputs. We however observe varying effects across different tasks. We report the bulk of our ex-
periments on Speaker classification, the task that we experimented on originally. Then we present
additional results on Noise classification and Speech Recognition.

Model and Dataset We work on a subset of the LibriSpeech Speaker Identification task (referred
to as small-LS below). From its development set, we retain 40 speakers, each with 8 minutes
of audio. We divide that data into a 50%-25%-25% train-val-test split and consider the task as
classification among the 40 speakers. This reasonably sized dataset allows us to perform multiple
experiments. Our model is a 1D CNN with 4 convolutional layers and a final linear projection.
Waveform amplitudes are normalized to [0 − 1] and adversarial noises are always applied on this
range (x+ δ ∈ [0, 1]).

Attacks and defenses We use the l∞-Projected Gradient Descent (PGD) attack (2.1.3) with ε =
0.003 and 20 iterations. When a defense seems effective on Small-LS we additionally evaluate out
against the L2-PGD (epsilon = 1) attack Carlini and Wagner [2016].

In addition to Gaussian and MAD smoothing, we tried several other methods for comparison.

• Adversarial training. We use 50% of adversarial instances in the first half of training, and
80% in the second half.

• Lowpass filters on the inputs directly, as a "naive" way to remove high-frequency compo-
nents from the prediction pipeline. Since our models use spectrogram representations as
input features we can use "ideal" lowpass filters, i.e. truncate the high-frequency range from
those representations. We retain the lowest 5% frequency components (i.e. the [0-10] band
out of 201 frequencies). Alternatively, we try applying a biquad lowpass filter on the raw
inputs. In each case, the filtering method is used in both testing and training.

7.5.3 Results
All models run are trained 200 epochs, each of which takes less than half a minute due to the
reasonable size of the dataset, but also the great scalability of every proposed method other than
adversarial training, which takes about 5 times longer.

We display in Table 7.3 the results of all proposed defenses on small-LS, and compare them to
those of the baselines. From those results, it is rather clear that filtering methods are ineffective.
Their adversarial accuracy is only marginally higher than the undefended model, with an important
drop in natural accuracy. This is not very surprising when considering the failure of similar pre-
processing schemes on image tasks [Athalye et al., 2018a]. On the other hand, using direct lowpass
filters does protect against the high-frequency adversarial vulnerabilities of the vanilla model. We
show that by performing transferability experiments between those two models, displayed in Table
7.4. As we can see, when we compute adversarial examples against one model and feed them to
the other, the target model retains most of its natural accuracy.

This hints that the bad adversarial accuracy of lowpass models is due to different vulnerabil-
ities, that were created by applying the lowpass filter. We theorize that restricting our models to
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Defense Nat. accuracy L∞-PGD accuracy L2-PGD accuracy
None 88% 7% 10%
Ideal lowpass (5%) 68% 10% -
Biquad lowpass (f = 200) 71% 9% -
Gaussian smoothing (σ = 0.1) 71% 69% 63%
Adversarial training 77% 31% -
MAD smoothing (σ = 0.15) 80% 74% 68%

Table 7.3: Results of the baselines and the smoothing approaches on small-LS, on natural (column
2) and adversarial inputs, using L∞-PGD (column 3), and in case of success the L2-PGD (column
4) and CW attack (column 5).

Source Target Adv. accuracy
Undefended Ideal lowpass (2%) 72%
Ideal lowpass (2%) Undefended 74%
Ideal lowpass (2%) Biquad lowpass 39%

Table 7.4: Transferability of attacks between vanilla models and models focusing on low frequen-
cies, on the small-LS dataset. Column 3 refers to the accuracy of the target model when fed
adversarial inputs generated against the source model.

the low-frequency domain weakens the input representations used by the model and creates extra
vulnerabilities. Therefore completely eliminating a range of the input space where adversarial ex-
amples lie does not yield good adversarial robustness while downgrading significantly the natural
accuracy of the models (from 88% to 60-70%).

On the other hand, MAD smoothing does improve on traditional randomized smoothing. For
both MAD and Gaussian smoothing we reported in the table the noise deviation that maximized
the results, leading to using a greater σ for the former- which makes sense as the high-pass filter
diminishes the amplitude of the noise. Since the latter is more effective than adversarial training,
that makes high-frequency smoothing our best defense mechanism. The additional results using
L2-PGD attacks confirm those results.

7.5.4 Additional experiments
We now compare Gaussian and MAD smoothing on additional tasks.

In Table 7.5 we report results on the UrbanSound8K noise classification task. Models are 2-D
CNNs with 5 convolutional layers and a 2-layer final projection. The attack is the L∞-PGD adver-

Defense Nat. accuracy Adv. accuracy
None 78% 13%
Gaussian smoothing (σ = 0.1) 65% 63%
MAD smoothing (σ = 0.15) 68% 64%

Table 7.5: Results of the baseline and the smoothing approaches on the UrbanSound8K dataset, on
natural (column 2) and L∞-PGD adversarial inputs with ε = 0.02 (column 3).
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Defense Nat. WER Adv. WER
None 9.7% 88%
Gaussian smoothing (σ = 0.01) 14% 46%
MAD smoothing (σ = 0.01) 13% 51%
MAD smoothing (σ = 0.015) 18% 46%

Table 7.6: Results of vanilla and smoothed DeepSpeech2 models on the LibriSpeech dataset, on
natural (column 2) and L∞-PGD adversarial inputs with SNR = 30dB (column 3). The Gaussian
model is equivalent to the off-the-shelf model in section 7.3.2

sarial algorithm ε = 0.02. We observe that MAD smoothing outperforms Gaussian smoothing in
this different context, although by a shorter margin.

On the other hand, MAD smoothing applied to the DeepSpeech2 ASR model does not seem
to bring any improvement, as evidenced in Table 7.6. We simply use the off-the-shelf model from
section 7.3.2, and for MAD smoothing modify the ASNR filter before our high-frequency noise.
Regardless of the deviation used for MAD smoothing, either its natural or adversarial WER is
greater than that of Gaussian smoothing, indicating no progress in the robustness-performance
tradeoff. Several important differences between ASR and Speaker classification experiments may
factor in these contrasting behaviors: for example the use of ASNR enhancement, or the values
of deviation σ which vary by an order of magnitude between both experiments. It could also be
explained by properties specific to ASR adversarial examples - in that regard the work proposed in
Chapter 6 may eventually shed new light on this phenomenon.

7.6 Related work
Efforts to adapt adversarial training or relaxation methods to ASR have been limited so far: Sun
et al. [2018] have used training for speech based on the FGSM attack, which is simpler but not
nearly as robust as PGD training. Most proposed ASR defenses such as MP3 compression [Das
et al., 2018] or quantization [Yang et al., 2019] have shown the same weakness as above to adaptive
attacks [Subramanian et al., 2019]. Exploiting temporal dependencies in speech to detect adversar-
ial manipulations [Yang et al., 2019] is a promising line of work. However, at best it only enables
the user to detect these modified inputs. Reconstructing the correct transcription is an entirely
different challenge, and our objective in this work.

Noise-based defenses for audio classification have been proposed: for instance, Subramanian
et al. [2019] use simple white noise as a defense mechanism. This is a straightforward extension
of randomized smoothing to another classification setting. Regarding specifically ASR, the only
existing randomized smoothing works we are aware of are Mendes and Hogan [2020], which pro-
pose an adaptation of the noise distribution to psychoacoustic attacks, and the recent Żelasko et al.
[2021]. The latter in particular thoroughly explores the effects of Gaussian smoothing on Deep-
Speech2 and the SpeechBrain Transformer. However, their work on making these models more
robust to white noise is limited to Gaussian augmentation in training. Specifically, they do not ex-
plore the issue of voting on transcription and resort to one-sentence estimation (see section 7.2.2),
which limits the amount of noise they can use, and therefore the radius of their defense. Besides,
they do not use adaptive attacks which makes their evaluation incomplete. To our knowledge,
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we propose the first complete (randomization, training, and vote, evaluated on adaptive attacks)
version of randomized smoothing for Speech Recognition.

7.7 Discussion
We have proposed a state-of-the-art adversarial defense for ASR models based on randomized
smoothing. It is successful against all attacks using inaudible distortion while retaining a low error
rate on natural data. To achieve strong performance under noise, we have leveraged speech en-
hancement methods and proposed a novel use for ASR output ensembling methods like ROVER.
We successfully defend against state-of-the-art adaptive attacks and analyze the importance and
limits of each component of our defense. In appendix E, we study the certification of this sequen-
tial randomized smoothing for ASR, which poses new challenges compared to its classification
counterpart. We show that sequential smoothing is to an extent provably robust, although practi-
cally useful robustness bounds would be difficult to compute.

This adaptation of existing defenses to ASR is specific to Randomized Smoothing, for the
reasons discussed above. Adversarial training, which takes a heavier computational toll but usually
leads to better accuracy, is the focus of the next chapter.
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Chapter 8

Robust pretraining with adversarial masked
prediction

As we have seen in Chapter 7, randomized smoothing is a powerful defense, but has limits. No-
tably, its guarantees only apply to L2-bounded threat models, and it suffers from a tradeoff that
remains important. On classification tasks, randomized smoothing is a state-of-the-art method for
L2 certified robustness, but not for empirical robustness. Almost all top places on known bench-
marks are held by versions of adversarial training. This motivates us to explore the application of
adversarial training to ASR in this chapter.

That objective is particularly challenging. As we will show, adversarial ASR training has
trouble converging to low loss values. We suspect that end-to-end transduction losses like CTC
mix poorly with adversarial training when compared to classification losses like cross-entropy.
This explains why adversarial training has to our knowledge never been applied to complex speech
tasks like ASR in the past. On the other hand, many popular Self-Supervised Learning (SSL)
methods rely on the masked prediction of a finite set of discrete classes, in a manner similar to
frame-wise classification. This suggests that applying adversarial examples during SSL pretraining
may be more effective than during supervised ASR training. This observation leads us to propose
an adversarial training algorithm for the self-supervised learning of speech models.

8.1 Introduction
Our proposed defense is termed AdvMP which stands for adversarial masked prediction (section
8.2). AdvMP is a training method based on a general adversarial attack on masked reconstruction
pretext tasks, using a clean model to extract targets. We apply AdvMP during the training of a Hu-
BERT model. We evaluate the performance and robustness of that model, named AdvHuBERT,
against several adversaries. Against PGD attacks [Madry et al., 2018] of radius 0.01, our best
model achieves a Word-Error Rate of 50-60% where an undefended model gets >100%. On the
unbounded Carlini&Wagner attack [Carlini and Wagner, 2018], fooling AdvHuBERT requires an
additional 23dB of distortion compared to undefended models. In addition, AdvHuBERT recovers
a WER of 13.5% on the adversarial dataset proposed in chapter 6, which was explicitly designed
to fool SSL-pre-trained models with transferable perturbations.

We study different finetuning strategies for AdvHuBERT, both with standard and adversarial

97



training. We compare the robustness of that model to several baselines, including an adversarially
finetuned HuBERT, a CTC model we adversarially train from scratch, and a HuBERT model de-
fended with Sequential Smoothing (chapter 7). Our experiments lead to the following conclusions:

• Adversarial pretraining provides much stronger robustness than adversarial ASR training or
finetuning

• Finetuning adversarially pretrained models with standard losses may lead to robustness for-
getting and requires caution.

• AdvMP is a promising defense, but making it competitive with sequential smoothing would
require a heavy computational cost

As is common for adversarially robust models in all tasks, AdvHuBERT does not match the
performance of SSL or ASR models with standard training on clean data. Our proposed model
achieves a Word-Error Rate of 6.7% on the LibriSpeech test-clean set. For reference, this is ap-
proximately the performance achieved by a model of similar architecture trained from scratch for
ASR, without any pretraining and without adversarial objectives [Higuchi et al., 2021].

8.2 Adversarial masked prediction
Although well established in computer vision, adversarial training has thus far never been applied
in speech tasks beyond classification. Adapting it for speech pretraining requires crafting an ad-
versarial objective for SSL pretext tasks, taking into account the fact that targets are also functions
of the input, rather than fixed as in Equation 2.9. In this section, we introduce adversarial masked
prediction (AdvMP), which in theory can be applied to any model trained under Equation 8.1.

8.2.1 Background: Predictive SSL pretraining
A large family of SSL speech models relies on predictive pretext tasks: targets are computed
outside of the computation graph, and the model is trained to minimize the loss against those targets
given a noisy or masked input. Many such methods are inspired by Masked Language Models in
NLP, like BERT, and generate discrete targets with clustering [Hsu et al., 2021] or quantization
[Chiu et al., 2022]. Other methods include using a teacher model to generate continuous targets
from clean inputs [Baevski et al., 2022b]. Formally, all methods optimize an objective of the form:

min
θ
L(fθ(xmask), t(x)) (8.1)

with input x, fθ the model, t the target generating model and L the loss function (e.g. cross-entropy
or Lp).

An important factor in predictive SSL’s success is the quality of the target generator t. Different
models handle this challenge in various ways. Data2Vec [Baevski et al., 2022b] uses a moving
average of the model as a teacher and a carefully chosen optimization schedule to encourage high-
quality targets. HuBERT generates targets with K-means clustering in several phases but needs an
existing speech representation to cluster. Training initially uses MFCC targets, which are replaced
and iteratively improved with intermediate HuBERT checkpoints

98



8.2.2 Definition
AdvMP optimizes the following objective:

min
θ

max
‖δ‖∞≤ε

L(fθ((x+ δ)mask), t(x)) (8.2)

The inner objective of this problem is approximated using a specific perturbation δ, computed for
each x using PGD (Equation 2.2) k steps to maximize lossL(f(xmask+δ), t(x)). Intuitively, the ad-
versarial perturbations fool the model but leave the target generator unchanged. After pretraining,
the model can be finetuned with standard training objectives, and rely on its pre-training initializa-
tion to retain robustness in downstream tasks. Another option is to finetune it with the adversarial
training objective of Equation 2.9, computing untargeted perturbations against the downstream
task’s loss and targets.

8.2.3 Practical implementation
Despite its simple formulation, AdvMP must in practice be carefully implemented. As discussed in
section 8.2.1, SSL pretraining requires high-quality targets. Accordingly, since adversarial training
lowers performance on clean data, using our model to generate targets can lead to subpar supervi-
sion. For instance, during an early attempt to apply Equation 8.2 to an existing Data2Vec training
recipe, we observed that adversarial training collapsed to a trivial solution after 10k steps, where
the teacher generated constant targets.

Following the scheme of HuBERT in using our own intermediate model to generate targets
would likely also be problematic. We apply an alternative solution by using the model trained on
clean data to generate targets; then we train a new model adversarially on those targets. Specif-
ically, we apply K-means clustering to representations extracted with the HuBERT BASE model.
We then fix those targets and apply Equation 8.2 to adversarially train our model AdvHuBERT.
Our targets are the same used to train the HuBERT LARGE models and of higher quality than those
used to train the original HuBERT BASE model.

8.3 Experimental setting

8.3.1 Pretraining
Our architecture is the HuBERT BASE model [Hsu et al., 2021] with no changes. SSL is computa-
tionally expensive, and adversarial training multiplies the compute budget by the number of PGD
steps that must be used before every training iteration. To keep our computation cost low, we apply
the following tricks:

• We use only N = 1 PGD step with step size η = ε, combined with random initialization
of the perturbation δ. In computer vision, this was shown in some cases to be almost as
effective for training as using stronger attacks [Wong et al., 2020].

• We reduce the number of steps in HuBERT pretraining compared to the original HuBERT
BASE models. While it was trained for 650k steps in total, we only use 100k.
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We run pretraining on 960h of LibriSpeech data, for a fair comparison with previous SSL
speech models which are commonly evaluated on that dataset. We keep the original HuBERT
BASE pretraining recipe, changing only the targets and scheduler. We decay the learning rate
linearly for 68k steps after a 32k-step linear warmup to 0.0005. Our adversarial radius is ε = 0.01

8.3.2 Finetuning
We finetune our models to evaluate ASR performance and robustness. As in previous works,
we append three linear layers to our pretrained speech representation. The final layer projects
representations into an output space of size 31 (English characters and special tokens). We restrict
finetuning to 100k steps for 960h of LibriSpeech, 20k steps for 100h, and 4k for 10h. We warm-up
for 10% of steps with the pretrained features kept frozen, and an initial learning rate of 0.0001 for
the pretrained layers and 0.1 for the final layers. We decrease these learning rates by a factor 0.8
when the validation loss reaches a plateau.

After 100k pretraining steps, we finetune models and verify their robustness. We experiment
with multiple forms of finetuning:

• Standard CTC finetuning, on 100h and 960h of LibriSpeech training data

• Adversarial CTC finetuning with 1-step PGD on 10h, 100h and 960h

• Adversarial CTC finetuning with 10-step PGD on 960h

8.3.3 Implementation and computation details
We use the Fairseq [Ott et al., 2019] HuBERT recipe for pretraining, modified with a custom
implementation of adversarial training. For finetuning, we use the SpeechBrain [Ravanelli et al.,
2021] binding for Fairseq models and customize the SpeechBrain Wav2Vec 2.0 finetuning recipe.
All parameters are kept unchanged in these recipes apart from the number of iterations. To run and
transfer adversarial attacks we use robust_speech (Chapter 5).

We pretrain advHuBERT with a batch size of 25min of audio and finetune all models with a
batch size of 3min of audio. The entirety of our experiments required about 1000 GPU hours (600
for pretraining and 400 for all finetuning). This is lower than the computational cost of pretraining
a single HuBERT BASE model [Hsu et al., 2021]. We trained on 4 Tesla V100 GPUs for a total of
ten days.

8.3.4 Evaluation attacks
We run all white-box attacks on 100 sentences from the LibriSpeech test-clean set. For the PGD
attack, we use a fixed radius ε = 0.01, the same as adversarial training, which corresponds to an
SNR of 33dB on average on the evaluated set. We use different numbers of steps: this gives a
partial indication of whether the observed robustness is trustworthy. At fixed ε, if the model is
robust to low-step attacks only then adversarial examples are harder to find but still present; while
robustness to high-step attacks is a stronger sign. We run this attack with different numbers of
iteration steps and evaluate it using the WER of the output computed against the true transcription:
the higher, the more successful the attack.
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We apply the Carlini&Wagner audio attack [Carlini and Wagner, 2018] with initial radius ε =
0.04 and 4000 iterations, using the fixed target sentence "OK Google browse to evil dot com". We
evaluate it by reporting the Word-Error Rate on the perturbed input against this target sentence
(a successful attack gets WER = 0), as well as the Signal-to-Noise Ratio expressed in decibels.
An SNR above 30dB corresponds to a discrete background noise, and above 40dB to a barely
perceptible noise.

Finally, we apply the adversarial dataset which we proposed in Chapter 6 to evaluate the ro-
bustness of pretrained ASR models. Results on that dataset indicate whether the evaluated model
is robust to transferred attacks from undefended proxies. Generated against Wav2Vec2 [Baevski
et al., 2020] and HuBERT LARGE proxies, this dataset fools a large number of SSL-pretrained
ASR models. We report the WER both on the attack target and on the true transcription of those
inputs.

8.4 Results
In Table 8.1 we report the results of our attacks on all models, and compare them with finetuned
HuBERT baselines. Multiple other SSL-pretrained models (Wav2Vec2, Data2Vec, ...) have been
studied under attack in the past on some threat models [Wu et al., 2022], including Chapters 5 and
6 of this thesis, and have not shown to be more robust than HuBERT; we do not reproduce those
results here.

8.4.1 Comparing AdvHuBERT to HuBERT
Lines 1-3 correspond to our AdvHuBERT model finetuned with 1-step attacks on different Lib-
riSpeech subsets. We can observe that these models are considerably more robust than undefended
HuBERT models finetuned on the same data (lines 7-9) on all white-box attacks. Against the
100-step PGD adversary, where the baselines are entirely fooled with WERs of 100%, AdvHu-
BERT’s WER reaches 50-60% when training on at least 100h, and under 80% for the 10h subset.
As for the targeted CW attack, while it succeeds in fooling all models at least partially, it requires
an SNR of 24dB to do so on AdvHuBERT, where only 47dB are needed for baselines. In other
words, where imperceptible noise easily fools undefended models, AdvMP-pretrained models re-
quire much more audible noise. Interestingly, increasing the amount of finetuning data from 100h
to 960h benefits clean performance (-3.3% WER), but not necessarily robustness (+5% with 100
steps).

We note that the WER of the robust models on clean test data is much higher than their
non-robust counterparts, or than any recent results on LibriSpeech for similar architectures. Our
strongest robust model achieves a WER of 6.7% on the test-clean set. We emphasize that as men-
tioned above, such a drop is the expected cost of any robust model on all benchmarks.

8.4.2 Influence of finetuning mechanisms
We evaluated several forms of finetuning on On AdvHuBERT and report their results in lines 1-6.
We achieve our best results when finetuning adversarially with one attack step - in which case the
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Finetuning Clean PGD WER CW transferred (6)

Model # data
adv.
steps

WER↓ 1
step↓

100
steps↓

WER
tgt.↑ SNR↑ WER

tgt.↑
WER
true↓

AdvHuBERT

1 960h 1 6.7 16.8 56.5 0.4 24dB 100 13.5
2 100h 1 10.0 22.6 51.9 1.2 24dB 100 16.7
3 10h 1 22.8 37.4 78.6 0 24dB 100 32.9
4 960h 0 5.2 71.1 114 2.4 35dB 97.6 83.0
5 100h 0 10.5 64.5 69.1 0 36dB 99.6 59.5
7 960h 10 33.7 54.1 76.9 63.0 24dB 100 36.2

HuBERT
baseline

7 960h 0 3.5 20.4 110 0 47dB 55.7 100
8 100h 0 6.3 28.2 103 0 47dB 53.9 100
9 10h 0 11.5 36.7 98.1 0 47dB 73.5 100
10 960h 1 5.6 14.8 72.8 0 28dB 100 13.6

w/o SSL 11 960h 1 21.9 17.8 97.0 0.9 24dB 100 39.9
Smoothing, σ = 0.01
Smoothing, σ = 0.02

12 960h 0 5.8 10.7 63.1 53 24dB 100 53.8
13 960h 0 11.4 19.6 55.9 76 24dB 100 31.9

Table 8.1: Performance and attack results for ASR models finetuned from the AdvHuBERT 100k
checkpoint and HuBERT. For each model, we specify its finetuning data and the number of at-
tack steps during finetuning (0, 1, or 10). We report in that order the WER on the unmodified
LibriSpeech test-clean set, on the true transcription under PGD attacks, the WER on the attack
target and the achieved SNR for the CW attack, and the WER on both the attack target and true
transcription for the transferred attack. All attacks are run on 100 sentences from the test-clean set.
Arrows on metrics indicate which change shows an increase in robustness or performance.

Word-Error rate achieves 60%. More pretraining steps worsen clean performance significantly (to
33%) which leads to high WERs under attack as well.

Finetuning without adversarial noise can lead to some robustness, as shown on the 100h model.
However, trying to finetune on 960h, with more steps, the model reaches better clean performance
but performs on par or worse than the baselines under attack. This suggests that too much clean
finetuning can make models forget the robustness learned during pretraining.

8.4.3 Adversarial finetuning of undefended SSL models
Since adversarial finetuning helps achieve robustness in ASR, one may wonder whether adversarial
pretraining is necessary in the first place. Couldn’t similar robustness be achieved by adversarially
finetuning a standard baseline? To answer this question, we run one-step finetuning on HuBERT,
and report the results in line 10. This approach is beneficial to clean performance, reflected by a
WER of 5.9% on the test-clean set; and during finetuning the model learns robustness to one-step
PGD (14.8% WER).

However, compared to AdvHuBERT this robustness carries over more poorly to stronger white-
box adversaries. The 100-step PGD attack reaches 84.4% WER, compared to the < 60% of Ad-
vHuBERT; and CW finds perfectly successful examples with an SNR higher by 4dB. This suggests
that the features learned during standard masked prediction are vulnerable to adversarial attacks
and that some of this vulnerability is not unlearned with adversarial finetuning. In contrast, learn-
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ing robust features from scratch with AdvMP leads to more robust models.
What about training adversarially a model for ASR from scratch, without any pretraining? We

attempt such a training, using 100k CTC training steps under 1-step attacks, starting from a random
initialization of the HuBERT weights. We report the results of that model in line 11 of Table 8.1.
Even more than the adversarially finetuned HuBERT, that model "overfits" the 1-step adversary, to
the point that its WER under that attack is better than its clean WER. The model shows no "real"
robustness as measured by the 100-step PGD attack (WWER 97%). Its clean performance is also
subpar compared to most AdvHuBERT models.

However, more forms of adversarial training are effective against targeted adversaries. The
model trained adversarially without SSL, and the adversarially finetuned HuBERT achieve 24dB
and 28dB SNRs against the CW attack, which is comparable or close to AdvHuBERT. The trans-
ferred CW attack cannot fool those models to predict the target, and they recover 39.9% and 13.6%
true WER respectively. This shows that substantial protection against targeted attacks is simple to
achieve compared to untargeted attacks.

8.4.4 Comparison with sequential smoothing
Finally, we evaluate how AdvMP compares to sequential smoothing, which we proposed in Chap-
ter 7. We apply this defense to HuBERT with σ = 0.01 and σ = 0.02 and report the results in lines
11 and 12 of Table 8.1.

At first sight, we observe that AdvMP is competitive with sequential smoothing, which achieves
a WER of 55.9% for σ = 0.02. However, we must recall that smoothing is designed to be robust
againstL2 attacks, while we are currently runningL∞ attacks. When applying attacks of equivalent
SNR in L2 norm, as in Chapter 7, we obtain a much better WER of 23.5%. It is highly unlikely
that an application of AdvMP identical to ours but with L2 PGD attacks would lead to a WER as
low. That AdvMP is only as good as smoothing on L∞ perturbations tends to indicate in fact that
sequential smoothing is, in fact, more effective.

We argue that applying AdvMP with a stronger attack and more intensive training would fill the
gap between both methods. Despite our adoption of strategies to train under limited resources, our
current setting is likely suboptimal. Unfortunately, adding attack steps in training would require
allocating considerable resources to model training. Thus the main limiting factor of AdvMP is, at
this time, its high computational cost.

8.5 Related Work
Adversarial perturbations on computer vision are a large research area. Past works have studied
robust self-supervised methods, often with a focus on contrastive learning Jiang et al. [2020], Kim
et al. [2020], Fan et al. [2021].

Few adversarial defenses for ASR models have been proposed, and they have focused on either
randomized smoothing or defenses using Speech processing methods to detect adversarial exam-
ples Yang et al. [2019]. Both methods have weaknesses, respectively a very important performance
tradeoff and limitation to certain threat models (Chapter 7) and a vulnerability to some adaptive
attacks Tramer et al. [2020].
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Adversarial training as a defense has to our knowledge never been proposed for ASR or SSL
speech models. It is not to be confused with methods using an adversarial model to generate
augmented data or discriminate model outputs, also referred to as adversarial training Liu et al.
[2018].

8.6 Discussion
We have proposed AdvMP, an adversarial pretraining paradigm, and applied it to pretrain the
AdvHuBERT model. This speech encoder can be successfully finetuned into ASR models that
display robustness to adversarial attacks. AdvHuBERT is both the first robust SSL speech model
and the first adversarially trained ASR model. We have compared several finetuning strategies and
found one-step finetuning to be the most efficient one. We have also discussed the limitations of
our current approach.

Based on the results of this chapter and the previous one, how can we optimally make ASR
models robust? And is the cost of that implementation acceptable in practice? In the next and final
chapter, we recapitulate our results, make recommendations and discuss future perspectives for the
field of speech robustness and security.
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Chapter 9

Conclusion

In this thesis, we have explored the evaluation, execution, and mitigation of adversarial attacks and
how those affect the security of Speech recognition systems. We have spanned multiple modalities,
model architectures, training paradigms, and attack threat models, while switching perspectives
between attacker and defender. We have striven to fit all of those perspectives within a consistent
framework, but have had to remain flexible in our approaches: adversarial robustness and security
are highly versatile concepts that are not easily narrowed down.

A key takeaway from this thesis is that robustness insights are not universal across modalities,
models, and datasets. Variance in adversarial accuracy is only observable at a small scale (Chapter
3). Modeling decisions that seem to not affect robustness may improve it depending on the metric
(Chapter 4). Attacks that are highly effective on one architecture or dataset may be ineffective on
another (Chapter 5). The transferability of adversarial perturbations is easier on images than on
ASR and is highly dependent on modeling choices (Chapter 6). Thus to improve robustness, it is
worth paying considerable attention to the context at hand. The recent literature has largely focused
on context-agnostic adversarial defenses, but domain knowledge and careful modeling choices can
prove highly beneficial when applying those same defenses (Chapters 7 and 8). We summarize all
of our contributions in more detail in section 9.1

Another important lesson from our work is that the speech modeling field is overall headed
towards a more vulnerable state. The impressive progress of ASR has not carried over in terms of
adversarial robustness (Chapter 5), while models have become increasingly ubiquitous. Against
certain threat models, the most beneficial factors of improvements, especially in low-resource set-
tings, are direct causes of increasing vulnerability. This widening gap between adoption and safety
is a cause for concern, which we hope that our work on ASR robustness (Chapters 7 and 8) can
mitigate. In Section 9.2 we discuss possible future directions for the field of speech and audio
security and how our thesis fits in them.

9.1 Summary of key contributions
• In Part I we introduce new methodologies for evaluating adversarial robustness. In Chapter

3, we propose a probabilistic measure of adversarial accuracy under fixed threat models
over randomized experiments. The surprisingly large variance in robustness in many of our
experiments makes deterministic robustness evaluation unreliable. We show that this method
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is effective at quantifying the effect of hyperparameter choices on robustness at a small scale.

In Chapter 4, we propose adversarial sparsity, a robustness metric that scales to high di-
mensions while offering a finer granularity than adversarial accuracy. We motivate sparsity
geometrically, define it formally, and tie it mathematically to the size of the adversarial set
over a point. We propose a general formulation for sparsity that can be adapted to specific
bounded threat models, which we do for L∞ and L2 attacks. We show how sparsity can mea-
sure high differences in robustness between models that accuracy would deem non-robust.

Both accidental robustness and adversarial sparsity help us make informed modeling choices.

• In Part II, we evaluate the robustness of ASR models in particular. We start with white-box
attacks in Chapter5 and show that they can pose a significant threat in certain cases. We
illustrate how the recent improvements in ASR (from LSTM to Transformers, monolingual
to multilingual, etc.) tend to make models more vulnerable. We show that model and data
scaling are not solutions. We show that those attacks have numerous consequences, including
indirect effects on data privacy leakage which are particularly relevant for commercial ASR
models.

In Chapter 6 we extend those considerations to black-box threat models, by showing that
the family of self-supervised ASR models are uniquely vulnerable to transferable targeted
attacks. We harness that phenomenon to train an adversarial dataset which fools a large
panel of state-of-the-art ASR models. We conduct an ablation study and show that SSL
pretraining is indeed a cause of this vulnerability. Our results indicate that the need for
robust ASR training is growing fast over time.

• We address this need in Part III. In Chapter 7 we combine the generic randomized smooth-
ing framework with speech processing tools that help mitigate its inherent toll on model
performance. The result is a sequential smoothing mechanism that can be applied off-the-
shelf to any ASR model. We apply sequential smoothing to standard and recent models
and show that it drastically increases their robustness against white-box L2 perturbations.
We also show how this robustness is to an extent certifiable. Our results are the current
state-of-the-art for L2 robustness on the LibriSpeech dataset.

Because sequential smoothing only applies to a certain class of perturbations, we also eval-
uate the applicability of adversarial training to ASR in Chapter 8. We propose an unlabeled
adversarial training objective which we term adversarial masked prediction. We show that
it is applicable as a self-supervised objective to pretrain speech encoders. Using adversar-
ial masked prediction we pretrain, then finetune a model called AdvHuBERT. We evaluate
AdvHuBERT and show that it displays improved robustness against white-box attacks and
transferred attacks. Both sequential smoothing and adversarial masked pretraining are im-
perfect but promising methods for robust ASR training.

9.2 Future directions
We expect speech technologies to occupy a growing share of the AI landscape. Not only are ASR
systems getting more efficient, popular and widely adopted in their current form, it is likely that
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similar systems will find new applications as well. For instance, the most widely used AI sys-
tems currently rely on conversational, chatbot-type applications based on Large Language Models
(LLM) [Brown et al., 2020, Touvron et al., 2023], with a core focus on the text modality. Yet the
full scope of human conversation relies on spoken language primarily, and in our opinion, it is
only a matter of time before the rise of audio-first, massively used conversational agents. Whether
those agents cascade ASR, LLMs, and speech synthesizers1 or use end-to-end architectures [Hassid
et al., 2023], we believe that this transition will bring important security risks. The vulnerabilities
of LLMs are already a vivid topic of discussion [Perez et al., 2022], with applications of adversarial
attacks to prompt injection and other threats. However, as a continuous modality, audio is subject
to a wider diversity of attacks, as we have discussed throughout this thesis. Thus we believe that
the importance of secure audio technology will grow in importance.

In that landscape, adversarial robustness as we have studied it an important tool, though not
the only one. Perturbations in Lp norm are one of the best-defined, simpler-to-grasp settings, and
almost a "toy problem" for more complex scenarios. It is unlikely that the research community
can safely address those scenarios without designing adversarially robust ASR models first. This
thesis lays the foundations for such work, and we have shown that the objective, while challenging,
is not out of reach. Methods like adversarial training can be adapted to speech models, not just
for ASR but for the pretraining of all tasks. The biggest challenge in this defense at this point
is its heavy cost. We are confident that an application of our adversarial training framework to
the massive pretraining of a large model, with multiple attack iteration steps, would lead to robust
models with sufficient performance to be deployed. However, the computational cost of such an
endeavor makes it unrealistic.

However, recent works in all modalities have shown a promising trend of dropping training
cost while matching the performance of very strong models [Baevski et al., 2022a, Geiping and
Goldstein, 2022, Leclerc et al., 2023]. We are hopeful that such progress in speech will make costly
algorithms like adversarial training more accessible. Symmetrically, we believe that improvements
in model performance, scaling, and noise robustness will continue to mitigate the performance toll
of randomized smoothing, as we have shown that recent improvements have already done. One
promising approach is the use of diffusion models on the audio modality. As some works on images
have shown, those can both serve as data augmentation methods which adversarial training benefits
from [Wang et al., 2023], and within randomized smoothing as denoisers [Carlini et al., 2023]. The
latter application is still lagging on audio because the most effective diffusion models generate data
in the spectrogram domain while adversarial attacks operate in the waveform domain. But work
on AI models generating waveforms directly is growing and we expect this line of robustness
approaches to gain relevance in the near future.

Finally, we would like to emphasize that, now and in the future, the risks of audio models are
not limited to adversarial attackss by any means. Privacy attacks, data poisoning, and deepfake
generation are all massive threats that the audio community must continue to address. But as
we have started to show in this work for privacy, many of those threats are linked to adversarial
attacks. They are for instance a common way to inject imperceptible poison in data points without
label access [Shafahi et al., 2018]. Deepfake detection methods are bypassed by attackers using
adversarial perturbations [Gandhi and Jain, 2020]. Thus the importance of those many threats
largely cements the importance of adversarial robustness as a goal for the research community.

1https://github.com/AIGC-Audio/AudioGPT
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Appendix A

Supplementary material for chapter 3

A.1 Influence of hyperparameters on robust classifiers
Given a number m we define Fa1,a2,...,am as the set of n-hidden-layer binary neural classifiers, that
have a1 neurons on the first hidden layer, a2 on the second, etc. The final layer always has one
neuron for binary classification. When there is no ambiguity on f , we name hi,j the j th neuron of
the ith layer. We name h′i,j the pre-activation neuron (which is an affine function).

We can establish the existence or non-existence of valid solutions on Xε for certain values of ε,
n, m, ai, and certain activation functions.

Proposition 3.1. For n = 2, with threshold activations, F2,2 contains a classifier that is valid on
Xε for all 0 < ε < 1.

Proof. We exhibit an fr ∈ F2,2. We set:

h1,1 = (x1 ≥ 0) , h1,2 = (x2 ≥ 0) (A.1)
h2,1 = h1,1 ∧ h1,2 = (h1,1 + h1,2 − 2 ≥ 0) (A.2)
h2,2 = ¬h1,1 ∧ ¬h1,2 = (−h1,1 − h1,2 ≥ 0) (A.3)
h3,1 = h2,1 ∨ h2,2 = (h2,1 + h2,2 − 1 ≥ 0) (A.4)

In other words, h1 turns the RXOR problem into the traditional BXOR problem, which the two-
layer network h2, h3 can classically solve. Since h1 sends (x1, x2) onto the associated vertex
(±1,±1), any point in Xε with 0 < ε < 1 is correctly classified by fr.

It is obvious that any Fa1,a2,...,am with m ≥ 2 and ai also contain classifier fr, since layers can
easily ignore some neurons or compute the identity function. On the other hand, results change if
we drop one layer.

Proposition 3.2. For n = 2, with threshold activations, given 0 < ε1 <
2
3

and 2
3
< ε2 < 1, F2

contains a valid classifier on Xε1 but not on Xε2

Proof. In F2 the same h1 as above cannot lead to a valid classifier: the first layer must project
the dataset onto a linearly separable dataset, which binary XOR isn’t. In fact, the only non-trivial
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h2 x, y −1,−1 −1, 1 1,−1 1, 1
h1,1 0 1 1 1

AND h1,1 1 1 1 0
f(= XOR) 0 1 1 0

h1,1 0 1 0 0
OR h1,1 0 0 1 0

f = (XOR) 0 1 1 0

Table A.1: The necessary truth tables of h1,1 and h1,2 when h2 is either an AND gate or an OR
gate

gates h2 can modelize are AND (a + b ≥ 2) or OR (a + b ≥ 1), applied to the literals (¬)h1,1 and
(¬)h1,2. Without loss of generality we can assume that h2 = h1,1 ∨ h1,2 or h2 = h1,1 ∧ h1,2.

f must correctly classify vertices (±1,±1). We can therefore reverse engineer the truth tables
of h1,1 and h1,2 on each vertex, depending on what h2 does.

• If h2 is AND then we must have h1,j(−1, 1) = h1,j(1,−1) = 1 for j ∈ {1, 2}. For at
least one j we have h1,j(−1,−1) = 0: we assume it is j = 1. By affinity h′1,1(1, 1) =
h′1,1(−1, 1)+h′1,1(1,−1)−h′1,1(−1,−1) ≥ 0 as it is the sum of three positive terms: therefore
h1,1(1, 1) = 1. For at least one j we have h1,j(1, 1) = 0: it must be is j = 2. Similarly we
can infer that h1,2(−1,−1) = 1. We write these truth tables in Table A.1.

• If h2 is OR, we can apply a similar reasoning and figure out the truth tables of h1,1 and h1,2,
which we also report in Table A.1.

We note that the h′1,j must keep a constant sign over each connected component of Xε (regions
[−1, ε − 1] × [−1, ε − 1], [−1, ε − 1] × [1 − ε, 1], etc.), as any permissible change of activation
for a single hidden neuron changes the final output. Respectively, if these conditions and the truth
tables above are met for h1,1 and h1,2 then f is valid. In the h2-OR case, writing

h1,1(x, y) = ax+ by ≥ 1 (A.5)

the conditions on h1,1 are equivalent to the following system of inequations:
−a− (1− ε)b < 1

(1− ε)a+ b < 1

−(1− ε)a+ (1− ε)b ≥ 1

The existence of a solution depending on ε can be solved easily using linear programming. We
find that the (a, b) satisfying the equality case for the first two inequations are a == 1

ε
, b = 1

ε
. On

this corner point, inequation 3 becomes

2− 2ε

ε
≥ 1 (A.6)

Therefore F2 contains a valid solution on Xε iff ε < 2
3
.
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To an extent, a similar reasoning could be repeated with Fk for k > 2. However, if that width
k becomes extremely large, it is possible for the network to become arbitrarily close to fr. This
is because arbitrarily wide two-layer networks are universal approximators. Although we did not
derive it, we expect that the maximal value of ε would slowly increase from 2

3
to 1 when increasing

the width.
These very wide networks aside, two-layer networks are insufficient to achieve robust clas-

sification on XOR with threshold activations. This changes when picking the ReLU activation
ReLU(x) = x+:

Proposition 3.3. For n = 2, with ReLU activations, F3 contains a classifier that is valid on Xε for
all 0 < ε < 1.

Proof. It can be verified that with

h1,1 = x+
1 , h1,2 = x+

2 , h1,3 = (x1 + x2)+ (A.7)

h2,1 = (h1,1 + h1,2 − h1,3 ≥ 0) (A.8)

then f = fr

The key difference with threshold cases is the continuity of ReLU. It makes it possible for a
first-layer pre-activation neuron to change sign within a connected component like [−1, ε − 1] ×
[1− ε, 1], as h′1,3 does, while having a valid classifier.

A.2 Additional experiments with accidental robustness

A.2.1 Influence of Modeling Choices on Probability of Robustness
This section completes section 3.5.3 by analyzing the influence of more hyperparameters on ro-
bustness. We plot additional results in Figure A.1 using the same format as Figure 3.3

Activation Function

To determine the impact of the activation function on the probability of arriving at a robust solution
we take the widest model architectures from 3.5.3, set the activation function to one of ReLU, Tanh
or Sigmoid, and compute AUCεj and AUC∗εj . We also add biases to these models because for some
of the activation functions the models can not learn RXOR without affine computations. Figure
A.1a shows that for all εj , AUCεj and AUC∗εj are maximal when ReLU activations are used.

Batch Normalization

To observe the effect of batch normalization, we take MLP-9-ReLU and add a batch normalization
layer after the linear layer and before the ReLU to obtain MLP-9-ReLUBN. Figure A.1b shows
AUCεj and AUC∗εj for the two models. We observe that the addition of batch normalization has
reduced both AUCεj and AUC∗εj meaning that the introduction of batch normalization has made
both robust and valid solutions less accessible. This observation conflicts with our expectation
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since batch normalization is known to improve accuracy if training and testing data are identically
distributed, but, perhaps this effect is due to the simplistic nature of the RXOR problem. How-
ever, it is in line with our expectation and existing literature [Galloway et al., 2019] that batch
normalization reduces the likelihood of finding a robust solution.

Dropout

To observe the effect of dropout, we take MLP-9-ReLU and apply dropout with probability p after
the linear layer and before the ReLU to obtain MLP-9-ReLUDropoutp, where p ∈ {0.3, 0.6}.
From Figure A.1c we see that the addition of dropout with p = 0.3 increases AUCεj but reduces
AUC∗εj . This indicates that regularization provided dropout prevents the training algorithm from
fitting the decision boundary too close to the training data. Increasing p to 0.6, however, leads to
a reduction in both AUCεj and AUC∗εj , which indicates that this level of regularization diminishes
the model’s capacity to model the data.

Skip Connections

To test the impact of skip connections we take a two-layer model with 9 ReLU units in each
layer (MLP-9_9-ReLU) and add a skip connection from the output of the first layer to the output
of the second layer (MLP-9_9-ReLU-wSkip_1>2). Our expectation is that the addition of skip
connections would increase the likelihood of finding robust models compared to MLP-9_9-ReLU
because the training algorithm can set the weights and biases in the second layer to zero and
recover a single layer model with 9 hidden units, which, based on the above results, should be
more robust than a two-layer model. Looking at Figure A.1d we note that it is indeed the case that
skip-connections improve AUCεj and, to a lesser extent, AUC∗εj .

A.2.2 Generalization to More Complex Data and Models
This section extends the results of Section 3.5.4 with additional hyperparameters and prolongs the
comparisons between 2D RXOR and MNIST models.

Trends in MLPs

In Figure A.2 we plot the results of our experiments on MLP using the same hyperparameters as
Section A.2.1.

As discussed in section 3.5.4 the general trends on width and depth remain consistent between
models trained on 2D RXOR and MNIST. However, as we can see in Figure A.2 there are some
differences that are worth noting. Firstly, in the case of 2D RXOR models that used the ReLU
activation performed better (see Section A.2.1) whereas we see from Figure A.2a that MLPs with
Sigmoid units improve the robustness potential of the models trained on MNIST. This observa-
tion prevents us from making any claims about the relationship between robustness potential and
activation function, rather we posit that certain activation functions are better suited to certain
models and datasets. Secondly, we note from Figure A.2b that adding batch normalization to a
model increases AUC∗εj but decreases AUCεj . This observation is consistent with our expectation
and existing literature since it is common to use batch normalization to increase the classification
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(a) (b)

(c) (d)

Figure A.1: The influence of various modeling choices on P (robust|εi, εj) as measured by AUCεj

and AUC∗εj for MLPs trained on 2D RXOR data. Subfigure (a) shows the effect of changing the
activation function, (b) shows the impact of adding batch normalization, (c) shows the impact of
adding dropout, and (d) shows the impact of adding skip connections in a 2-layer MLP.
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(a) (b)

(c) (d)

Figure A.2: The influence of various modeling choices on P (robust|εi, εj) as measured by AUCεj

and AUC∗εj for MLPs trained on MNIST. Subfigure (a) shows the effect of changing the activation
function, (b) shows the impact of adding batch normalization, (c) shows the impact of adding
dropout, and (d) shows the impact of adding skip connections in a 2-layer MLP.

accuracy [Ioffe and Szegedy, 2015], and Galloway et al. [2019] have shown that batch normaliza-
tion is detrimental to adversarial robustness because the normalization parameters are ill-suited for
perturbed data.

Trends in Convolutional Neural Networks

Having verified that the relationship between modeling choices and robustness potential transcends
data complexity, we run experiments to determine if this relationship is maintained when the com-
plexity of the model is increased. To this end, instead of using MLPs, the experimental results
presented in this section use CNNs. At each layer of a CNN, the output is computed by diving the
input (or the output of the previous layer) into segments and applying a single-layer MLP to each
input segment. Therefore the modeling choices that apply to MLPs also apply to CNNs. Note that
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the number of convolutional filters represents the width of the model. In addition to the model-
ing choices common between CNNs and MLPs, there are some CNN-specific modeling choices
related to how the input is to be segmented. In practice, segmentation is performed via sliding
a window over the spatio-temporal dimensions of input and the modeler may choose the size of
the window and the stride by which the window is moved in each step. Based on the sizes of the
window and stride in the previous layers, we can determine for a layer its receptive field, i.e. the
effective window size for the layer with respect to the input to the model.

Figure A.3 shows the AUCεj and AUC∗εj for different modelling choices. Considering the
choices that are common between MLPs and CNNs first, we note that the general trend observed
in sections 3.5 and 3.5.4 are present here as well with one exception that is increasing the width
of the middle layer and the last layer yields higher AUCεj and AUC∗εj than increasing the width of
the first layer (see Figure A.3c), with the middle layer yielding the highest AUCεj . We hypothesize
that this difference arises because unlike the MLP, the CNN processes segments of the input. The
receptive field of the CNN increases at deeper layers so the additional width is more useful when
the model is processing a larger part of the input.

Turning our attention to modeling choices specific to CNNs, namely the size of the receptive
field (Figure A.3h) and the stride (Figure A.3i), we note that models that have larger receptive fields
and smaller strides tend to have greater robustness potential than those with smaller receptive field
and larger strides, respectively. Changing the receptive field and the stride can change the total
number of model parameters so we slightly modified the width of the network such that the total
number of parameters in the models being compared remained similar. This change of width does
not confound the results the widest model is not the one with the highest AUCεj and AUC∗εj in
Figures A.3h and A.3i.
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(a) (b)

(c) (d)
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(g) (h)

(i)

Figure A.3: The influence of various modeling choices on P (robust|εi, εj) as measured by AUCεj

and AUC∗εj for CNNs trained on MNIST. Subfigure (a) shows the areas for single-layer CNN with
an increasing number of filters, (b) shows the areas for CNNs with increasing depth, (c) shows
the effect of widening different layers in a 3-layer CNN, (d) shows the effect of changing the
activation function, (e) shows the impact of adding batch normalization, (f) shows the impact of
adding dropout, (g) shows the impact of adding skip connections in a 2 layer CNN, (H) shows the
impact of increasing the size of the convolutional kernel, and (I) shows the impact of increasing
the stride of the convolutional kernel.
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Appendix B

Supplementary material for chapter 4

B.1 A Theoretical Setting for sparsity
We formalize and prove the results mentioned in section 4.2.3 linking adversarial sparsity to the
number of perturbations. f ,x, ε and n ≥ 3 are fixed.

Proposition B.1. Let µ be the probability measure associated with the uniform distribution over
admissible set ∆. Let D a distribution of sequences of subsets ∆m ⊂ ∆, indexed on M . Assume
D is such that the volume of ∆m only depends on m:

µ(∆m)

∆
= g(m) (B.1)

Assume Adv(f, x, ε) = {δj, 1 ≤ j ≤ k} with (δj) uniformly sampled iid. over ∆ Then we have:

E(δj)∼U(∆)[AS(f, ε, x)] =

∫
M

(1− g(m))kdm (B.2)

Proof. Let us note Xj = inf{m, δj ∈ ∆m}, such that

AS(f, x, ε, (∆m)) = inf
1≤j≤k

Xj

Recall that:

E(δj)∼U(∆)[AS(f, ε, x)]

= E(δj)∼U(∆)[E(∆m)∼D)[AS(f, ε, x, (∆m))]]

= E(∆m)∼D)[E(δj)∼U(∆)[AS(f, ε, x, (∆m))]]

= E(∆m)∼D)[

∫
M

P(δj)∼U(∆)[AS(f, ε, x, (∆m)) > m]dm]

(B.3)

Note that
P(δj)∼U(∆)[Xj > m] = P(δj)∼U(∆)[δj /∈ ∆m]

=
µ(∆̄m)

µ(∆)
= 1− g(m)

(B.4)
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Moreover, since X1, ..., Xk are independent,

P(δj)∼U(∆)[( inf
1≤j≤k

Xj) > m]

= P(δj)∼U(∆)[X1 > m ∧ ... ∧Xk > m]

= Π1≤j≤kP(δj)∼U(∆)[δj /∈ ∆m]

= (1− g(m))k

(B.5)

It follows

E(δj)∼U(∆)[AS(f, ε, x)]

= E(∆m)∼D)[

∫
M

(1− g(m))kdm]

=

∫
M

(1− g(m))kdm

(B.6)

In the L2 case M = [0, π], ∆ = Sn2 and ∆α is a spherical cap of angle α. When α ≤ π
2

formula
expressing the area of a spherical cap is derived in Li [2011] and equal to:

A(α) =
π
n
2

Γ(n
2
)
Isinα2(

n− 1

2
,
1

2
) (B.7)

where Γ is the Gamma function and I is the regularized incomplete beta function. Given that
I1(a, b) = 1 it follows that:

g(m) = g(α) = tα := Isinα2(
n− 1

2
,
1

2
) (B.8)

.
When π

2
< α < π the cap of angle α is merely the complementary set on the sphere of the cap

of angle π − α. Therefore g(α) = 1− g(π − α) and:

E[AS(f, x, ε)] =

∫ π

0

((1− g(α))kdα

=

∫ π
2

0

((1− tα)k + tkα)dα

(B.9)

In the L∞ case, M = {0, ..., n}, ∆ = {±1}n, ∆m = {δ ∈ ∆ | ∀q > m δσ(q) = uσ(q)}.
Therefore g(m) = 2m−n and

E[AS(f, ε, x)] =
n∑

m=0

(1− 2m−n)k =
n∑

m=0

(1− 2−m)k (B.10)

We now show that E[AS(f, ε, x)] ∈ Θ(n− log2 k). On the one hand,

ln((1− 2−m)k = k. ln(1− 2−m) ≤ −k.2−m (B.11)
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from which it follows:

E[AS(f, ε, x)] ≤
blog2 kc∑
m=0

e−2log2 k−m +
n∑

m=blog2 kc+1

(1− 2−m)k

≤ e−1 + ...+ e−m + (n− blog2 kc).1

≤ n− log2 k + 1 +
1

e− 1

= n− log2 k +
e

e− 1

(B.12)

On the other hand,

k. ln(1− 1

k
) ≥ k.(1− 1

1− 1
k

) =
−k
k − 1

(B.13)

Thus for k ≥ 2

E[AS(f, ε, x)] ≥
n∑

m=blog2 kc+1

(1− 2−m)k

≥ (n− blog2 kc).(1− 2−blog2 kc−1)k

≥ (n− log2 k).(1− 1

k
)k

≥ (n− log2 k).e−
k
k−1

≥ (n− log2 k).e−2

(B.14)

Since (1− 1
2
)2 = 1

4
,(1− 1

3
)3 = 8

27
and for k ≥ 4 e= k

k−1 ≥ e
4
3 > 1

4
we can conclude:

E[AS(f, ε, x)] ≥ (n− log2 k)

4
(B.15)

This also applies when k = 1, since E[AS(f, ε, x)] = n−
∑

m≤n 2−m ≥ n− 2 ≥ n
4

B.2 Additional experiments

B.2.1 ImageNet
L2 attacks on ImageNet are not as popular as on CIFAR10. We however apply them, both for
reference and to verify that angular sparsity computation scales reasonably to a larger input size.
We evaluate pretrained ResNet models provided in the Robustbench framework. One is trained in
a standard fashion and the other adversarially against L∞ perturbations, following Salman et al.
[2020a]. All take inputs of size 224x224. We apply L2 perturbations of radius ε = 1.0. Everything
else is similar to the CIFAR10 experiments.

We report the results in Figure B.1. We report higher robustness (under all metrics) than we
did for CIFAR10; this is consistent with the fact that ε = 1.0 in a 224x224 vector space allows a
smaller perturbation per pixel budget than ε = 0.5 in a 32x32 space. In the absence of L2-robust,
easily available ImageNet models we chose a small value of ε.
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1 Architecture Defenses Natural accuracy Adv. accuracy Sparsity
2 ResNet-50 None 87.8% 0% 0.194
3 ResNet-18 Salman et al. [2020a] 52.9% 39.5% 0.426
4 ResNet-50 Salman et al. [2020a] 64.0% 53.4% 0.415

Table B.1: Evaluation of defended and undefended ImageNet models under L2 attack with 20 iter-
ations and ε = 1.0. We report Natural accuracy (without attack), adversarial accuracy (AutoPGD),
and adversarial angular (residual) sparsity.

B.2.2 Visual Transformers
We evaluate a B-16 Visual Transformer Architecture (ViT), pretrained on ImageNet and fine-tuned
on CIFAR10 [Dosovitskiy et al., 2021]. Recent works have shown that these models learn different
features than Convolutional Neural Networks [Raghu et al., 2021] which raises the question of their
behavior against adversarial examples. In fact, some works have already claimed that ViTs are
more robust to attacks than CNNs [Shao et al., 2021]. Investigating these claims is an interesting
use case of adversarial sparsity.

We evaluate this ViT model on L2 perturbations with the same parameters as in section 4.5. It
reaches a natural accuracy of 97%, greater than any of our ResNet-18 models, and an adversarial
accuracy of 0%. Its L2 sparsity is 0.183, almost equal to that of the ResNet-18 model trained with
data augmentation (line 3). The training recipe we use to fine-tune the model employs similar
augmentation methods. This suggests that ViTs and ResNets behave similarly against the same
L2 PGD threat model. This challenges the conclusions of Shao et al. [2021] on the adversarial
robustness of ViTs.
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Appendix C

Supplementary material for chapter 5

C.1 robust_speech: an ASR robustness framework

C.1.1 Motivation
There exist multiple robustness-oriented development frameworks: Advertorch [Ding et al.,
2019], Foolbox [Rauber et al., 2020, 2017], Cleverhans [Papernot et al., 2018], etc. How-
ever, nearly all of these packages suppose that the model performs image classification. Yet apply-
ing standard classification-based attacks to Speech Recognition is not trivial, as ASR models are
typically more complex than a stack of PyTorch layers. For instance, they must handle variable
length inputs, are trained with tricky losses, contain recurrent networks, etc. Some attacks have
been developed with the explicit goal of fooling ASR models (for instance by relying on acoustic
models), and these attacks are rarely included in general robustness packages.

robust_speech1 fills that gap and offers a simple way to evaluate ASR models against
Adversarial attacks. It is based on Speechbrain [Ravanelli et al., 2021], a flexible Speech Toolkit
that handles loading ASR datasets, running ASR models, and accessing their loss, predictions,
and error rates - all of which are often necessary to run attacks. robust_speech adds useful
features and metrics to SpeechBrain and reproduces multiple general and ASR-specific attacks.

Chapters 5,6, 7 and 8 all use robust_speech as a primary codebase for running and evalu-
ating attacks and defenses.

C.1.2 Supported features
A non-exhaustive list of features supported by robust_speech includes:

• Attacks: PGD [Madry et al., 2018], CW [Carlini and Wagner, 2016, 2018], Imperceptible
[Qin et al., 2019] Genetic [Taori et al., 2019], Universal [Neekhara et al., 2019], Kenansville
[Abdullah et al., 2021a], Yeehaw [Abdullah et al., 2023]...

• Defenses: Randomized smoothing [Cohen et al., 2019, Olivier and Raj, 2021], Adversarial
training [Madry et al., 2018, Olivier and Raj, 2023b]

1https://github.com/RaphaelOlivier/robust_speech
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• Models: DeepSpeech2 [Amodei et al., 2016], Whisper [Radford et al., 2022], all Speech-
Brain models, and customizable Transformers and LSTM models

• Support for self-supervised models on Fairseq [Ott et al., 2019] and HuggingFace [et al.,
2020], such as Wav2Vec2 [Baevski et al., 2020], HuBERT [Hsu et al., 2021] and Data2Vec
[Baevski et al., 2022b]

• Datasets: CommonVoice [Ardila et al., 2020], LibriSpeech [Panayotov et al., 2015], Speech-
Command [Warden, 2018], with evaluation metrics WER, CER, SER, SNR.

• Run attacks over several models at once, or from a source to a target model

C.2 Additional details on Membership Inference experiments
This section reports all of our results on Membership inference (MI) experiments. It is a more
thorough version of section 5.5.3, which evaluates both the impact of white-box features and input
perturbations on MI performance.

C.2.1 Experimental Setup
Baseline MI features

Our baseline feature extractor follows Shah et al. [2021c] and corresponds to a set of errors com-
puted between the target and output transcriptions of the ASR model M , combined with the
model’s confidence with regard to these transcriptions. Specifically, we use: the Word Error Rate
(WER); the total number of edits, substitutions, insertions, and deletions; the length ratio between
prediction and target transcription; the confidence of the model with regard to the transcription,
i.e. the log-likelihood of the transcription. We compute all these features for the top four transcrip-
tion hypotheses of the model and dub their combination as the Errors feature set. Those features
can be computed in a black-box setting where the attacker has only access to model outputs and
confidence.

Data

Our datasets to train ASR target and shadow models and MI classifiers all use data taken from
LibriSpeech (LS) [Panayotov et al., 2015]. Specifically, for the target ASR model, Dtrg

ASRtrain
is

composed of 300h from LS’s train-clean-360 partition. The remaining 60h of this partition were
held out for preliminary experiments and to create the negative samples of the Dtrg

MI partitions.
Similarly, for the shadow model,Dshd

ASRtrain
contains 80h from LS’s train-clean-100 partition, whereas

the remaining 20h are held-out data for preliminary experiments and to create the negative MI
subsets. Both DMItrain are composed of 5,000 utterances (∼ 18h), whereas each DMItest contains
1,000 utterances (∼ 3.5h).
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Table C.1: Results for experiments with full and partial knowledge of the training data. For every
experiment, we report the mean and standard deviation for different metrics, obtained by fitting the
MI classifier 10 times with different random seeds.

Knowledge# Type of Input Features Acc AUC AUCFPR=0.1 Access
1 Natural Errors 70.5 ± 0.53 77.5 ± 0.27 58.8 ± 0.58 Black
2 Natural Att 84.6 ± 0.14 89.3 ± 0.10 62.2 ± 0.34
3 Natural Att + CTC 87.2 ± 0.39 92.7 ± 0.09 72.4 ± 0.29
4 Natural Att + CTC + Errors 88.2 ± 0.18 93.8 ± 0.14 75.3 ± 0.72

Gray

5 Gaussian Att 87.4 ± 0.32 93.8 ± 0.13 76.5 ± 0.83
6 Gaussian Att + CTC 87.5 ± 0.23 93.8 ± 0.15 76.5 ± 0.58
7 Gaussian Att + CTC + Errors 88.6 ± 0.37 94.5 ± 0.14 77.6 ± 0.83

Gray

8 Adversarial Att 86.2 ± 0.21 92.8 ± 0.20 73.7 ± 0.76
9 Adversarial Att + CTC 86.8 ± 0.26 93.1 ± 0.13 75.2 ± 0.29
10 Adversarial Att + CTC + Errors 86.0 ± 0.58 92.6 ± 0.25 74.1 ± 0.94

White

11 Nat. + Gauss. Att + CTC 89.4 ± 0.33 94.8 ± 0.14 78.1 ± 0.57 Gray
12 Nat. + Adv. Att + CTC 89.1 ± 0.23 95.1 ± 0.09 79.5 ± 0.45 White
13 Nat. + Gauss. + Adv Att 89.5 ± 0.25 95.1 ± 0.12 79.0 ± 0.68
14 Nat. + Gauss. + Adv. Att + CTC 89.4 ± 0.36 95.0 ± 0.16 78.9 ± 0.73

Full

15 Nat. + Gauss. + Adv. Att + CTC + Errors 88.3 ± 0.23 94.0 ± 0.12 75.9 ± 0.49
White

16 Natural Errors 71.4 ± 0.45 79.0 ± 0.23 57.3 ± 0.34 Black
17 Natural Att + CTC + Errors 87.4 ± 0.23 92.3 ± 0.17 70.6 ± 0.92 Gray
18 Gaussian Att + CTC 85.9 ± 0.36 93.1 ± 0.19 74.0 ± 0.86 Gray
19 Adversarial Att + CTC 85.9 ± 0.41 91.7 ± 0.14 70.4 ± 0.37 White
20 Nat. + Gauss. + Adv. Att 87.7 ± 0.21 94.3 ± 0.10 76.9 ± 0.65

Partial

21 Nat. + Gauss. + Adv. Att + CTC 88.1 ± 0.17 94.2 ± 0.19 75.9 ± 0.87 White

ASR target and shadow models

Our target and shadow models correspond to SpeechBrain’s Transformer model. As mentioned
above, the target model was trained using the Dtrg

ASRtrain
dataset, whereas the shadow model was

trained using the Dshd
ASRtrain

dataset. We evaluated the two models using the test-clean and test-other
partitions of LS. Both models follow SpeechBrain’s default configuration and training parameters
with the exception of: the number of epochs = 60; batch size = 16; gradient accumulation factor
= 2. All experiments were run without the use of a language model. The target model obtains
a WER of 5.45% and 15.17% for LS’s test-clean and test-other partitions, whereas the shadow
model obtains a WER of 10.32% and 24.70%, for the same partitions. When computing features,
decoding was performed with a beam size of 30.

Attack perturbations

We experimented with several choices of hyperparameters for the perturbations detailed in Al-
gorithms 3 and 2. In the results we report, for Gaussian perturbations, we use 8 different SNRs
linearly spaced between 0 and 50dB. For each SNR we perturb the signal 4 times, after which we
average the resulting features. For adversarial perturbations, we use 16 adversarial radii ε: nine
evenly spaced from 0.001 to 0.009 and seven from 0.01 to 0.07. We fix η = 1 and N = 1, which
we find are as effective for MI as more computationally expensive hyperparameters.
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Evaluation and implementation details

To allow our work to be compared to other approaches in the literature, our main metrics of eval-
uation are accuracy (Acc) and area under the ROC curve (AUC). However, the authors in Carlini
et al. [2022] argue that MI attacks should be evaluated for low false-positive rates, as identifying a
few data records with high precision should be evaluated higher than identifying many unreliably.
In line with this argument, we additionally report the performance of our attack in terms of the
normalized AUC for a maximum false positive rate (FPR) of 0.1.

Experiments using adversarial noise were built with robust_speech. MI is performed
using Scikit-Learn’s Random Forest classifier [Pedregosa et al., 2011] with 100 estimators.

C.2.2 Results
The results for our full ablation study are aggregated in Table C.1. We are interested in evaluating
the effectiveness of loss-based features on the one hand, and perturbation-based features on the
other.

Lines 1–15 correspond to a full knowledge attack – where the shadow model is equal to the
target model – while lines 16-21 correspond to a partial knowledge attack, where we leverage a
shadow model to train the MI classifier. In the table, a Natural input corresponds to an experiment
with features computed from the original data, while Gaussian and Adversarial correspond to
features computed from perturbed data.

Lines 1 and 16 report the results obtained with the Errors feature set for the original input.
These experiments are based on black-box access to the model, previously explored in the literature
[Shah et al., 2021c]. From lines 2–4, we see that allowing gray-box access, and consequently loss
computation, substantially improves all success metrics in comparison to the black-box access
of line 1. In fact, by simply using the attention loss (Att) as an isolated feature, we are able to
improve results by over 10% for both Acc and AUC, while the CTC loss and Errors only provide
incremental improvements over the attention loss.

From lines 5–7 and 8–10, we observe a similar trend for the contribution of each feature for
perturbed inputs. In addition, we see that considering only the information on either the Gaussian
or the adversarial perturbations provides results that are comparable to the natural inputs. Interest-
ingly, while for the Gaussian perturbations, the Errors set seems to improve results, this does not
hold for adversarial perturbations. We hypothesize that since the adversarial perturbation moves
the input to a “worst-case” location in terms of loss, the Errors may not provide any meaningful
information.

When combining natural inputs with each of the perturbed inputs, lines 11–12, we see that
both types of perturbations bring a similar level of improvement, reaching values of close to 89%
and 95% for Acc and AUC. Moreover, even though we reach the best result for Acc – and very
close performance in terms of the remaining metrics, when compared to line 12 –when combining
natural and both types of perturbed inputs, this combination of features does not improve MI
performance in a meaningful way. Still, it is worth noting that lines 11–13 bring an improvement
of nearly 20% when compared to line 1, using only loss-based features. On the other hand, as
was observed in line 10, when adding error features to the full combination of inputs (line 15),
performance degrades for all metrics. This may be due to classification overfitting, as the total
number of features grows to 225.
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For the more realistic scenario of lines 16–21, we select only the feature combinations that
provide us with the best results in lines 1–15. Here results follow a similar trend, with the com-
bination of natural and both perturbed inputs giving us the best overall results, allowing for an
accuracy close to 88%, a 1% degradation over the full-knowledge attack. However, for both set-
tings, considering only natural or Gaussian perturbed inputs already results in very high accuracy.
This may be helpful when computational resources are limited and calculating adversarial per-
turbations is not an option. Further, adversarial perturbations should only be considered as an
additional feature, as they alone do not perform better than just the natural input.

Finally, for a maximum FPR of 10%, the proposed features are generally able to reach values
close to 80% AUC, almost 20% above Errors features. This shows that low-FPR operation points,
which are particularly relevant to MI applications [Carlini et al., 2022], also benefit from loss and
perturbation-based features.
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Appendix D

Supplementary material for chapter 6

D.1 Black box attack results on speech recognition
Beyond transferability, black-box optimization and optimization-free attacks are other approaches
to fool models without gradient access. We evaluate the validity of those approaches in this section,
by analyzing the models of Section 5.2 on existing attacks. We focus on the untargeted setting,
which is much simpler than the targeted one.

D.1.1 Attacks
Genetic ASR attack

Alzantot et al. [2018] propose an indirect optimization attack for ASR models. It employs a genetic
algorithm where a population is maintained and renewed, using the adversarial objective as a fitness
score. Such indirect attacks are useful to attack models that are only available as a black-box
oracle, without gradient information; but also to fool models whose gradients are not useful due to
the obfuscation effect of an incomplete defense [Athalye et al., 2018a].

The authors of Alzantot et al. [2018] use this method as a targeted attack. However, they only
evaluated it on the Speech Commands dataset with 10 possible labels. To run such an attack on a
large ASR model with a full English sentence as the target is considerably more challenging. To
keep some amount of attack success we use the same algorithm for a simpler, untargeted objec-
tive: the loss on the original label is used as a fitness score. Perturbations are L∞-bounded by a
hyperparameter ε.

Kenansville attack

The DFT Kenansville attack [Abdullah et al., 2021a] is a Signal Processing attack: it does not
consider model predictions or loss to modify the audio signal. Instead, this attack removes the
spectral components of the input that have the lowest power spectral density (PSD). This leaves
human perception mostly unchanged but typically affects the predictions of ASR models, which
tend to exploit high-frequency components more than humans. Like L2-PGD the distortion of that
attack is controlled with the SNR.
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D.1.2 Experimental setting
We reproduce the setting of Section 5.2. We attack SpeechBrain LSTM and Transformer, Seq2Seq
and CTC models, as well as DeepSpeech2 and Wav2Vec2 models. We run attacks on the Lib-
riSpeech dataset. We use 2000 optimization steps for the Genetic attack. We evaluate attacks with
the WER on the original input.

D.1.3 Results

Model Clean Genetic
WER WER↑

SpeechBrain LSTM Seq2Seq 5.02 25.49
SpeechBrain LSTM CTC 6.15 24.27

SpeechBrain Transformer Seq2Seq 4.11 21.6
SpeechBrain Transformer CTC 5.88 20.63

Wav2Vec2-BASE-100h 6.27 13.19
Wav2Vec2-BASE-960h 3.53 16.63

Wav2Vec2-LARGE-960h 2.85 11.08
DeepSpeech2 9.44 74.51

Table D.1: results of all models on clean data and under the (targeted) Carlini&Wagner attack
and the (untargeted) Genetic attack. For CW we report the WER, SNR, and attack accuracy (i.e.
success rate). The bound for the Genetic attack corresponds to an average SNR of 20dB. The up
and down arrows indicate whether large or small WER values mean successful attacks.

The Kenansville DFT attack (Figure D.1) has little effect in our evaluation setting: SNRs
greater than 20dB fail to increase the WER significantly, and adversarial examples with lower
SNRs are easily detected by the human ear. Comparing these results to Abdullah et al. [2021a]
is not easy for two reasons: the authors report different metrics to measure distortion and evalu-
ate on a different dataset. The adversarial examples they publicly released show that the original
speech inputs are of lower quality than the LibriSpeech clean test set. It is therefore possible that
Kenansville is most effective on inputs that are already challenging to the ASR models.

The Genetic attack [Alzantot et al., 2018] (Table D.1 column 3) also only achieves a WER
degradation of each model by 8 to 20 points, even with an SNR of 20dB, for most models. One
major exception is the DeepSpeech2 model, which was proposed earliest and on which this attack
was initially evaluated by its original authors. Therefore we confirm the effectiveness of this attack
when reproducing its original evaluation condition, but it loses most of its effectiveness when
applied to stronger models.

DeepSpeech2 is also the most affected model by the Kenansville attack, by a 5% WER margin.
Beyond architecture changes, one important improvement since DeepSpeech2 has been the intro-
duction of data augmentation methods like SpecAug [Park et al., 2019]. We hypothesize that this
method plays a role in defending models against some attacks. The Kenansville attack in particular
relies heavily on alterations of the input’s frequency spectrum, and models trained with spectral
augmentation are likely to be less vulnerable to those simple attack methods.
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Figure D.1: Attacks results for the untargeted DFT Kenansville attack. We plot the WER as a
function of attack SNR.

In conclusion, it seems that recent progress in ASR performance and model scaling was suffi-
cient to block existing black-box attacks. Since we observe this in the simple untargeted setting,
it naturally extends to targeted attacks as well. The success of transferable adversarial attacks, the
other gradient-free approach to fool models, is therefore closely related to the threat that adversarial
attacks can cause in practical settings.

D.2 Experimental details for LibriSpeech experiments

D.2.1 Frameworks
We compute adversarial examples using the robust_speech framework (section C.1). This library
uses Speechbrain [Ravanelli et al., 2021] to load and train ASR models and offers implementa-
tions of various adversarial attack algorithms. Models and attacks are implemented using PyTorch
[Paszke et al., 2019].

We use robust_speech to evaluate SpeechBrain-supported models. In section 6.4 we export
a HuggingFace Dataset [Lhoest et al., 2021], then evaluate models via the HuggingFace Trans-
formers [et al., 2020] library. Finally, we use Fairseq [Ott et al., 2019] for training models from
scratch

149



D.2.2 Attack Hyperparameters
We exploit the Carlini&Wagner attack with the following hyperparameters:

• initial ε: 0.015 (and 0.04 in appendix D.5.1)

• learning rate: 0005

• number of decreasing ε values: 1

• Regularization constant c: 10

• optimizer: SGD

• attack iterations: 10000 in section 6.3.1, 1000 in section 6.5

D.2.3 Dataset and targets
Our adversarial dataset in section 6.3.1 consists of 85 sentences from the LibriSpeech test-clean
set. To extract these sentences we take the first 200 sentences in the manifest, then keep only those
shorter than 7 seconds. In section 6.5, we take the first 100 sentences and filter those shorter than
14 seconds.

As attack targets, we use actual LibriSpeech sentences sampled from the test-other set. Our
candidate targets are:

• Let me see how can I begin

• Now go I can’t keep my eyes open

• So you are not a grave digger then

• He had hardly the strength to stammer

• What can this mean she said to herself

• Not years for she’s only five and twenty

• What does not a man undergo for the sake of a cure

• It is easy enough with the child you will carry her out

• Poor little man said the lady you miss your mother don’t you

• At last the little lieutenant could bear the anxiety no longer

• Take the meat of one large crab scraping out all of the fat from the shell

• Tis a strange change and I am very sorry for it but I’ll swear I know not how to help it

• The bourgeois did not care much about being buried in the Vaugirard it hinted at poverty
Pere Lachaise if you please

For each sentence we attack, we assign the candidate target with the closest length to the
sentence’s original target.
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D.2.4 Models
Training Wav2Vec2 models from scratch

We use Fairseq to train BASE and LARGE Wav2Vec2 models from scratch. Unfortunately, no
configuration or pretrained weights have been released for that purpose, and we resort to using
Wav2Vec2 fine-tuning configurations while simply skipping the pretraining step. Despite our at-
tempts to tune training hyperparameters, we do not match the expected performance of a Wav2Vec2
model trained from scratch: [Baevski et al., 2020] report a WER of 3.0% for a large model, while
we only get 9.1%.

Generating adversarial examples

Wav2Vec2, HuBERT, and Data2Vec models are all supported directly in robust_speech and are
therefore those we use for generating adversarial examples. We use the HuggingFace backend
of Speechbrain for most pretrained models, and its Fairseq backend for a few (Wav2Vec2-BASE

models fine-tuned on 10h and 1h, and models trained from scratch). In both cases, the model’s
original tokenizer cannot be loaded in SpeechBrain directly. Therefore, we fine-tune the final
projection layer of each model on 1h of LibriSpeech train-clean data.

The Wav2Vec2 model pretrained and fine-tuned on CommonVoice is a SpeechBrain original
model. Similarly, we fine-tune it on 1h of LibriSpeech data as a shift from the CommonVoice
output space to the LibriSpeech one. As a result, all our models share the same character output
space.

Evaluating pretrained models

In section 6.4, we directly evaluate models from HuggingFace Transformers and SpeechBrain on
our adversarial dataset, without modification.

D.3 Experimental details and results for small-scale experiments
This section describes the experimental details used in section 6.6.

D.3.1 CIFAR10 experiments
We use a pretrained ResNet18 as a proxy, and a pretrained ResNet50 as a private model.

Our "very targeted attack" PGDk consists in applying the following steps for each input:

• target selection. We sample uniformly an ordered subset of k classes out of 10 (E.g. with
k = 3: (2, 5, 6)). We also sample a point uniformly on the unit k-simplex {x1, ..., xk ∈
[0, 1]n/

∑
iXi = 1}, by sampling from an exponential distribution and normalizing [Onn

and Weissman, 2011] (e.g. (0.17, 0.55, 0.28)). We combine the two to obtain a 10-dimensional
vector with zero probability on all but the selected k classes (y = (0, 0.17, 0, 0, 0.55, 0.28, 0, 0, 0, 0)).
This is our target.
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Figure D.2: Transferred attack success rate when varying the "target precision" on a CIFAR10
model. The more targeted the attack, the worse its transferability at an equal white-box success
rate

• During the attack, we use Projected Gradient Descent [Madry et al., 2018] to minimize the
KL divergence KL(f(x), y) between the softmax output and the target, within L2 radius
ε = 0.5. We use learning rate 0.1 for k ∗ 1000 attack steps.

• We measure attack success rate by measuring the top-k match between f(x) and y:

Acc =
1

k

k∑
i=1

1[argsort(f(x))i = argsort(y)i (D.1)

with argsort(y) returning the indices of the sorted elements of y in decreasing order. For in-
stance f(x) = (0.1, 0.05, 0.05, 0.05, 0.35, 0.2, 0.05, 0.05, 0.05, 0.05) would get an accuracy
of 0.666, as the top 2 classes match with y but not the third.

We evaluate attacks on 256 random images from the CIFAR10 dataset. For each value of k
between 1 and 10 we repeat the experiment 3 times and average the attack success rates. In figure
D.2 we plot the L∞ attack success rate (ε = 0.03) for both white-box and transferred attacks as a
function of the "target precision" k.

D.3.2 Mildly targeted ASR attacks
We train 5 identical conformer encoder models with 8 encoder layers, 4 attention heads, and hidden
dimension 144. We train them with CTC loss for 30 epochs on the LibriSpeech train-clean-100
set, with different random seeds.

We run a L2-PGD attack with SNR bound 30dB, in which we minimize the cross-entropy loss
between the utterance and its transcription prepended with the word "But". The utterances we
attack are the first 100 sentences in the LibriSpeech test-clean set, to which we remove 7 sentences
already starting with the word "But". We generate adversarial examples using each of the 5 models
as a proxy and evaluate these examples on all 5 models. We report the full results in Table D.2.
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Model\Proxy 1 2 3 4 5
1 98% 14% 12% 13% 19%
2 23% 100% 11% 14% 24%
3 18% 22% 96% 20% 16%
4 12% 19% 20% 100% 17%
5 28% 14% 22% 22% 96%

Table D.2: Success rate of our mildly targeted attack, using each of the 5 conformer networks both
as proxy and model. The attack is considered successful on an input if the prepended target word
is the first word in the transcription.

D.4 Full results table for cross-model LibriSpeech and Lib-
riVox attacks

Table D.3 completes the ablation study in section 6.5 by evaluating all pairwise Proxy-Model
combinations in our pool of Wav2Vec2-type models, trained on LibriSpeech and/or LibriLight.

D.5 Influence of hyperparameters on attack results

D.5.1 Attack radius
In Table D.4 we extend the results of Table 6.2 by comparing attack results for two different attack
radii. These radii are ε = 0.015 and ε = 0.04, corresponding respectively to Signal-Noise Ratios
of 30dB and 22dB respectively. The former is identical to Table D.4; the latter is substantially
larger, and corresponds to a more easily perceptible noise.

Looking at the white-box attack results on the proxy models the difference is drastic: with
larger noise the targeted success rate jumps from 88% to 98%. The transferred attack results on
SSL-pretrained models also increase overall, with success increases ranging from 0% (Wav2Vec2-
LARGE) to 20% (Data2Vec-LARGE) with a median increase of 10%. Crucially, however, the
targeted success does not increase at all and even decreases for ASR models trained from scratch.
This confirms that there is a structural difference between the robustness of ASR models with and
without SSL, that cannot be bridged simply by increasing the attack strength.

D.5.2 Language models
In section 6.4 we report the results of our adversarial dataset on multiple Wav2Vec2-type mod-
els, enhanced with an N-gram language model whenever available. In Table D.5 we evaluate the
influence of that language model on attack results.

We observe that the attack success rate systematically increases by 8 to 17% when adding a
language model to the ASR model. This is understandable considering that our targets are sound
English sentences: if a model tends to transcribe that target with mistakes, the language model can
bridge that gap. To put it differently, the more prone an ASR model is to output sentences in a
given distribution, the more vulnerable it is to attacks with targets sampled from that distribution.
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Model\Proxy W2V- B W2V-B W2V-B W2V-B D2V-B
LS960 960h LS960 100h LS960 10h LS960 1h LS960 960h
CER WER CER WER CER WER CER WER CER WER

W2V-B LS960 960h 96.37 84.72 80.61 49.01 64.11 30.69 53.41 18.46 20.61 0
W2V-B LS960 100h 81.42 54.46 99.24 97.74 81.18 47.6 64.18 25.04 25.23 0
W2V-B LS960 10h 42.64 42.64 87.9 60.25 99.117 97.6 72.91 30.13 23.47 0
W2V-B LS960 1h 69.3 33.52 78.84 43.71 81.12 45.12 99.498 98.66 20.91 0

D2V-B LS960 960h 37.9 0 17.68 0 10.88 0 7.94 0 98.44 94.13
W2V-L LS960 960h 44.61 11 20.36 0 13.46 0 8.32 0 16.8 0
D2V-L LS960 960h 28.72 0 8.68 0 5.36 0 4.94 0 25.03 0
W2V-L LV60k 960h 29.24 0 11.12 0 5.68 0 3.19 0 13.73 0
HB-L LV60k 960h 23.83 0 7.29 0 4.83 0 3.91 0 14.92 0

HB-XL LV60k 960h 26.55 0 6.71 0 5.21 0 4.37 0 17.53 0
W2V-L CV CV+1h 27.38 0 12.59 0 11.01 0 9.61 0 19.24 0
W2V-B None 960h 7.84 0 4.45 0 4.05 0 3.83 0 5.51 0
W2V-L None 960h 8.12 0 4.63 0 4.55 0 3.44 0 5.44 0

W2V- L D2V-L W2V-L HB-L HB-XL
LS960 960h LS960 960h LV60k 960h LV60k 960h LV60k 960h

W2V-B LS960 960h 47.08 8.49 24.9 0 44.7 9.48 55.55 19.17 47.46 8.98
W2V-B LS960 100h 46.01 5.73 26.77 0 48.57 9.76 58.41 18.03 48.42 8.13
W2V-B LS960 10h 43.14 0 25.1 0 42.67 0 53.12 5.59 44.36 0
W2V-B LS960 1h 41.21 8.63 25.48 0.57 36.68 4.74 45.32 6.65 42.95 10.18

D2V-B LS960 960h 34.49 0 24.2 0 47.15 0.92 58.75 14.29 46.71 0.14
W2V-L LS960 960h 67.07 30.69 20.89 0 37.34 1.84 56.87 19.02 42.21 5.87
D2V-L LS960 960h 28.27 0 94.53 80.69 47.75 15.21 68.97 38.61 51.02 18.6
W2V-L LV60k 960h 25.19 0 16.05 0 97.13 88.61 71.78 39.18 46.61 11.88
HB-L LV60k 960h 27.19 0 30.08 0 49.27 17.47 97 87.98 56.83 28.71

HB-XL LV60k 960h 33.31 0 30.5 0 51.68 14.99 83.92 55.3 87.66 62.38
W2V-L CV CV+1h 27.8 0 26.85 0 56.72 11.67 46.94 0 39.95 0
W2V-B None 960h 11.19 0 9.6 0 7.16 0 6.72 0 11.07 0
W2V-L None 960h 11.15 0 9.19 0 7.52 0 7.45 0 11.23 0

W2V- L W2V-B W2V-L
CV CV+1h None 960h None 960h

W2V-B LS960 960h 10.81 0 2.62 0 2.53 0
W2V-B LS960 100h 11.01 0 2.82 0 2.58 0
W2V-B LS960 10h 11.19 0 2.65 0 2.66 0
W2V-B LS960 1h 11.81 0 3.03 0 3.04 0

D2V-B LS960 960h 8.01 0 2.32 0 2.38 0
W2V-L LS960 960h 8.2 0 2.39 0 2.54 0
D2V-L LS960 960h 8.76 0 2.44 0 2.39 0
W2V-L LV60k 960h 9.08 0 2.59 0 2.47 0
HB-L LV60k 960h 8.65 0 2.5 0 2.55 0

HB-XL LV60k 960h 8.41 0 2.49 0 2.36 0
W2V-L CV CV+1h 97.46 88.68 3.25 0 3.18 0
W2V-B None 960h 5.77 0 99.57 99.01 19.05 0
W2V-L None 960h 5.53 0 22.93 0 99.93 99.58

Table D.3: Targeted Character-level and Word-level success rate for adversarial attacks when vary-
ing the proxy and the target model within a pool of 13 models. The format is [Model]-[Size]
[Unlabeled data] [Labeled data]. [Model] is equal to W2V (Wav2Vec2), D2V (Data2Vec), or HB
(HuBERT). [Size] is equal to B (BASE), L (LARGE), or XL (XLARGE).
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Model Unlabeled Labeled Attack Attack success rate
data data SNR (word level)

targeted untargeted
Wav2Vec2-LARGE LV60k LS960 30dB 88.0% 100%

22dB 98.4% 100%
HuBERT-LARGE LV60k LS960 30dB 87.2% 100%

22dB 98.5% 100%
Data2Vec-BASE LS960 LS960 30dB 63.4% 100%

22dB 92% 100%
Wav2Vec2-BASE LS960 LS960 30dB 55.7% 100%

22dB 62.9% 100%
Wav2Vec2-BASE LS960 LS100 30dB 53.9% 100%

22dB 59.5% 100%
Wav2Vec2-LARGE LS960 LS960 30dB 50.7% 100%

22dB 49.4% 100%
Data2Vec-LARGE LS960 LS960 30dB 66% 100%

22dB 86.4% 100%
HuBERT-XLARGE LV60k LS960 30dB 80.9% 100%

22dB 95.5% 100%
UniSpeech-Sat-BASELS960 LS100 30dB 50.4% 100%

22dB 62.4% 100%
WavLM-BASE LV60k+VoxP+GS LS100 30dB 21.7% 100%

22dB 22.9% 100%
Wav2Vec2-LARGE CV CV+LS1 30dB 19.7% 100%

22dB 36.1% 100%
M-CTC-Large None CV 30dB 7.5% 76.4%

22dB 3.5% 83.4%
Speech2Text None LS960 30dB 7.3% 63.3%

22dB 2.3% 74.6%
SB CRDNN None LS960 30dB 5.9% 86.39%

22dB 1.5% 76.8%
SB Transformer None LS960 30dB 6.49% 90.56%

22dB 1.2% 76.1%

Table D.4: Results of the transferred adversarial attack on different ASR models, with multiple
Signal-Noise Ratios. The first three models correspond to the proxies used to generate the ad-
versarial examples. On all other models, the inputs have been transferred directly. We report for
each model how much unlabeled data was used for SSL pretraining and for ASR finetuning. We
also report its Word-Error-Rate on the LibriSpeech test-clean set, and the targeted and untargeted
word-level attack success rate (see section 6.3.2)

Language models are therefore more of a liability than a defense against attacks, and most likely
so would be many tricks applied to an ASR model in order to improve its general performance.
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Model Unlabeled Labeled Clean WER Attack success rate
data data (word level)

w/o
LM

with
LM

w/o
LM

with
LM

Wav2Vec2-LARGE LV60k LS960 2.2% 2.0% 80.2% 88.0%
HuBERT-LARGE LV60k LS960 2.1% 1.9% 77.3% 87.2%
Data2Vec-BASE LS960 LS960 3.2% 2.5% 51.7% 63.4%
Wav2Vec2-BASE LS960 LS960 3.4% 2.6% 43.6% 55.7%
Wav2Vec2-BASE LS960 LS100 6.2% 3.4% 41.8% 53.9%

Wav2Vec2-LARGE LS960 LS960 2.8% 2.3% 41.4% 50.7%
Data2Vec-LARGE LS960 LS960 2.2% 1.9% 56.9% 66%

HuBERT-XLARGE LV60k LS960 2.0% 1.8% 63.9% 80.9%
UniSpeech-Sat-BASE LS960 LS100 6.4% 3.5% 39.5% 50.4%

Table D.5: Results of the transferred adversarial attack on different ASR models, with and without
language models. We report for each model how much unlabeled data was used for SSL pretraining
and for ASR finetuning. We also report its Word-Error-Rate on the LibriSpeech test-clean set, and
the targeted word-level attack success rate (see section 6.3.2)

D.5.3 Effect of model regularization on transferability
As mentioned in section 6.3.1 we use regularization tricks like dropout in all proxy models when
optimizing the adversarial perturbation. In Figure 6.2b we plot the loss on proxy and private models
without that regularization, for comparison with Figure 6.2a. We observe that the loss degrades
significantly on private models without regularization.

On the other hand, the loss on the proxy converges much faster in Figure 6.2b: removing model
regularization makes for better, faster white-box attacks, at the cost of all transferability. To the
extent of our knowledge, past work like Carlini and Wagner [2018] have not used regularization for
generation, explaining why they report better white-box attacks than we do in terms of WER and
SNR. However, as we have established above, applying regularization against standard ASR mod-
els does not lead to transferable adversarial examples: for that SSL pretraining is also required.
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Appendix E

Supplementary material for chapter 7

E.1 Results on vanilla (non-adaptive) attacks
All the results we report in the main work are computed against the above adaptive attack, using
gradient batches of size 16. In Table E.1 we report results obtained by the PGD attack on our
trained defense, with σ = 0.01, with and without Expectation over Transformation. The WER
is significantly lower using vanilla attacks, demonstrating why using adaptive attacks is necessary
to correctly evaluate a defense. This also illustrates that our claims do not reflect obfuscation
phenomena, but rather actual adversarial robustness.

Model, Smoothing Adaptive SNR-PGD
35 30 25 20 15 10

Trained defense, σ = 0.02 No 29 39 54 66 90 100
Trained defense, σ = 0.02 Yes 34 46 60 70 92 100

Table E.1: Word Error Rate (%) for Our defense on the first 100 utterances of the LibriSpeech
clean test set under untargeted PGD attacks using various SNR. The first line corresponds to the
vanilla attack, the second uses an adaptive attack that averages gradients on 16 forward+backward
passes.

E.2 ROVER accuracy/time tradeoff
One drawback of ROVER voting is its important time consumption when using many inputs. This
may be partially due to its third-party, black-box implementation that does not use GPU compu-
tation. However, in Figure E.1 we show that ROVER voting time increases superlinearly with the
number of samples (where averaging and counting are of course linear): this is most likely an
irreducible complexity of the algorithm. Using more than 50 iterations is not practically feasible1.
This is why we use N = 16 in most of our experiments: even though more iterations may bring
marginal WER improvement, this value enables us to improve performance substantially while

1It is, in fact, forbidden by default in the publicly available implementation
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Figure E.1: Average ROVER Word-Error Rate and computation time (DeepSpeech2) for a single
utterance when varying N .

keeping the voting time negligible. Besides, 16 inputs can typically be fed to the model in one
batch, thus keeping the overall computation time low.

E.3 Certifying ASR smoothing
.

E.3.1 Robustness properties for classification
For multiclass classification, Cohen et al. [2019] are able to provide a robustness certificate based
on the probability of the most probable class A: if

pA = P(f(x+ ε) = A) (E.1)

and
pB = max

B 6=A
P(f(x+ ε) = B) (E.2)

then g(x+ δ) = A for all ‖δ‖2 < R with

R =
σ

2
(φ−1(pA)− φ−1(pB) (E.3)
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where g is the smoothed classifier:

g(x) = arg max
k∈{1,2,...,m}

P(f(x+ ε) = k) (E.4)

ε ∼ N (0, σ2I) and φ the standard gaussian CDF.
This result extends naturally from the binary classification case, which itself is a consequence

of the Neyman-Pearson lemma [Neyman and Pearson, 1933]. In the case of ASR, reducing the
problem to binary classification is not as trivial. We propose such a reduction by using thresholds
on the evaluation metric d (typically the WER).

E.3.2 Robustness properties for ASR
Name f an ASR model. We assume given an empirical target sentence ỹ (different from the golden
transcription y) and a threshold k ∈]0, 1[. We define the binary classifier f̃ as:

f̃(x) =

{
1 if d(f(x), ỹ) < k

0 otherwise
(E.5)

And g̃(x) = arg maxc∈{0,1} P(f̃(x+ ε) = c). g̃ is informative only if g̃(x) = 1.
By immediate application of Cohen et al. [2019]’s result to f̃ we obtain the following guarantee:

Proposition E.1. g̃(x+ δ) = 1 for all ‖δ‖2 < R with

R =
σ

2
(φ−1(p)− φ−1(1− p)), p = P(f̃(x) = 1) (E.6)

Certification algorithm for sequential smoothing

This result allows us to use on f̃ the CERTIFY algorithm from Cohen et al. [2019] (section 3.2.2).
We do not reproduce it here; the only change to our use case is that rather than generating a “top
class” cA based on counts, we use our ROVER prediction strategy to generate the “top transcrip-
tion” tA. A policy to estimate the bound k could perhaps be designed, or k can simply be fixed to
a value that seems reasonable with respect to applications.

Proposition E.2. With probability at least 1 − α over the randomness in CERTIFY, if CERTIFY
returns a transcription tA and a radius R (i.e. does not abstain), then the model predicts tA at
WER ≤ k within radius R around x.

Feasibility

Despite our good experimental results, and while we showed in this section that robustness cer-
tification is possible, this algorithm requires estimating probabilities, which is computationally
infeasible using a large ASR model. As Cohen et al. [2019] note, certification with informative
bounds and confidence requires many samples (in the tens of thousands). We are unable to run this
many forward loops per sentence2 under reasonable time constraints. Nonetheless, these results

2Using one NVIDIA GTX 2080Ti
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show a possible way to reduce ASR to finite-class classification for certification purposes and open
a path toward guaranteeing the robustness of ASR models using faster architectures.

E.4 Additional experiments
In Table E.2 we report the results of both the PGD and CW attacks on our baselines and proposed
models. We include models that are partially defended (without voting/augmented training/etc) to
serve as an ablation study.

σ Model, Smoothing Nat. SNR-PGD CW
35 30 25 20 15 10 GT TGT SNR

0.0 Deepspeech2 8 63 89 100 100 100 100 100 0 27
MP3 compression 9 59 71 79 100 100 100 100 3 16
AUG 12 50 64 82 100 100 100 100 0 19
RS 34 58 66 84 95 100 100 100 13 15
RS + AUG 11 30 46 57 82 100 100 100 11 14

0.01 + RS + ASNR 23 35 45 60 71 91 100 100 11 10
RS + ROVER 29 51 64 81 93 100 100 100 7 15
RS +σ-AUG + ROVER 9 31 43 59 81 100 100 100 8 14
RS + ASNR + ROVER 20 34 46 60 70 92 100 100 4 10
AUG 13 46 63 83 100 100 100 100 0 15
RS 72 79 82 87 96 97 100 100 12 10
RS + AUG 19 35 46 64 77 100 100 100 9 8

0.02 RS + ASNR 41 44 55 62 74 84 100 100 13 5
RS + ROVER 62 72 77 84 93 98 100 100 7 10
RS + AUG + ROVER 14 34 46 60 77 100 100 100 6 8
RS + ASNR + ROVER 36 40 46 56 71 83 100 100 6 5

Table E.2: Word Error Rate (%) for Deepspeech2 on the first 100 utterances of the LibriSpeech
clean test set under various attacks and defenses. + AUG stands for gaussian augmentation of
deviation σ in training - the same deviation used at inference. ASNR means A priori SNR filtering
of inputs. + ROVER refers to the ROVER voting strategy using 16 forward passes. For the PGD
attack, we specify the minimal SNR we use as L∞ bound. For the unbounded CW attack, we
report both the WER on the ground truth (GT) and the attack target (TGT), and the SNR required
to achieve it. All attacks run on models using smoothing are adaptive and average gradients on 16
forward+backward passes.
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