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Abstract

In our increasingly interconnected world, where speech remains the most intuitive and natural

form of communication, spoken language processing systems face a crucial challenge: they must

do more than just categorize speech, they need to truly understand it to generate meaningful

responses. One key aspect of this understanding is speech summarization, where a system

condenses the important information from spoken input into a concise summary. This thesis

delves into the challenge of generating abstractive textual summaries directly from speech.

The classical approach involves cascade systems that realize speech summarization by first

transcribing speech, and then summarizing the resulting transcript. However, this comes with

many challenges including computational efficiency, domain mismatches, and error propagation.

In this thesis, we propose an alternative—an end-to-end framework that directly optimizes a

single sequence model for speech summarization. To implement such end-to-end models with

constrained computing resources, we address challenges such as abstract learning, learning global

acoustic context, dealing with paucity of data, and improving the quality of summaries using

multiple references. We also shed light on observations from human annotation for speech

summarization.

We present multi-stage training using speech transcription as a pre-training task to address

abstract learning and facilitate improved performance of end-to-end models. We describe multiple

solutions to address the problem of global acoustic context—restricted self-attention, replacing

self-attention with the Fourier transform, and two block-wise adaptation solutions BASS and

R-BASS that reframe speech summarization through the lens of block-wise processing. To

address the challenge of data paucity, we introduce work on two new datasets—SLUE-TED and

Interview for abstractive speech summarization. An exploration of human annotation provides

insights into best practices and the nature of differences between speech-based and transcript-

based summaries. Finally, we propose a novel method called AugSumm to improve the diversity

and fluency of speech summaries by leveraging auxiliary references from generative text models.
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Chapter 1

Introduction

Speech is the most widely used form of interaction among humans that enables the exchange of
information. Therefore, one of the aspirations of artificial intelligence – the notion that machines
can be imbued with human-like characteristics – is the ability to listen to the speech, identify
the unique sounds present, and understand the information conveyed. Though modern artificial
intelligence that uses deep neural networks has made tremendous progress in attaining near
human parity in simpler tasks like clean speech recognition [Xiong et al., 2017], it remains a
significant challenge for machines to mimic human understanding.

Truly understanding speech gives humans the ability to extract and summarize useful information
conveyed through long audio recordings. This is particularly important because speech in the
wild is often verbose, i.e., the "essential" information is contained in a few speech frames rather
than in the entire recording. With the rise in the amount of available data that humans consume
in daily life- videos, music, podcasts, meetings, lectures, and more, building artificial intelligence
that can summarize speech has gained importance. This has driven the development of methods
for Automatic Speech Summarization (SSUM), i.e., to automatically generate condensed textual
representations called "summaries" from long input audio.

These summaries can be obtained by extracting key frames, i.e., extractive summarization, or by
generating human-like summaries - abstractive summarization. Extractive summaries comprise
words or phrases from the speech transcript concatenated to be lexically and grammatically
correct. Abstractive summaries, on the other hand, are generated by humans who often paraphrase
from the speech, and are thus considered to represent higher-level information. An important
distinction we make between speech summarization and other tasks like speech recognition is
the notion that summarization requires global acoustic context. For speech recognition, local
acoustic context is important since the mapping between the input speech and output transcript
is direct and monotonic, whereas, for summarization, knowledge of the entire speech signal is
required to either extract keyframes or generate abstractive summaries. Extractive summarization
can be considered to be less complex than abstractive summarization since the latter involves
abstract learning. Abstract learning involves learning indirect relationships like the one between

1
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FIGURE 1.1: The traditional cascade approach for Speech Summarization uses an Automatic
Speech Recognition model to transcribe speech, and an Automatic Text Summarization model

to generate the summary from the text.

an abstractive summary and the input speech signal. Abstractive summaries are created by
compressing, re-arranging, and paraphrasing the content of the input speech, and hence more
challenging to generate.

Traditional approaches to summarization follow a cascade framework- input speech is first
transcribed using Automatic Speech Recognition (ASR), and the resulting transcript is used
by an Automatic Text Summarization (ATS) model to generate a summary (see Figure 1.1).
However, such cascade frameworks suffer from error propagation, i.e., seemingly minor errors in
speech transcription get amplified in the summarization model leading to irrelevant, incorrect or
incomplete summaries. This is the main challenge we address within this thesis.

1.1 Thesis Overview and Contributions

End-to-End learning, which involves optimizing the cascade jointly with a learning objective to
generate more accurate targets has been shown to improve such error cascades previously on
other tasks [Gu et al., 2019, Graves and Jaitly, 2014, Bérard et al., 2016, Serdyuk et al., 2018].
Motivated by such approaches, in this thesis, we formulate the task of speech summarization
as the end-to-end optimization of a sequence model to produce better summaries directly from
speech. To realize end-to-end models in practice, two key challenges need to be resolved -
abstract learning and global acoustic context. Drawing inspiration from curriculum learning,
abstract learning can be addressed by an end-to-end speech summarization model that can be first
trained to produce the speech transcript, an easier problem, before being fine-tuned to do the more
challenging task of producing an abstractive summary from speech. To enable end-to-end speech
summarization models to be trained over longer input sequences, restricted self-attention can be
used. In training models with these strategies, it is observed that end-to-end models outperform
cascade models on abstractive video summarization.

Due to the paucity of labeled data and tools for speech summarization, we introduce two new
datasets SLUE-TED and Interview for generating abstracts from TED Talks and multi-party
meeting summaries from NPR interviews. Benchmarking end-to-end and cascade models for
multiple speech summarization datasets shows that end-to-end models can outperform cascade
models given sufficient amounts of labeled data and strong long-term acoustic context modeling.

Next, we consider the process of human annotation for speech summarization. High-quality
annotations are particularly important for building models, and there is no consensus on best
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practices to annotate summaries. Creating a dataset of human expert and non-expert annotations,
it is seen that when annotators read transcripts of spoken content, resulting summaries tend
to be more informative, fluent, and coherent. On the other hand, when annotators listen to
audio recordings and annotate on that basis, resulting summaries are more information-selective,
and have higher inter-annotator agreement. These observations could be useful to develop
annotation-aware approaches to speech summarization.

Finally, we describe approaches to improve end-to-end summarization, both in the ability to
handle long-term context and produce more diverse summaries.

To improve global context modeling, we introduce XNORformer, a new generalized linear trans-
former that improves performance over existing methods while retaining comparable efficiency.
Though improvements to transformer efficiency can help process longer input contexts, such
models cannot process arbitrarily long contexts. Therefore, we re-frame the process of end-to-end
speech summarization using block-wise processing in a method we call Blockwise Adaptation for
Speech Summarization (BASS). Though BASS improves model performance significantly while
being able to process arbitrarily long inputs, it also has an increased computational cost over
linear transformers. To bridge this gap in efficiency, we introduce a Relevance-Aware Blockwise
Adaptation for Speech Summarization, which improves the efficiency of BASS, while retaining
its performance.

Summaries produced by speech summarization models are limited in lexical diversity and
grammatical structure, inhibiting the application of such models generally, i.e., across all domains.
This results primarily from using one reference summary during training and evaluation, rather
than modeling a distribution of valid references. Large language models are leveraged to generate
additional summaries, and multiple methods are explored to use these summaries during training
and evaluation. Experiments demonstrate that the use of multiple summaries in training can
indeed improve the coherence, fluency, factual consistency, and relevance of summaries based on
automatic and human measures.

In conclusion, in this thesis, I advance the state of research in speech summarization by proposing
end-to-end modeling as a viable alternative to cascade models. I address multiple challenges in
making such models feasible to train and infer automatically, including building models that can
handle arbitrarily long contexts and produce diverse and general summaries.



Thesis Contributions 4

1.2 Thesis Statement

Speech contains all of the information present within the transcript, and end-to-end models for
speech summarization are a viable, simpler, and more efficient alternative to the classical cascade
approach to summarization.

1.3 Thesis Organization

This thesis is organized into three parts – Part I(Background), Part II (Our End-to-End Approach),
and Part III Improving End-to-End Modeling.

Part I develops the background and analysis for this thesis. Chapter 2 expounds on the nature
of summaries, the task of speech summarization, and how summaries may be evaluated. It also
presents an outline of the state of the field until 2022, when work on this thesis begins. Chapter 3
focuses on reviewing prior approaches to speech summarization, and lists their advantages and
disadvantages. In Chapter 4, we provide perspectives on the process of human annotation, and
whether humans obtain different kinds of information by reading speech transcripts as opposed
to listening to audio recordings.

Part II introduces our end-to-end approach for speech summarization, and develops benchmarking
efforts that compare end-to-end and cascade approaches. Chapter 5 introduces our formulation of
end-to-end speech summarization and presents solutions to abstract learning and global acoustic
context for video summarization. Chapter 6 tackles challenges with labeled data by introducing
two new datasets, and a multi-domain speech summarization benchmark.

Part III proposes multiple approaches to improve the performance of end-to-end speech sum-
marization models. Chapter 7 introduces the XNORformer for efficient and performant global
acoustic context. It also introduces BASS and its more efficient variant R-BASS which are
block-wise methods to summarize arbitrarily long recordings. Chapter 8 examines the challenge
of unitary references for speech summarization that leads to less lexically diverse summaries and
introduces AugSumm, an approach to obtain and use multiple references during training and
evaluation.

Finally, Chapter 9 summarizes the main conclusions of this thesis and proposes directions for
future research in the area.
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Background: Speech Summarization
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Chapter 2

Speech Summarization

The goal of audio summarization is to generate a summary – a text, audio, or video snippet that
relates most or all of the key information in the recording.

Summaries may represent different kinds of key information within the audio - for example,
content information in speech, acoustic events from the scene, speaker information from speech,
or prosody information in music. Audio summaries can be a combination of all of these different
attributes. In speech-centric audio, i.e., where one or multiple people are communicating through
speech, it is useful to focus on summarizing content information embedded in speech, which we
term speech summarization.

There may be similarities between speech summarization and other tasks like speech recognition
where spoken content is transcribed as text, or audio event detection, where acoustic events are
identified and classified. However, the primary distinction between summarization and all other
tasks is that the summary is always a "condensed" representation of the input, and does not
contain all the information in the input.

Condensed content summaries can take multiple forms - audio clips, images, videos, lists or
sequences of events, text, or more complex forms including combinations of the aforementioned.
The choice of representation for a summary is application-dependent. For applications like
key-term detection, summaries could simply be a list of key terms, while for YouTube news,
summaries could simply be a salient video frame or short video clip combining salient portions.
In general, video summaries are often more engaging to users, while audio summaries enable
hands-free communication and are useful for users with reading disabilities. Textual summaries
may be preferred in many cases owing to the reduced cognitive load of skimming text as opposed
to listening to a recording or watching a video. Though each output modality has its advantages
and disadvantages, in this thesis, we focus on the task of producing textual output summaries.

6
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2.1 Summaries: Categories, Application and Characteristics

There exist multiple categorizations of textual summaries based on the goal that underlies
summarization. Summaries can be abstractive if the goal is to present information from the
input like how humans may summarize, or extractive by being composed of key phrases or
sentences from the input. Indicative summaries are constructed as guides for where to find the
most important parts of the input, while informative summaries are meant to convey the most
important information within the input. Descriptive summaries capture the tone of the input while
containing figurative language. Depending on whether any additional constraints are provided
for summarization, a distinction can be made between generic summarization and query-based
summarization. Of these, the former has no constraints on the summary, while in the latter, the
summary is required to be pertinent to a given query. In this thesis, we focus our effort on the
challenging task of abstractive generic speech summarization.

Speech summarization has many practical applications. Humans consume a myriad of audio
multimedia in their daily lives, ranging from listening to the morning news, music, and podcasts,
to participating in meetings and lectures. A characteristic of all these interactions is that the audio
in most cases is very verbose and that the essential information is concentrated within a few
select frames as opposed to within the entire recording. Therefore, such long recordings can be
condensed into summaries comprising only the essential information. News broadcasts can result
in news headlines and news reports, lectures, and meetings can be converted into notes, and talks
can be summarized into succinct titles and abstracts. Apart from the utility of these summaries
for human consumption, summaries can be used as additional inputs to other downstream tasks.
For example, a summary can be used for keyword extraction, retrieval, topic detection, and also
as input for question answering or natural language inference.

The application of summarization decides the extent and type of "essential information" that
summaries ought to focus on, and the desired characteristics of summaries. Summaries can be
used to index and retrieve multimedia based on highly specific queries. For example, summariza-
tion can be used to extract keywords like "Spanish rice" or "black beans" from videos. Based
on such keywords, the search query "look up instructional videos on making Spanish rice with
black beans" yields a few relevant videos describing the process of making Spanish rice with
black beans as opposed to a large list of videos that explain how to make brown rice. For such
instructional videos, summaries are often short and factual and comprise keywords that can be
used for indexing. Therefore, any missing or incorrect content words in the summary would
result in poor retrieval. Abstractive summaries can also be used to encourage viewers to consume
multimedia such as TED talks, and podcasts. The emphasis in such summaries is to build logical,
cogent, and persuasive arguments, so incorrect grammar and incoherent summaries may dissuade
users from perusing the videos or talks. Meetings can be summarized using extractive and
abstractive summaries to convey progress updates, and discussion outcomes and demarcate the
next steps for meeting participants. In such cases, missing, inaccurate, or misleading information,
especially in entity names, pronouns, and co-references may pose significant challenges to utility.
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2.2 Automatic Speech Summarization (SSUM)

Automatic Speech Summarization (SSUM) aims to automatically generate summaries given
speech recordings. It is desirable to develop automatic methods for speech summarization for
multiple reasons:

1. Improved Information Accessibility: Automatic methods to summarize long recordings
save time and effort in consuming long-form content such as speeches and lectures. Further,
such techniques can make audio content accessible in summary form to people with hearing
impairments or those who prefer to read text. It can also enable efficient indexing and
retrieval of important information within long-form audio. Widespread access to such
technology can enable open and easy access to information across the world, bridging
barriers of language through associated technologies like automatic translation.

2. Increased Productivity: By producing detailed automatic summaries with relatively low
annotator bias for long-form audio, the productivity of humans and entities can improve by
enabling focus on other tasks.

To mathematically define the task of automatic speech summarization, let X = [x1,x2,x3, · · ·xN ]

represent a sequence of speech feature vectors. Let Y = [y1, y2, y3 · · · yM ] represent the sequence
of text tokens representing the speech summary. The goal of a parametric automatic speech sum-
marization method is to estimate the optimal parameters ΘSSUMM that maximize the likelihood
of predicting the correct summary given the sequence of speech feature vectors X . This is shown
in Equation 2.1:

ΘSSUMM = argmaxΘP (Y |X; Θ), (2.1)

where P (Y |X; Θ) refers to the conditional probability of Y given X . The θ after the semicolon
indicates that this probability is being characaterized as a parameterized function with param-
eters θ (Here, and in the rest of this document, we will continue to use the notation P (.) to
represent probabilities, and P (.; .) to represent parameterized models for probabilities, where the
parameters are represented by the symbol following the semicolon).

Automatic Speech Summarization can be addressed using different approaches that we discuss in
detail in Chapter 3 and Chapter 5.

2.3 Evaluating goodness of abstractive summaries

The quality of summaries can be assessed using intrinsic evaluation, where summaries are
compared against a reference or gold standard, or extrinsic evaluation, where resulting summaries
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are used in downstream tasks, and their performance in such tasks is used as the evaluation
metric.

We primarily focus on intrinsic evaluation within this thesis, since the focus is open-domain
general summarization as opposed to focusing on particular downstream applications.

The goal of abstractive summarization is to create human-like summaries, and from this perspec-
tive, the best possible evaluation for abstractive summaries is human opinion. Human opinion
is solicited on primarily four dimensions - coherence, consistency, factualness, and fluency.
Coherence refers to whether all sentences within a summary are organized logically, i.e., whether
every sentence or paragraph builds on previous ones in a smooth progression. Consistency
refers to the logical alignment of information within a summary and its factual adherence to the
source. Fluency refers to the ease and naturalness of reading the summary and evaluates phrasing,
grammatical errors, and sentence structure. Relevance refers to the extent to which the summary
aligns with the specific needs of summarization, a proxy for which is a reference summary.
These four dimensions can collectively be used to evaluate speech summaries. However, human
evaluation at scale is challenging owing to the amount of time, effort, and resources involved.

Therefore, automatic metrics for intrinsic evaluation are popular within the community. Building
automatic metrics for abstractive summary evaluation is a particularly challenging problem. There
is no consensus on the best metric for speech summarization. However, the most popular metric
for text and speech summarization currently includes Recall Oriented Understudy for Gisting
Evaluation (ROUGE) and its variants. ROUGE [Lin, 2004a] is based on the machine translation
metric BLEU [Papineni et al., 2002], but focuses more on recall. Essentially ROUGE and
BLEU compare the extent of n-gram overlap between a hypothesis and reference summary(ies).
ROUGE-L measures lexical overlap by using the longest common subsequence between the
hypothesis and reference(s).

Let Lref be the number of words in the reference summary, and Lhyp be the number of words
in the hypothesis summary. Then the longest common subsequence between the two can be
computed, and let its length be Llcs. Then ROUGE-L can be computed as shown in Equation 2.2.

ROUGE-L =
2Llcs

Lref + Lhyp
(2.2)

ROUGE-L was shown to correlate well with human judgment from the Document Understanding
Conference (DUC) data and hence is widely used.

ROUGE was extended to the Basic Elements Evaluation Suite [Hovy et al., 2006] which uses
Basic Elements as units instead of n-grams. Basic Elements are computed using semantic analysis
as heads of major syntactic constituents or relations between heads and dependents. As this
metric relies on parsing and pruning, it may not be suitable for disfluent and conversational
speech.
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An alternative to these is the Pyramid method [Nenkova et al., 2007, Nenkova and Passonneau,
2004] that uses variable length sub-sentential units called semantic content units (SCUs) to
compare hypothesis to reference. However, obtaining SCUs requires manually annotating units
for meaning, which is challenging to do in practice.

METEOR [Banerjee and Lavie, 2005a] was proposed to capture semantic similarity beyond
literal n-gram overlap, and combines n-gram matches with stemming and synonym matching to
accomplish this. However, it struggles with out-of-vocabulary words and prioritizes synonyms
over paraphrases. Despite these limitations, METEOR remains a metric in use.

Apart from these metrics that rely on n-gram overlap, the advent of deep learning advanced the
notion of model-based metrics. Mover’s distance was proposed by [Mikolov et al., 2013], who
used word embeddings to calculate the semantic distance between the hypothesis and reference
summaries. Though this metric captures semantic similarity more effectively compared to n-
gram-based metrics, evaluation depends heavily on the chosen word embeddings, making result
interpretation challenging. Improving on this notion of model-based embeddings, pre-trained
language models began to be employed to generate such embeddings. For example, MoverScore
[Zhao et al., 2019] uses contextualized embeddings along with Earth Mover distance to estimate
the quality of summaries. However, this metric considers word frequency and distribution, which
results in an underestimation of similarity between texts with significant lexical differences.

BERTScore [Zhang et al., 2019] is a popular metric that relies on a greedy alignment-based
aggregation of token similarity scores between the hypothesis and reference. More concretely,
given a reference and hypothesis summary, they are both tokenized to obtain token embeddings
from a BERT [Devlin et al., 2019a] model. RoBERTa [Liu et al., 2020] is often used as the
embedding extractor. Then, pairwise cosine similarity is computed between the tokens of the
hypothesis and reference summaries. Based on this pairwise measure, a greedy alignment is
obtained to map the tokens of the hypothesis to the most similar tokens in the reference. Then,
the cosine similarity scores of these aligned tokens are aggregated to obtain the BERTScore.
SPEEDScore [Akula and Garibay, 2022] is an extension that uses sentence-level embeddings
from a sentence transformer as opposed to token-level embeddings.

More recent work has focused on multiple dimensions of evaluation to assess summary quality.
BLEURT [Sellam et al., 2020] combines the evaluation of semantic similarity and fluency by
using pre-trained language model embeddings to extract semantic similarity scores and a fluency
scorer to check the grammatical correctness and naturalness of the summary. BARTScore [Yuan
et al., 2021] uses the BART-large model to evaluate fluency, relevance, and informativeness
using F1, precision, and recall scores. To align these scores to different dimensions of human
evaluation, UniEval [Zhong et al., 2022b] introduces a unified multi-dimensional evaluation that
produces scores for relevance, coherence, consistency, and fluency. Experimental results show
that UniEval improves correlation with human judgments, making it a strong multi-dimensional
evaluator.
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UniEval reframes multi-dimensional evaluation of these attributes as multiple binary classification
tasks where the model responds to questions like "Is this a coherent summary of the input
document" with "yes" or "no". The probability of the model predicting "yes" given the hypothesis
summary, reference summary, and the summary source is considered as the UniEval score for that
dimension. Of the four dimensions, fluency and coherence are computed with no reference, i.e.,
using only the hypothesis summary. Relevance is computed using the hypothesis and reference
summaries, while consistency is computed between the hypothesis summary and the summary
source.

Finally, there is no single best reference summary for a given source. Given the same input,
human annotators often exhibit low inter-annotator agreement in the semantic units they select,
and how they combine these to form abstractive summaries. In other words, there may be
multiple possible valid summaries given a source document, which cannot all be enumerated.
This is addressed in practice by using as many references as possible or by using reference-free
evaluation.

2.4 Speech Summarization through the decades

Work in speech summarization followed decades of prior work in text summarization and gained
prominence in the 1990s. Advancements in automatic speech recognition motivated research into
automatically summarizing speech.

[Chen and Withgott, 1992] attempted to identify areas of emphasis within speech for summa-
rization using F0 and energy features. Hidden Markov Models were used to select informative
portions of speech in recorded interviews and telephone speech, resulting in near-human perfor-
mance.

Early approaches examined summaries as abstracts and labeled them as indicative, informative
[Borko and Bernier, 1975], or critical evaluative abstracts [Anderson, 1992]. At that time,
summarization focused mostly on extractive applications [Mani, 1999, Mani, 2001].

Through the early 2000s, automatic extractive summarization improved and expanded, resulting
in their deployment for summarizing voice mails [Koumpis and Renals, 2005], and broadcast
news [Hori et al., 2002, Christensen et al., 2004]. Some approaches used lexical features
[Hori et al., 2002, Christensen et al., 2004], while others used acoustic features, [Maskey and
Hirschberg, 2006, Inoue et al., 2004]. Such approaches were also extended to summarize lectures
[Zhang et al., 2007].

Summarization approaches used different modeling strategies including Support Vector Machines
(SVMs) [Lin et al., 2009b], skip-chain Conditional Random Fields (CRFs) [Galley, 2006],
Hidden Markov Models (HMMs) [Zhang et al., 2009], graph models [Lin et al., 2009a], or
unsupervised approaches like Maximal Marginal Relevance [Carbonell and Goldstein, 1998] or
Latent Semantic Analysis [Gong and Liu, 2001].
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As extractive summarization improved, many investigated alternative forms of summarization
such as abstractive summarization [Murray et al., 2010]. Research into the appropriate acoustic,
lexical, prosody, and structural features continued [Zhu and Penn, 2006].

With the rise of deep learning, and sequence model architectures [Graves, 2012] for tasks like
machine translation [Graves and Jaitly, 2014] and speech recognition [Chan et al., 2016],
sequence models were built for abstractive text summarization [Nallapati et al., 2016b]. Most of
the work on text summarization has focused on single-document summarization for domains such
as news [Rush et al., 2015,Nallapati et al., 2016a,See et al., 2017,Narayan et al., 2018] and some
on multi-document summarization [Woodsend and Lapata, 2012, Cao et al., 2015, Yasunaga
et al., 2017] .

Recent work on abstractive summarization has used cascade approaches to first perform speech
recognition on individual utterances. The resulting transcripts for these utterances are then
concatenated and used to generate abstractive summaries. An example of this is found for
multimodal video summarization [Palaskar et al., 2019a,Li et al., 2019], where speech transcripts
in conjunction with visual representations are used for abstractive summarization. [Shang et al.,
2018] describes an unsupervised approach for meeting summarization, where ASR transcriptions
are pre-processed, and related utterances are identified through unsupervised clustering. These
resulting "communities" are used to derive abstractive sentences and finally abstractive summaries.
[Kano et al., 2021a] attempts to address the challenge of incorrect transcriptions by combining
multiple hypotheses using attention, and experimental results demonstrate the efficacy of the
approach.



Chapter 3

Background: Approaches to Speech
Summarization

Complex tasks like Automatic Speech Summarization (SSUM) can be performed by using a
cascade of multiple modules. The first module takes as input the speech recording and produces
an output. The output of the first module is used as input to the second module, the output of the
second module is used as input to the third module, and so on. The final module produces the
desired speech summary.

Cascades can be designed in multiple ways to address the problem of speech summarization.
In this chapter, we delve deeper into the traditional approach to speech summarization, i.e.,
the cascade approach. We examine the most common cascade formulation comprising speech
recognition and text summarization and expound on the design of these modules. Then, we discuss
alternative designs for cascades and compare them against the standard approach. We conclude
by discussing the advantages and disadvantages of cascade models for speech summarization.

3.1 Cascade Formulation of Speech Summarization

Cascade approaches to speech summarization typically comprise two modules – speech recogni-
tion and text summarization. However, there are alternative formulations that may utilize acoustic
features like prosody and pitch as additional inputs to the summarization module. [Palaskar et al.,
2020] describes a three-module cascade framework for speech summarization where speech is
first converted into its verbatim transcript. The transcript is then used to extract important noun
phrases and verb phrases that represent the important content. These phrases, called concepts are
then used to generate abstractive summaries.

Now, we describe the components of the popular two-module cascade models for summarization-
speech recognition and text summarization.

13
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3.2 Speech Recognition

The problem of automatic speech recognition is generally posed as maximum a posteriori
estimation: finding the most likely token sequence T for given an input audio recording X . This
requires knowledge P (T |X), or alternately P (T,X). These can generally not be known, and
are modelled instead by parametric models, the parameters of which are learned from data.

The most successful current approaches, neural-network-based end-to-end systems [Chan et al.,
2016] represent the posterior probability as neural networks that compute P (T |X; θ), where θ

are the parameters of the network and are learned through the optimization

θ̂ = argmaxθE∼(X,T ) logP (T |X, θ), (3.1)

where the statistical expectation E∼(X,T ) is replaced by an empirical average computed over
large training sets of samples of (X,T ) that are ideally drawn from the true distribution P (T,X).
θ̂ represents the parameters learned by the training process.

Inference, i.e. recognition, attempts to find the token sequence T̂ with the maximum probability:

T̂ = argmaxTP (T |X, θ̂) (3.2)

3.2.1 Speech Recognition Approaches

The classical speech recognition approach is the hybrid approach that divides the challenge of
speech recognition into subproblems that are addressed by independently optimized modules like
the acoustic model, language model, and lexicon model, etc. Earlier realizations used Hidden
Markov Models (HMMs) to represent speech as a sequence of hidden states that could emit
tokens with an output probability modeled by Gaussian Mixture Models (GMMs). Advances in
deep learning helped replace the GMM with a Deep Neural Network (DNN) that has higher repre-
sentation power and yielded better performance. Such hybrid systems obtained until recently very
competitive performance within production systems. However, the primary challenges behind
their deployment include the complexity of training multiple components and the possibility of a
mismatch between the training of these components that degrades performance.

Around a decade ago, with the rise of sequence model architectures, end-to-end approaches were
introduced that were much simpler than hybrid models and could achieve better performance due
to end-to-end optimization. End-to-end models use recurrent or transformer-based architectures
today and can be realized in three different ways: using Connectionist Temporal Classification
(CTC), attention-based modeling, and using Transducers. Of these, the first two have been
employed within this thesis, and we delve deeper into these methods.

Connectionist Temporal Classification (CTC): The core idea behind CTC is to estimate the
probability of predicting the transcript tokens conditioned on the input speech frames such that
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every frame is mapped to a transcript token or a special “blank“ token. To realize this, transcript
prediction is performed in two steps: (a) identifying all intermediate label representations π with
frame alignments that lead to valid transcripts, (b) estimating the probability of each intermediate
label representation given the speech input sequence X , and aggregating the probability values
over all possible alignments.

Equation 3.3 describes this mathematically, where t′ represents transcript label sequences with
blanks inserted.

P (T |X) =
∑

π∈Φ(t′)

P (π|X) (3.3)

Within a sequence model, P (π|X) is represented as a product of conditionally independent
predictions across timesteps l = 1, 2, · · ·L. Equation 3.4 shows this process, where the function
f() represents the output activation of the sequence model at the l-th timestep, i.e., the probability
of the l-th label in π.

P (π|X) =
L∏
l=1

f(πl) (3.4)

Attention-based Encoder-Decoder (AED):

A sequence model is comprised of an encoder and decoder, where the encoder is used to transform
the input speech features into a high-level hidden representation. The decoder uses attention to
identify which hidden representations are useful to autoregressively transcribe the output.

Given the D-dimensional speech feature sequence of an utterance X= {xi|xi ∈ RD, i = 1, 2...N},
the encoder produces an F -dimensional high-level hidden representation H = {hj |hj ∈ RF , j =

1, 2, ...M}. At each time step, the decoder computes an attention weight and an encoder context
vector. Using the encoder context and the previous decoder states, the decoder produces an output
token yk from the output vocabulary V at every time step. Collecting yk across the O decoding
timesteps yields the output transcript Y = {yk|yk ∈ V|l = 1, 2, ....O}.

Latt = −log(Patt(Y |X)) (3.5)

Patt(Y |X) =

O∏
l=1

Patt(yl|X, y1, ...yl−1) (3.6)

H = Encoder(X) (3.7)

Patt(yl|X, ..yl−1) = AttentionDecoder(H, yl−1) (3.8)
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3.2.2 Model Architectures

End-to-end speech recognition models can be realized using recurrent [Chen et al., 2015,
Chorowski et al., 2015, Watanabe et al., 2017] or transformer [Vaswani et al., 2017a] archi-
tectures. Of these, the transformer architecture is preferred due to its computational efficiency,
speed, and performance.

The conformer [Gulati et al., 2020b] was introduced as a variant of the transformer for speech
recognition and is commonly used within end-to-end models.

The Conformer processes the input speech sequence X using a convolution neural network
(CNN) [Krizhevsky et al., 2012] as follows:

X ′ = LN(ReLU(CNN(ReLU(CNN(X))))), (3.9)

(3.10)

Here ReLU is an activation function, layer normalization LN is a linear mapping function [Ba
et al., 2016], and MHAtt represents multi-head self-attention [Vaswani et al., 2017a].

The rest of the processing is similar to that of the Transformer, except that the input of MHAtt(·)
is processed with the feed-forward layer, and then the output of the MHAtt(·) is processed with
a convolutional layer before being fed to the feed-forward layer.

3.3 Text Summarization

Text Summarization can be formulated in a similar manner to speech recognition. Given the
input transcript T and the reference summary Y , the goal of training is to estimate the model
parameters θ2 that maximize the posterior P (Y |T ; θ2).

θ̂2 = argmaxθ1E∼(Y,T ) logP (Y |T, θ2), (3.11)

Ŷ = argmaxY P (Y |T, θ̂2) (3.12)

Equation 3.12 represents the inference procedure for summarization, where the goal is to identify
the most likely summary token sequence given the transcript sequence T and the trained summa-
rization model with parameters θ̂2. θ̂2 represents the parameters learned by the training process
given parameters θ2.

Text summarization models today are implemented as encoder-decoder sequence models or
decoder-only autoregressive predictors.
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Within the encoder-decoder setup [Lewis, 2020, Raffel et al., 2020a], the encoder consumes
text tokens and produces a high-level latent representation of these. The decoder employs cross-
attention to focus on these latent representations and autoregressively produces tokens of the
summary.

Decoder-only non-causal models [Liu* et al., 2018] today primarily uses the prefix language
model formulation where prefix tokens that represent the prompt use non-causal bidirectional
attention, while the summaries use causal attention in prediction.

Recent work in text summarization focuses on using large-scale pre-trained language models
or large language models for text summarization. Popular models include BART [Lewis et al.,
2019], T5 [Raffel et al., 2020b], Flan-T5 [Chung et al., 2022], and LLama2 [Ouyang et al., 2022].

3.4 Inference within the Cascade

During training, we independently optimize the constituent components, i.e., speech recognition
and text summarization.

argmaxY P (Y |X; θ̂1, θ̂2) = argmaxY
∑
T

P (T, Y |X; θ̂1, θ̂2) = argmaxY
∑
T

P (Y |T ; θ̂2)P (T |X; θ̂1)

(3.13)

During inference, we need to obtain the most likely summary token Y given the input speech X

and the trained models with parameters θ̂1 and θ̂2. Equation 3.13 shows how this process can be
broken down between the two modules — speech recognition and text summarization.

argmaxY
∑
T

P (Y |T ; θ̂2)P (T |X; θ̂1) = argmaxY P (Y |T ; θ̂2)
[
argmaxTP (T |X; θ̂1)

]
(3.14)

However, while performing inference on independently trained models, we first perform inference
over the speech recognizer to obtain the most likely transcript token sequence T , and then use
this as input to the summarization model to retrieve the most likely summary sequence Y . This
means that rather than obtaining the quantity shown in Equation 3.13, the cascade formulation
instead retrieves the output of Equation 3.14.

This results in sub-optimal outputs, which can be mitigated in part by considering multiple
hypotheses from the ASR module for summarization [Kano et al., 2021a]. In the next chapter,
we will see that our end-to-end formulation models the quantity in Equation 3.13 rather than the
one in Equation 3.14, leading to more accurate models.



Background: Approaches 18

3.5 Advantages and Disadvantages of the Cascade Approach

The commonly used cascade approach has some advantages and disadvantages. The most
important advantage of the cascade approach lies in its modularity — with the speech transcript
being an intermediate output, the model’s performance on summarization can be assessed in
terms of how accurately the intermediate transcript was produced. Further, to obtain diverse
outputs from summarization, this intermediate transcript can be controlled and manipulated.

Another advantage of the cascade system is the ability to train the constituent modules inde-
pendently of each other with different corpora. This allows one to train speech summarization
systems despite the lack of parallel speech and summary data, which is particularly important
given the relative dearth of annotated text corpora. Further, today, there exist readily available
pre-trained models for both speech recognition and text summarization that one may leverage to
build cascade systems easily.

With the ability to train the constituent models on different corpora, there may arise some
disadvantages. The two models may be trained on data from different domains, leading to
challenges in generalizability to the domain that the other module was trained on. For example,
if the speech recognition model were trained on biology lectures, and the summarization model
was trained on news summarization, the model may not be able to summarize biology lectures
accurately due to the domain mismatch between these two models. Further, most available
pre-trained summarization models do not generalize beyond their intended purpose. For example,
one cannot obtain the title of a news article from a summarization model trained to generate
longer news reports. This limits the utility of such pre-trained models.

Error propagation is a well-known challenge within cascade formulations. In this context, it
refers to the fact that errors made by the first module, i.e., speech recognition transfer over to the
second module text summarization, which results in vastly incorrect, irrelevant, or incoherent
summaries. Error propagation effects magnify with each subsequent module that erroneous
intermediates propagate to, i.e., cascades with more modules would have more severe impacts
from error propagation.

Another challenge within cascade formulations centers around the effective number of model
parameters. The required number of model parameters within the cascade can be obtained
by summing the number of model parameters within every individual module. Often, due
to the additive nature, the resulting number of model parameters for a cascade is very large.
This inhibits the deployment of such models for on-device and other low-compute resource
applications. Further, the independent training and a large number of model parameters have
adverse implications on the amount of time required to train such models.



Chapter 4

Insights gained from human
summarization

In this chapter, we consider the process of how humans summarize speech. How humans
summarize speech potentially informs the quality of summaries used as human references to
develop automatic methods. It also provides insights into what kinds of information humans
can capture within summaries of speech, and such information can guide the development and
deployment of improved automatic methods for human summarization.

The process of summarization can be approached in two ways by human annotators — by
listening to the audio and writing a summary based on it, and by reading a textual transcript
and writing a summary based on it. We ask whether there exists any difference in summaries
that result from these two strategies. Such labeling information is not present within current
datasets, and hence, we introduce a new dataset obtained by collecting expert and non-expert
annotations. Annotators summarize either by listening to audio recordings or by reading the
transcripts of audio recordings in such a manner that no annotator uses both these methods on the
same recording.

Based on our data and analysis, we attempt to comment on best practices for human annotation
of speech summaries. Our analysis reveals that the summaries based on reading the transcript
and listening to the audio are different in informativeness and factual consistency.

We also examine whether expertise in annotation impacts the quality of the summary, and find
that expert annotations tend to be more informative and reliable.

4.1 Overview and Research Questions

Fig. 4.1 presents an overview of our work. Humans can summarize speech when it is presented
by (a) listening to the speech directly and then constructing the summary based on this, or (b)

19
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FIGURE 4.1: Overview of our proposed work for examining the ways that humans can summa-
rize speech. Humans can summarize speech by listening to audio or reading speech transcripts,
which forms Research Question 1. Differences in the generation of speech transcripts could
lead to different summaries, which we address in Research Question 2. Finally, expertise of the

summarizer may impact the summaries, which we study in Research Question 3.

reading a textual transcript of the content spoken in the recording, and using that to construct the
summary. It is unclear whether summaries based on listening to audio differ from summaries
based on reading transcripts. For transcript-based summarization, the method used to obtain the
transcription, either Automatic Speech Recognition (ASR) or manual transcription, may also
have a significant effect. Additionally, the quality of a summary, regardless of the source modality,
is likely to be determined by the level of expertise of the summarizer. To assess the impact of
source modality, transcription, and expertise, we formulate the following research questions:

(RQ1) Are summaries based on annotators listening to speech recordings different from summaries
based on annotators reading textual transcripts of speech? If so, how?

(RQ2) If ASR transcripts are used instead of manual transcripts, how do recognition errors impact
human summaries?

(RQ3) Do summaries written by non-experts summaries differ from those written by experts, and
if so, do the differences vary based on the source modality?

Past work in automatic speech summarization suggests that there are acoustic characteristics
in speech beyond the textual context that are useful for speech summarization [Kano et al.,
2023a]. This implies that both transcript and raw speech carry complementary information that
is useful for summarization. The fact that end-to-end models [Sharma et al., 2022a, Kano et al.,
2023a, Matsuura et al., 2023b, Matsuura et al., 2023a, Sharma et al., 2023b] that use speech
features as input perform differently from cascade models [Kano et al., 2021b, Palaskar et al.,
2021a, Yu et al., 2021, Palaskar et al., 2019b] that use speech transcripts [Sharma et al., 2023a]
suggests that there are differences in automatic summaries resulting from textual or speech input.
In this chapter, we study whether the same holds for human annotators.
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However, any observations on the impact of reading versus listening for annotation are difficult
to make from existing corpora like How2 [Sanabria et al., 2018], SLUE-TED [Shon et al., 2023],
Interview [Sharma et al., 2023a], and AMI [McCowan et al., 2005], since it is unclear how
human annotations were obtained from speech. Therefore, we select 1002 recordings from the
Interview [Sharma et al., 2023a] corpus test set and create a new evaluation set. We collect
two expert human annotations for transcript-based summarization and two for speech-based
summarization per recording and assess how the resulting summaries differ.

Comparing two given summaries is challenging. Broadly, we conduct three types of evaluation:
(a) comparing the summary to its source transcript (source-based evaluation) to establish how
extractive and factual the summary is, (b) evaluating the summary independently for its struc-
ture and grammar (structure evaluation), and (c) by comparing different summaries (summary
comparisons) to assess relevance and which represents the input better using semantic similar-
ity, LLM, and human evaluation. Experiments show that speech-based summaries are more
information-selective and factually consistent while transcript-based summaries are preferred by
human and LLM evaluators.

In real-world settings, human-annotated manual transcripts are not available, and, therefore,
Automatic Speech Recognition (ASR) models may be used to generate such transcriptions. ASR
transcripts may contain errors, and we investigate the impact of these errors on transcript-based
summarization. To do this, we consider 100 recordings from the Interview test set, obtain speech
transcriptions using Whisper [Radford et al., 2022], and perform human summarization using 2
expert annotators for each modality. Experiments show that ASR errors in the transcript degrade
the quality of human summaries, resulting in lower coherence, fluency, and factual consistency
with the source.

Prior work in human evaluation of abstractive text summarization highlights the importance
of expertise for summary evaluations [Fabbri et al., 2021b, Gillick and Liu, 2010]. However,
to the best of our knowledge, there is no prior work that examines the need for expertise in
human speech summarization. Therefore, in this work, we examine whether crowd-sourced
non-expert summaries are different from expert summaries. To address this question, we obtain 2
non-expert annotations using Amazon Mechanical Turk (AMT) for each of the 1002 recordings
from the Interview test set. From these summaries, we analyze (a) differences between expert
and non-expert annotations, and (b) whether any differences can be attributed to the approach
taken for summary annotation. Analysis shows that non-expert annotations are less fluent and
coherent compared to expert summaries but as factually consistent as expert summaries.

In summary, through this work, we find that transcript-based annotation is valuable if errors are
minimal and longer, more informative summaries are desired, while speech-based annotation
is desired for higher information selectivity, factual consistency, and resilience to transcription
errors.
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4.2 Related Work

For this study, we describe related work in three areas: (a) metrics for comparing summaries,
(b) other work investigating the impact of source modality on human performance, and (c)
investigations of ASR error impact on Spoken Language Understanding.

Metrics for comparing summaries: Numerous metrics have been proposed to evaluate the
quality of summarization [Fabbri et al., 2021a]. Earlier works use metrics like ROUGE-H,
ROUGE-L [Zhou et al., 2006], ROUGE-WE [Ng and Abrecht, 2015], BLEU [Papineni et al.,
2002], sentence recall/precision is commonly used for simple sentence based extraction sum-
maries [Hirohata et al., 2005]. Some studies have found that ROUGE and BLEU-based metrics
correlate well with human judgments on summarization. However such scores are not always
the best metric for summarization, especially when the input is longer like in meeting sum-
marization and summarization of scientific articles. There have been scores of other metrics
which are either variants or combinations of the earlier mentioned metrics like BertScore [Zhang
et al., 2019], Sentence Mover’s Similarity (SMS) [Clark et al., 2019], SummaQA [Scialom
et al., 2019], SUPERT [Gao et al., 2020], CHRF [Popović, 2015], METEOR [Banerjee and
Lavie, ], CIDEr [Vedantam et al., 2015], or model generated ones like s3 [Peyrard et al., 2017],
BLANC [Vasilyev et al., 2020], summACCY [Hori et al., 2003], which are trained to predict the
quality of an input summary.

LLMs have been used as an alternative method for summary evaluation. While some work
expresses doubt that LLMs have reached a human level of summary evaluation capabilities [Shen
et al., 2023], other methods have yielded more optimistic results [Wu et al., 2023]. LLM
evaluation methods usually take the form of automatic replacements for human evaluations such
as Likert scale scoring, pairwise comparison, and binary factuality comparison [Gao et al., 2023].
LLMs can also be used to answer qualitative questions about the factual consistency of a summary
and explain the reasoning behind the provided answers [Luo et al., 2023].

Source Modality - Transcript vs. Speech: We are also interested in studying whether input
modalities have an impact on task performance. Cognitive psychology literature has studied this
question in various settings. [Khan et al., 2022] studies cognitive performance and information
retention, when note-taking is performed using voice notes as opposed to textual notes. The
paper finds that when the notes are taken by recording voice notes as opposed to writing textual
notes, note-taking leads to a better conceptual understanding of the topic. [Stollnberger et al.,
2013] studies how the input modality affects human learning of the English language, specifically
whether learning by listening to lecture audio as opposed to reading lecture notes impacts
retention. In this chapter, we expand the analysis to the important task of speech summarization,
which is significantly different from the tasks addressed in prior work.

Impact of ASR on Downstream Tasks: Errors in automatic speech recognition are known
to have an impact on downstream task performance, like emotion recognition [Schuller et al.,
2009,Feng et al., 2020], spoken language understanding [Shon et al., 2023], and natural language
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understanding and dialog management [Serdyuk et al., 2018,Shivakumar et al., 2019]. Therefore,
it is important to assess their impact on human summarization.

4.3 Data Collection

Datasets that are used for speech summarization today do not have information on which of the
two approaches, i.e., reading a textual transcript of the recording or listening to the recording
to summarize was employed to obtain annotation. Further, they only have one annotation per
recording, which may inhibit analysis due to annotator-specific biases or tendencies. Therefore,
to conduct our experiments, we curate a multi-reference dataset from an existing dataset.

We considered a subset from the test partition of the Interview corpus [Sharma et al., 2023a,
Majumder et al., 2020, Zhu et al., 2021] for speech summarization. Interview is the largest
open-domain corpus with around 5-minute-long speech recordings containing spontaneous
speech along with real audio noises representing music, and events inside and outside the studio
corresponding to discussion topics1.

Ensuring high-quality summary annotations is crucial to making reliable observations. Therefore,
we took the necessary steps to ensure a fair and reliable data collection pipeline. Initially, we
consulted with an expert from the in-house data collection team and conducted small pilot studies
to make design decisions.

Audio Length: We conducted in-house pilot studies comprising six questions by trying to
summarize audio recordings that were 2 minutes and 5 minutes long. As expected, summarizing
5-minute recordings consumed more time and effort, and was harder due to the large amount
of information compression. We concluded that limiting the audio length to 2 minutes would
provide sufficient content to summarize without increasing the difficulty level of summarization
significantly. Using forced alignment, we obtained audio reference transcripts up to the first 2
minutes.

Summary Length: A hard limit was not set on the length of the summary, but it was suggested
that summaries should contain at least 2 sentences to convey the essence of the conversation.
It was recommended that summaries contain between 50 to 80 words for the 2-minute long
recordings.

Data Selection: To obtain reasonable summaries, it is important that audio recordings and textual
transcripts are understandable, and have a sufficient amount of information to summarize. In cases
where background noise or music is present, or when a large portion of the recording does not
contain speech, these criteria are violated, leading to sub-optimal recordings for summarization.
Therefore, audio recordings were transcribed using Whisper-medium [Radford et al., 2022],
and the resulting Word Error Rate (WER) was used to remove unsuitable audio recordings from

1The authors acquired permission from NPR to use NPR data for this research
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consideration. Based on manual inspection, a threshold of 25% WER was set, which eliminated
recordings with only music or large amounts of noise.

Expert and Non-expert: Our data comprises 1,002 recordings in total, with each recording
having a speech recording and its corresponding reference transcript. For each recording, we
collected two expert summaries and two non-expert summaries by reading the text or listening
to the audio, which gave us a total of 4 summaries based on the text and 4 summaries based on
the audio on the same recording. Additionally, we solicited summary annotations from speech
recognition transcripts for 100 of these 1002 recordings, sampled at random so the Word Error
Rate with Whisper-medium is non-zero, i.e., the transcript has ASR errors.

Annotator Overlap: It is worth noting that each annotator was assigned to work on either the
transcript or audio recording for a particular recording, but not both. This approach ensured that
no annotator saw audio or transcription for a recording they had already annotated.

Expert Summary Annotation: Expert summary annotations were obtained through a third-party
vendor that passed in-house qualitative assessments of summary outputs from a pilot annotation.

Figure 4.2 shows the detailed guideline we provided for expert annotation to third-party vendors.

The summaries generated for this task have fewer limitations on style and content. Generally speaking, the sum-
maries ought to capture the main topic of the interaction, but we’re otherwise not too caught up on prescribing a
particular way of writing, such as maintaining a particular tense throughout.
Annotator selection - A single annotator should only interact with each segment once, either as an audio file or as
a text transcript.
Summary length
- There is no hard limit on maximum summary length, but we expect at least two sentences per summary, and
recommend between 50 to 80 words in the summary
Summary content
- The summary should convey the main topic or overarching message contained in the interaction.
- There is nothing that should never be included, but we prefer for annotators to summarize the overall message
rather than attempting to incorporate direct quotes from the interaction.
- Do not worry about doing outside research to verify content. It is preferred that the summaries are written with
few prior constraints and without overthinking (summaries should be fairly spontaneous).
Summary style
- There is no strict template to follow for these summaries.
- Summaries should maintain a neutral tone.
- Summaries can be as simple or complex as needed to capture the overall message of the interaction.
- While we expect the summaries to be written in complete sentences with proper grammar, no particular tense
needs to be maintained.
- Names and places mentioned in the conversations (including the names of conversation participants) can be used,
and accurate spellings for those do not matter.

FIGURE 4.2: Annotation guidelines provided to expert annotators to collect summary data

In total, there are 36 expert annotators. The expert annotators are all American national and native
English speakers, proficient in the language, therefore they don’t have any difficulty performing
the summarization task. Among the 36, 34 are female, one identifies as non-binary and one
prefers not to say.

The third-party vendor passed in-house qualitative assessments of summary outputs from a pilot
annotation and contracted to the company’s primary third-party vendor for summary annotation.

Non-Expert Summary Annotation Non-expert summary annotations were obtained through
the Amazon Mechanical Turk (MTurk) platform. Each HIT required the annotator to accept the
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terms of a consent form that explained the task and requested consent to share responses for
reproducible research. Each HIT included four questions, where annotators were asked to write 2
summaries by listening to audio recordings, and two summaries by reading transcript passages.

As part of the instructions, the use of generative AI was prohibited to answer the questions.

Annotators were asked to write summaries based on the provided inputs while ensuring that the
response was coherent and grammatical, and written in their own words. All responses were
validated manually for conformity to the instructions, and invalid responses were rejected and
re-assigned to a new annotator.

Source
Towns like Bluffton say they’re working to promote communities of inclusiveness, but what does that really mean,
and will people of color come? Jim Hunt is president of the National League of Cities based in Washington, D.C.
He heads up the group’s partnership for working toward inclusive communities. Mr. Hunt joins us from West
Virginia Radio in Morgantown, West Virginia..And joining us via phone is Harvard law professor Charles Ogletree.
Professor Ogletree leads the law schools’ Charles Hamilton Houston Institute for Race and Justice. Gentlemen,
great to have you on the program. Professor, let me start with you. Give us a quick historical view, of you will,
of these, quote, sundown towns..Well, thanks, Ed. As you know, when I was doing research on the Tulsa race
riots from 1921, I was astounded to learn of the literally hundreds of towns - now we’ve discovered thousands of
towns around America - in the South, but not exclusively in the South, where blacks were told leave before
sundown. There were sirens, there were notices, and the consequences of staying in those towns were death or
other serious bodily injury..And the good news is that that is largely historical, but it’s a frightening sense that
people could not live in the community. They could work there, they could visit there, but they couldn’t’ be there
after dark because of the strongly held feelings about segregation. And sundown towns were just that: if you’re
black, get out of town before the sun goes down..Mm hmm. Jim Hunt, while those sirens may have gone away,
there are certainly still areas in this country where when the sun goes down, minorities know that this is an area -
a region you should not be in. That continues today..Right, Ed. And I think when we look around - and,
obviously, the inclusive agenda is a broader agenda than just race, but clearly race plays a very significant part in
the program..Mr. Hunt, why are we seeing this sense of inclusiveness? Is it totally altruistic? Are there financial
benefits to these cities? Why are we seeing this rush now to try to move to include minorities?.Well, and I think
when we look across the board of what’s happening across the country - when we look at Dr. Richard Florida’s
work on the rise of the creative class, and some of the economic development needs of cities throughout America -
we recognize that if we’re not going to be inclusive, we’re going to suffer from an economic development
perspective.

Expert Speech Summary
Some towns in America used to be known as sundown towns because black people were told to leave town before
sundown or they could be harmed. Some cities today have programs that focus on being inclusive to minorities.

Expert Text Summary
Jim Hunt, President of the National League of Cities, and Harvard Law Professor Charles Olgetree discuss
sundown towns and why some towns are working to be more inclusive of minorities. A sundown town was a
town, mostly in the south, where blacks were allowed work and visit, but were not allowed to be there after
sundown. If they were, the could face serious injury or even death. While these town have mostly gone away,
there are still areas in the country that minorities know they should not be in when the sun goes down. Many
towns are now working to be more inclusive of minorities and part of the reason has to do with the financial
benefits they’ll receive.

Non-expert Speech Summary
Jim Hunt, President of the National League of Cities, and Harvard law professor Charles Ogletree discuss the
historical and contemporary implications of "sundown towns," where African Americans were forced to leave
before sunset under threat of violence. While this practice is largely historical, there are still areas where
minorities feel unsafe after dark. They emphasize the importance of inclusivity for economic development and
societal well-being.

Non-expert Text Summary
The National League of Cities is working on inclusive communities, addressing historical issues like "sundown
towns," where minorities were told to leave before dark under threats of violence. Harvard Law Professor Charles
Ogletree discusses the historical prevalence of such towns, emphasizing the progress made. National League of
Cities President Jim Hunt highlights the economic benefits of inclusivity in cities, linking it to overall economic
development. While acknowledging past discrimination, the focus is on building inclusive communities for the
future.

FIGURE 4.3: Example source and summaries.

Figure 4.3 shows some examples of the annotations we obtained.
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4.4 Evaluating differences between summaries

Summary evaluation is an inherently challenging problem for general settings since there is often
no clear definition of what constitutes a good summary. Within this chapter, we deem a summary
good if it is factually faithful to and representative of the input source while being abstractive,
coherent, and fluent. Therefore, in this section, we outline three types of evaluations that evaluate
different aspects of summary quality and informativeness.

4.4.1 Source-based Evaluation

Summary Length and Compression Ratio: Summary length is measured in words and the
compression ratio [Mani, 1999] is defined as the number of words in the reference transcript
divided by the number of words in the summary. The greater the summary length, typically, the
higher the amount of information contained in the summary, and the lower the compression ratio.

Novel Words (%): The percentage of words in the summary that are not present within the
source transcript, which could be considered to measure the extent of paraphrasing within the
summary.

Extractiveness: It is a measure of how extractive the summary is and can be approximated by
computing lexical overlap using ROUGE-L [Lin and Och, 2004] between the source transcript
and the summary.

Informativeness-Entities: We propose to compare named entities predicted from the source text
and summaries as a proxy for the amount of information contained within the summary. Named
entities are extracted using the Entity Recognizer2 from Spacy [Honnibal and Montani, 2017].

Informativeness-Semantic Similarity: Also, we compare semantic similarity between the
source and summaries using metrics like BERTScore [Zhang et al., 2019] and BARTScore [Yuan
et al., 2021].

Retrieval-based informativeness: A summary can be considered representative of or informative
about the source when it can discriminate the correct source from a selection of all sources. We
describe a retrieval-based measure where we compute the semantic embedding similarity (using
BERTScore) between the hypothesis summary and all possible source texts. A discriminative
summary should produce the highest similarity between the summary and the correct source text.
This is measured using retrieval accuracy (RAcc). We also report the Mean Reciprocal Rank
(MRR) as an indicator of retrieval performance.

Factual Consistency: We use UniEval to estimate the factual consistency of summaries with
respect to the source transcript.

2https://spacy.io/api/entityrecognizer
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FIGURE 4.4: Pairwise Score Computation

4.4.2 Structure Evaluation

To evaluate coherence and fluency automatically, we leverage UniEval [Zhong et al., 2022b].

4.4.3 Summary Comparisons

Pairwise Similarity: We compute relevance and consistency using UniEval [Zhong et al., 2022b],
and use BARTScore as a measure of semantic similarity. Pairwise scoring is illustrated in Fig.
4.4, where si is a speech-based summary, tj is a transcript-based summary, and S(a, b) calculates
the score between reference a and hypothesis b (e.g., BART score). The idea behind pairwise
scoring is to compare two types of summaries, where one type is a reference and the other a
hypothesis. This process results in two scores, a speech reference score, and a transcript reference
score. By comparing these two scores, we can identify cases when the information in one type of
summary is present within the other type of summary.

Pairwise Inter Annotator Agreement (IAA): For text generation tasks, the inter-annotator
agreement is challenging to quantify. We use a combination of lexical and semantic similarity
metrics like ROUGE-L [Lin and Och, 2004], and BARTScore [Yuan et al., 2021] to automatically
represent inter-annotator agreement.

Factual Consistency and Source Representation: We employ LLM-based evaluation and human
evaluation to estimate the factual consistency of each summary, and how well each summary
represents the source. These evaluation methods are described in detail below.

4.4.3.1 LLM-based Evaluation

Following the LLM summary evaluation methods listed in Section 4.2, we use ChatGPT
(gpt-3.5-turbo-0125) as a qualitative evaluation method for the summaries collected for
this work. Specifically, we designed a multiple choice-style AB test to compare summaries in
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The following are two summaries of the given source text:
Summary 1: [Summary 1]
Summary 2: [Summary 2]
Source: [Source]

Factual Consistency Question
Answer the following multiple-choice question:
What is the most appropriate statement about the summaries?
(a) Summary 1 is more factually consistent with the source text than Summary 2.
(b) Summary 2 is more factually consistent with the source text than Summary 1.
(c) Both Summary 1 and Summary 2 are equally factually consistent with the source text.
Give your answer as “Answer: a”, “Answer: b”, or “Answer: c”. Then, start a new line and explain
your reasoning in a single paragraph following your answer.

Source Representation Question
Answer the following multiple choice question:
What is the most appropriate statement about the summaries?
(a) Summary 1 is more representative of the source text than Summary 2.
(b) Summary 2 is more representative of the source text than Summary 1.
(c) Both Summary 1 and Summary 2 are equally representative of the source text.
Give your answer as “Answer: a”, “Answer: b”, or “Answer: c”. Then, start a new line and explain
your reasoning in a single paragraph following your answer.

FIGURE 4.5: Template for questions presented to ChatGPT. Similar questions are used to solicit
human scores.

terms of either factual consistency or accurate representation of the source transcript. The two
questions posed to the LLM are displayed in Fig. 4.5, where the text in the brackets represents
the summaries being evaluated and the associated source text. Each question was presented in a
separate session to avoid bias from previous questions.

Each question is asked twice for each AB pairing, but with the order in which the summaries
are presented switched to avoid biasing the results. For example, if we were comparing a
transcript-based summary and a speech-based summary, the question would be asked one time
with the transcript-based summary as Summary 1, and then another time with the speech-based
summary as Summary 1. Additionally, since all summaries are collected in pairs, we compare
each summary to both summaries from the other group, exhausting all possible combinations.
For example, if we were comparing a pair of transcript-based summaries to a pair of speech-
based summaries, the first transcript-based summary would be compared to both speech-based
summaries, and then the second transcript-based summary would be compared to both speech-
based summaries, resulting in four total comparisons. Considering both the order of presentation
and the comparison combinations, eight questions are posed to the LLM per source sample.

4.4.3.2 Human Evaluation

To validate the expert summary comparison, we also conducted an AB test for 30 recordings with
14 annotators. We present 2 summaries based on different modalities and their source transcript to
a user. We designed 2 multiple-choice questions that ask human annotators to compare summaries
based on their factual consistency and how accurately they represent the source transcript. The
setup of questions is similar to that in LLM evaluation.
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4.5 Research Methodology

4.5.1 RQ1: Speech versus Text Inputs

We apply the methods and metrics described in Section 4.4 to explore differences between
summaries derived from speech recordings and summaries extracted from text transcripts. We
use the expert annotations obtained for 1002 recordings for this analysis since expert summaries
are more reliable.

4.5.2 RQ2: Impact of Transcript Errors on Human Summarization

We measure the impact of ASR error propagation on the output summary by comparing a subset
of 96 expert summaries given ASR-generated transcripts and ground-truth transcripts. The
summaries resulting from the Whisper-generated transcripts are compared to the summaries
based on ground-truth transcripts using the methods and metrics outlined in Section 4.4.

We analyze the effect of ASR errors on the quality of the summaries based on ASR transcripts
by plotting informativeness measures like Entity-F1 and WER (See Figure 4.6) and find that as
WER increases, Entity-F1 decreases.

4.5.3 RQ3: Expert versus Non-Expert Annotation

We use all methods and metrics from Section 4.4 to explore the effect of expertise on summary
quality. Similar to RQ1, we provide an overall comparison across speech-based summaries as
opposed to transcript-based summaries arising from non-expert annotations and conclude on the
reliability of expert and non-expert summaries.

4.6 Experimental Results

4.6.1 RQ1: Speech versus Transcript Inputs

Evaluation across the expert summaries, including a comparison between transcript-based and
speech-based summaries, is shown in the first two columns of Table 4.1.

It is immediately apparent that speech-based summaries are significantly shorter and more
compressed than transcript-based summaries, indicating that speech-based summaries are highly
selective. This is likely because the summarizers extract only the main points when listening
to a recording, while a transcript serves as an easier reference for smaller details. This claim is
supported by the low level of extractiveness in the speech-based summaries, indicated by a high
percent of novel words, low ROUGE-L scores, and a low F1 score for named entities retained



Insights from Human Summarization 30

Metric Transcript Overall Speech Overall p-value

Summary Length 78.58 ± 27.72 56.95 ± 18.30
Compression Ratio 3.76 ± 2.20 5.20 ± 3.06 8.83E-86
Word Vocabulary Size 20,408 16,211 -
Novel Words % 24.63 ± 13.57 25.66 ± 13.22 5.80E-02

Extractiveness↓ 20.70 ± 10.53 18.57 ± 10.88 1.09E-08
Entity F1↑ 33.63 ± 29.83 26.21 ± 26.90 1.34E-30
BERTScore ↑ 85.66 ±2.45 85.32 ±2.42 1.54E-05
BARTScore ↑ -3.37 ±0.47 -3.46 ± 0.45 7.96E-11
Retrieval Accuracy ↑ 68.86 + ± 46.31 59.04 ± 49.75 1.36E-19
Mean Reciprocal Rank ↑ 70.23 ± 16.08 75.74 ± 16.29 8.48E-52
Factual Consistency (UniEval) ↑ 0.83 ± 0.16 0.85± 0.16 1.90E-04

Pairwise Rep. (LLM) ↑ 66.67 28.52 -
Pairwise Factualness (LLM) ↑ 60.16 33.07 -
Pairwise Rep. (Human) ↑ 48.57 21.43 -
Pairwise Factualness (Human) ↑ 39.52 22.62 -
Fluency (UniEval) ↑ 94.02± 4.54 94.01± 5.26 9.83E-01
Coherence (UniEval)↑ 91.82± 12.97 89.34± 15.63 5.42E-08
Pairwise BARTScore ↑ -2.81±0.51 -2.56± 0.52 1.67E-101

TABLE 4.1: RQ1 Evaluation: Speech versus Transcript-based Summaries by expert annotators.
↑ signifies that a higher value of the metric is desirable, while ↓ signifies that a lower value of

the metric is desirable.

in the transcript. Additionally, coherence for speech-based summaries is relatively low, likely
because they are not long or detailed enough to form a very structured summary.

These results also indicate that speech-based summaries are less informative than transcript-
based summaries. Again, this is likely because summarizers can extract details by referencing
transcripts much more easily than by searching through the recording. Results that support this
claim are high BERT- and BARTScores, high retrieval accuracy, factual consistency, and human
and LLM ratings. The higher pairwise BARTScore for speech references indicates that more of
the information within the speech summary is likely present in the transcript-based summary,
making speech-based summaries more selective in relevant information. IAA scores computed
based on ROUGE-L and BARTScore indicate that speech-based summaries promote higher
consensus between raters.

The only result that did not exhibit statistically significant influence from the source modality
was fluency. This is reasonable, as the fluency of the model is determined more by the language
proficiency of the individual writing the summary than the content.

For RQ1, we find that speech-based summaries seem to be more selective, factually consistent,
and perhaps more abstractive than transcript-based summaries, while transcript-based sum-
maries contain more information extracted directly from the source than their speech-based
counterparts.
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Metric Transcript Overall Speech Overall ASR Overall

Summary Length 85.29±40.58 56.94±36.89 73.67±36.89
Compression Ratio 0.40± 0.73 0.52± 0.81 0.27± 0.85

Extractiveness (ROUGE-L with Transcript) ↓ 21.94±10.95 19.17±11.60 19.25±9.33
Entity F1 ↑ 35.17 ±18.93 26.28 ± 15.65 30.24±17.67
BERTScore with Transcript↑ 85.92 ± 2.55 85.56±2.55 85.49±2.45
BARTScore with Transcript↑ -3.33 ± 0.48 -3.44±0.47 -3.41 ±0.45
Retrieval Accuracy↑ 85.42± 35.29 71.88± 44.96 77.60± 41.68
Mean Reciprocal Rank↑ 89.09± 27.55 79.44 ±34.27 83.49±32.11
Factual Consistency (UniEval)↑ 83.56 ± 14.45 86.16±13.83 83.48±14.25

Fluency (UniEval)↑ 94.31 ± 3.62 94.23 ± 3.90 94.36 ± 3.72
Coherence (UniEval)↑ 91.51 ± 14.90 88.64 ± 16.04 90.81 ± 13.34

Pairwise Rep. (LLM)↑ 40.06 21.57 33.81
Pairwise Factualness (LLM)↑ 37.76 22.74 32.81
Pairwise BARTScore↑ -2.81± 0.48 -2.59 ± 0.51 -2.79 ± 0.51

TABLE 4.2: RQ2 Evaluation: Impact of Transcript Errors on Human Summarization.↑ signifies
that a higher value of the metric is desirable, while ↓ signifies that a lower value of the metric is

desirable.

4.6.2 RQ2: Impact of Transcript Errors on Human Summarization

Table 4.2 compares the summaries based on the subset of 100 recordings. It is interesting
to compare the summaries based on ASR transcriptions to the summaries based on manual
transcriptions. Nearly all indicators of informativeness are significantly higher for the manual
transcriptions than the ASR transcriptions. This is to be expected, as propagated recognition
errors can directly affect measures like Entity F1, factual consistency, and semantic similarity.
Coherence is similar for the two types of transcripts, which is consistent with the idea that the
ability to reference text allows the summarizer to capture the details and structure of the source.

Comparing ASR-transcript-based summaries to speech-based summaries, we see similar trends
to those in RQ1. Speech-based summaries are still shorter, more selective, less informative,
more factually consistent, and likely more abstractive than ASR-transcript-based summaries.
In general, LLM evaluation indicates that ChatGPT prefers transcript-based summaries over
speech-based summaries, even if the source transcripts contain errors.

Figure 4.6 shows a scatter of Entity-F1 as a function of WER. As the WER increases, Entity-F1
decreases, showing a weak negative correlation.

For RQ2, we find that transcription errors decrease the informativeness and coherence of
transcript-based summaries, but do not significantly impact fluency.
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FIGURE 4.6: Scatterplot showing variance of entity F1 of summary compared to source reference
transcript with Word Error Rate (WER) of audio transcription

4.6.3 RQ3: Expert Annotation versus Non-Expert Annotation

From Table 4.3, we observe that the speech-based summary length from expert annotation is
significantly lower than its non-expert counterpart, while the expert speech-based and transcript-
based summary lengths are very different. The word vocabulary size and the percentage of novel
words are lower in the expert summaries (both speech and transcript sources) compared to the
non-expert summaries.

Extractiveness is lower for non-expert speech-based and transcript-based summaries compared
to the expert ones, referring to the fact that the non-experts do not tend to use phrases directly
from the source whereas the experts do. Entity F1 score is higher for non-expert speech-based
and transcript-based summaries, which is because non-expert summaries are on average longer
than the expert ones and capture more of the entities in the source. BERTscore, BARTscore,
retrieval accuracy, and MRR are higher for the expert summaries than the non-expert summaries
(for both speech and transcript sources) referring to the fact that non-expert summaries are less
informative than the expert summaries. Factual consistency is lower for non-expert summaries
pointing to the fact that expert summaries are more factually consistent. Fluency, coherence, and
pairwise BARTscores are lower for non-expert summaries demonstrating the reliability of expert
summaries.

We ran t-tests to conclude whether the non-expert speech-based and transcript-based summaries
belong to the same distribution and observed based on BARTScore and other metrics that
the p-value was high. This potentially indicates that non-expert annotations based on speech
and transcripts may be very similar and that some annotators may have used similar methods
or tools for the two types of annotations. Based on a human examination, it appears that
some annotators did use generative AI to respond to annotation requests through Amazon
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Expert Non-expert
Metric Transcript Speech Transcript Speech

Summary Length 78.58 ± 27.72 56.95 ± 18.30 75.35 ± 17.70 77.42 ± 33.85
Compression Ratio 3.76 ± 2.20 5.20 ± 3.06 3.69 ± 1.95 3.66± 1.86
Word Vocabulary Size 20,408 16,211 21511 21676
Novel Words % 24.63 ± 13.57 25.66 ± 13.22 37.47 ± 13.38 38.45± 14.21

Extractiveness↓ 20.70 ± 10.53 18.57 ± 10.88 18.37± 7.26 18.38 ±11.29
Entity F1↑ 33.63 ± 29.83 26.21 ± 26.90 34.51 ± 17.28 30.09± 17.72
BERTScore ↑ 85.66 ±2.45 85.32 ±2.42 85.28± 2.32 85.06 ±2.76
BARTScore ↑ -3.37 ±0.47 -3.46 ± 0.45 -3.41± 0.44 -3.43± 0.53
Retrieval Accuracy ↑ 68.86 + ± 46.31 59.04 ± 49.75 71.82 ± 44.99 65.78 ± 47.44
MRR ↑ 70.23 ± 16.08 75.74 ± 16.29 76.56 ± 71.01 71.01 ± 41.57
Factual Consistency (UniEval) ↑ 82.68 ± 16.38 84.58± 15.72 82.08 ± 16.90 78.57± 19.79

Fluency (UniEval) ↑ 94.02± 4.54 94.01± 5.26 92.90± 8.21 92.65 ±9.35
Coherence (UniEval)↑ 91.82± 12.97 89.34± 15.63 90.88± 15.19 87.95± 19.57

Pairwise Rep. (LLM) ↑ 66.67 28.52 - -
Pairwise Factualness (LLM) ↑ 60.16 33.07 - -
Pairwise Rep. (Human) ↑ 48.57 21.43 - -
Pairwise Factualness (Human) ↑ 39.52 22.62 - -
IAA - ROUGE-L ↑ 24.92 ± 7.82 28.98 ± 9.29 32.67 ± 12.56 28.62 ± 12.52
IAA-BARTScore ↑ -2.71 ± 0.53 -2.55 ± 0.55 -2.72 ± 0.61 -2.93 ± 0.73
Pairwise BARTScore ↑ -2.81±0.51 -2.56± 0.52 -2.85± 0.63 -2.88± 0.70

TABLE 4.3: RQ3 Evaluation: Speech-based versus Transcript-based Summaries for Expert and
Non-expert annotators.↑ signifies that a higher value of the metric is desirable, while ↓ signifies

that a lower value of the metric is desirable.

Mechanical Turk, however, such conclusions may not be definitive since such models can
generate human-like speech. This makes non-expert summaries less reliable for analysis of
speech-based versus transcript-based summaries, and hence, we decided against running the
LLM and human evaluation for these non-expert summaries.

For RQ3, we find that expert annotations are more informative, coherent, fluent, and less
information variant across speech-based and transcript-based summaries.
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4.7 Chapter Conclusion

In this work, we take the first steps towards understanding human annotation for speech summa-
rization by proposing and assessing different approaches. Annotators can either read a transcript
of spoken content or listen to the audio recording to produce an abstractive speech summary. We
formulate three research questions to assess differences in summaries resulting from variations in
source modality (listening to audio versus reading a transcript of spoken content), the nature of
transcription (manual versus ASR-based), and the expertise of annotators. Extensive analysis
using automatic and human evaluation reveals that speech-based summaries are more information-
selective, factually consistent, and abstractive compared to transcript-based summaries. Analysis
of the impact of ASR on transcript-based summarization shows that errors in transcript generation
decrease the informativeness and coherence of transcript-based summaries. Finally, analysis of
expert and non-expert annotations demonstrates higher informativeness, coherence, and fluency
across expert annotations.

Through this process, we develop and release a new human-annotated dataset to enable repro-
duction and encourage further research in the area. We hope that this study galvanizes further
research into human summarization, and powers informed model design for automatic speech
summarization.



Part II

Our End-to-End Approach
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Chapter 5

The End-to-End Approach to Speech
Summarization

Speech summarization is typically performed using a cascade approach. The input speech is
first converted into its text transcript using an ASR model. The resulting transcript is used as
input to an ATS model to produce abstractive summaries. The challenge with such a setup
is error propagation across the cascade, i.e., where transcription errors amplify errors in the
summarization module.

To minimize the impact of error propagation and construct simpler models, in this chapter,
we present an end-to-end sequence model that is optimized for speech summarization. The
resulting end-to-end model comprises a speech encoder that transforms the input speech into
a latent sequence representation, and a summary decoder that uses the latent representation to
auto-regressively generate the summary.

To realize the end-to-end model, we address two challenges: abstract learning, and global
acoustic context. Abstract learning, characterized by an indirect relationship between the input
and output is mitigated using a two-stage training strategy, where we first generate grounded
acoustic representations by pre-training for ASR. We use these grounded acoustic representations
to train the summarization model.

To consider global acoustic context, we need to be able to train with the entire speech sequence,
which is very long. Transformers are among the state of the art for many tasks in speech, vision,
and natural language processing, among others. Self-attentions, which are crucial contributors
to this performance have quadratic computational complexity, which makes training on longer
input sequences challenging. Therefore, we introduce optimizations to self-attention to make
them accurate and efficient over long input sequences.

36
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5.1 The Problem with Cascade Models

As discussed in Chapter 3, the cascade comprises speech recognition and text summarization
modules in most cases. The main challenge with cascade models is error propagation across
modules of the cascade. Errors made within the speech recognition module create noisy transcripts
that are input to the subsequent text summarization module. Noisy inputs impact the performance
of the text summarization module, leading to noisy outputs. In essence, errors in a module
cause errors in subsequent modules within a cascade, which is termed error propagation. This
phenomenon can have a significantly detrimental impact on the performance of cascade systems.
The greater the number of modules within the cascade, the greater the impact of such error
propagation. Errors within initial modules are often more inimical than errors in later modules.

To overcome this fundamental disadvantage, there are a few strategies that can be adopted. First,
modules after the first can be trained to be robust to noisy inputs. However, any lost information
from the input cannot be recovered, leading to suboptimal performance. Second, error correction
modules can be inserted to attempt to recover missing information. However, these incur a
significant computational cost and may not be able to recover the lost information completely.
These considerations motivate us to optimize speech summarization models in an end-to-end
manner, which encourages intermediate outputs that are likely to lead to accurate summaries.

Another challenge within cascade models is the necessity for a larger number of model parameters.
The total number of parameters within a cascade is the sum of model parameters within individual
modules. This increases the memory and computational cost for such models, making such
approaches unsuitable for constrained deployments, like on-device. This can be addressed
by making an end-to-end formulation relatively lightweight, comprising a single encoder and
decoder as opposed to multiple encoders and decoders.

In the sections that follow, we describe our end-to-end framework for the training and inference
of speech summarization models and experimentally demonstrate its benefits.

5.2 Our End-to-End Formulation

Given a recording with input speech features X = [x1,x2,x3, · · ·xM ], where xi represent N
dimensional speech features; the objective of speech summarization is to estimate the model
parameters θSSUM that maximize the probability of predicting the correct abstractive summary
token sequence Y = [y1, y2, y3, · · · yL] of length L given the input speech feature sequence X .

We realize this by modeling P (Y |X; θ) using a sequence model comprising a speech encoder
and a summary decoder. The encoder takes in the speech features X and learns to produce a
latent representation H based on Equation 5.1.

H = Encoder(X) (5.1)
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The decoder consumes this latent representation H and auto-regressively predicts tokens of the
hypothesis summary Ŷ = [ŷ1, ŷ2, ŷ3, · · · ŷL] based on equation 5.2.

ŷi = Decoder(y1, y2, · · · , yi−1, X) (5.2)

Each token in the decoder predictions is one of V elements within the decoder’s token vocabulary.
The token vocabulary is constructed from the text of the training data. Additional tokens like
< unk >,< sos >,< pad > are used to indicate an unknown token, the start/end of the
prediction token, and the pad token respectively.

The model is optimized using the cross-entropy criterion, defined as follows:

Lce = −
L∑
i=1

V∑
j=1

M(i)yi log(ŷi) (5.3)

Here M(i) is an indicator mask function that has the value of 1 if the current token is not a pad
token in the reference y and 0 otherwise.

Speech encoders can adopt transformer-based [Vaswani et al., 2017b] architectures or recur-
rent [Graves, 2012] architectures. Throughout this thesis, we leverage conformer [Gulati et al.,
2020a] architecture with learnable convolutional feature downsampling for our speech encoder.
The summary decoder is transformer-based.

Inference for a trained end-to-end model with parameters θSSUM aims to find the most likely
summary Ŷ given the input speech feature sequence X as shown in Equation 5.4.

Ŷ = argmaxY P (Y |X; θSSUM ) (5.4)

The end-to-end model auto-regressively predicts tokens in the summary Ŷ based on previously
decoded tokens.

5.3 Challenges in End-to-End Modeling

There exist multiple challenges in realizing end-to-end models for real-world applications.

First, end-to-end models consume long input sequences directly at once to make decisions on
what is important enough to summarize. However, such models cannot be realized in real-
world settings owing to compute restrictions. In this thesis, we address this challenge of global
acoustic context by proposing multiple approaches within Chapters 5 and 7 to enable speech
summarization of long recordings.
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Second, speech summarization is an example of an abstract learning task, where the relationship
between the input speech and output summary is complex and indirect. This makes optimization
from scratch challenging. To address this, in this thesis, we propose a multi-stage training strategy
to facilitate performant end-to-end models.

Third, there is a lack of large-scale labeled data across multiple domains of application for speech
summarization. To address this challenge, through this thesis, we release two additional corpora
for speech summarization of TED talks and radio interviews later in the next chapter.

Finally, summarization models are trained to produce summaries based on unitary references,
and evaluated against the same. However, given an input recording, there may be multiple
equally valid summaries. Further, summaries ought to be human-like, which implies a diversity
in phrasing. However, this is limited by the diversity and type of dataset(s) used in training. To
make model outputs more diverse, in this paper, we introduce AugSumm, a method to generate
and use additional summary references during training and evaluation.

5.4 Abstract Learning of Complex Mappings

5.4.1 The Challenge of Abstract Learning

Abstractive speech summarization involves selecting important portions of the input, combining
the information within these important portions, and then paraphrasing to rewrite as human-like
summaries. Because all of these operations are complex, this results in the mapping between
speech and the resulting summary being complex and indirect. Due to importance selection being
somewhat subjective due to human annotation, it is challenging to teach models to select these
important portions of a given recording. Due to the combination of important semantic concepts
into a coherent logical progression, and the fact that multiple coherent progressions can result,
the alignment between the input speech and these important semantic concepts is complex and
non-monotonic. Many words within the output text may not be present verbatim in the input
speech as a result of paraphrasing, leading to cases when some tokens in the output may not be
lexically aligned with any part of the input.

5.4.2 Our Solution

Training end-to-end models from scratch that can summarize speech from scratch is challenging
owing to the complex unconstrained mapping between input speech and output summary. There-
fore, we derive inspiration from the fundamental tenet of curriculum learning, to solve easier
problems first and then progress to increasingly challenging problems.

An abstractive summary may be composed of extractive elements and abstractive elements.
The extractive elements, such as entity mentions, are present within the input speech, while
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the abstractive elements do not have the same lexical form as content within the input due to
paraphrasing. Models need to be able to produce both these types of elements to do abstractive
speech summarization.

The portions of the summary that are extractive, i.e., present in the input are easier to predict
compared to the paraphrased portions since there are frames in the input speech that directly
represent all of these words and/or phrases. Further, these extractive portions are present within
the reference transcript of speech. Teaching the model to transcribe speech will in turn teach the
model to be able to predict these extractive elements. Therefore, we contend that for tasks with
extractive elements within the abstractive summary, it is useful to pre-train the end-to-end model
for speech recognition first.

Speech recognition can be performed over long-form inputs, but it is harder to recognize long-
form inputs in comparison to shorter utterances. Therefore, we consider the simpler form of
speech recognition, i.e., to recognize individual utterances in speech as the first step of pre-
training. To obtain utterance-level transcripts as labels for this, we used forced alignment based
on HMM-GMM models in Kaldi.

Once the end-to-end model can do utterance-level speech recognition, then we take on the
more complex task of producing the abstractive summary. The model that is pre-trained is then
fine-tuned to do abstractive speech summarization.

5.5 Global Acoustic Context

5.5.1 The Challenge

End-to-end models consume the entire input at once, meaning that end-to-end speech summariza-
tion models take in the entire speech sequence at once, in contrast to cascade models where speech
recognition can be done on isolated utterances as identified by acoustic segmentation. Since
speech summarization models need to look over the entire input to identify what is important
enough to summarize, end-to-end models need to be able to process the entire input sequence.

Different from other speech tasks like speech recognition, the input sequences for summarization
are much longer. Table 5.1 shows the average and maximum lengths of the input and output
sequences for speech summarization on the How2 dataset for video summarization. We can
see from the table that there appears to be a 36x increase in input sequence length from speech
recognition to summarization. This poses a significant challenge in modeling that we term the
global acoustic context problem. Within this thesis, we examine this challenge in greater detail
and develop multiple solutions to this challenge, one in this chapter, and more in Chapter 7.

Transformers are among the state of the art for many tasks in speech, natural language processing,
and vision, among other fields involving ordered sequences of data. They achieve their exceptional
generalization in part due to “multi-head self-attention” — processing blocks that derive (a set
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TABLE 5.1: Statistics of the How-2 2000h Dataset used for model training and evaluation. The
mean and maximum statistics of N- the input length in frames, and L- the output length (in

tokens) are shown.

Set Max N Mean N Mean L Max L
Train ASR 4057 281.58 10.12 24
Train SSUM 145,082 9,806.58 60.54 173
Test SSUM 39,537 9,866.55 60.29 152

of) updated representations for each input in a sequence as a weighted sum of values derived
from all the inputs in the sequence. This computation, however, has a computational and space
complexity that is quadratic in the length of the input sequence. As a result, it becomes very
challenging to operate on longer input sequences on modern GPUs and TPUs, and training such
models from scratch is time and labor-intensive.

The computational challenges arise from the formulation of self-attention. For an input sequence
of length N each head of the multi-head self-attention block derives three N -row matrices: a
value matrix V representing the latent representation vectors for the N inputs in the sequence, a
query matrix Q representing the probes with which each input derives the “self-attention” weights
required to update itself, and a key matrix K, representing the key contribution of each input to
the computation of its own weight in updating any input. The actual updated representations for
the input computed by the head have the form softmax(QK⊤)V . The bottleneck arises from
softmax(QK⊤): both Q and K have N rows, QK⊤ requires O(N2) computation. This cannot
be factored, since the softmax operates on the product, which must necessarily be computed
before the softmax is applied.

To address the challenge of long input sequences, [Dai et al., 2019] uses segment-wise recurrence
within transformer self-attention to provide longer context, and [Rae et al., 2020] compresses
the segment-level contexts and provides them as additional input to enable a longer context.
Reformer [Kitaev et al., 2020] uses Locality Sensitive Hashing to compute localized self-attention
in O(n.logn), ETC [Ainslie et al., 2020] uses efficient global-local attention to scale to longer
sequences. To reduce the complexity of self-attention to O(n), Linformer [Wang et al., 2020]
uses a low-rank factorization of the self-attention matrix, and Big Bird [Zaheer et al., 2020]
uses a combination of sliding window, global and random attention. Longformer [Beltagy et al.,
2020] uses different attention patterns for each layer and restricted dilated self-attention with
task-specific global attention. These long sequence techniques have been evaluated on text inputs,
where the input sequence lengths are often several hundred times smaller than sequence lengths
of video-level speech.

5.5.2 Our Solution: Restricted Self-Attention for Long Sequence Modeling

Consider the input speech sequence X of length N , which results in a summary token sequence
Y with length L( N >> L ).
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It is known that encoder self-attention has a computational complexity of O(N2), decoder
self-attention has a complexity of O(L2), and encoder-decoder source-target attention has a
complexity of O(NL). Since N >> L, the encoder self-attentions are the largest contributors to
computational complexity.

To make end-to-end training practical for summarization, the computational complexity of the
encoder self-attention needs to be reduced since it forms the most significant contributor to
computational cost. Inspired by [Beltagy et al., 2020, Moritz et al., 2021], we break down
the self-attention computation into fixed-sized context windows of size W . For each sequence
element, a surrounding context of width W/2 on each side is considered while computing the
self-attention result. The number of such windows required will be P = N/W , and the cost of
the encoder-self attention is now reduced to O(PW 2) = O(NW ), which is smaller than O(N2).
To further reduce the computational complexity, we can drop one element in D elements, i.e.,
use dilation. Dilation further reduces the complexity to O(P (NW/D)).

Due to constraints of memory arising from computing, we consider only the first 100s of audio
input, which is reasonable as it is the mean input duration for the How2 data (From Table 5.1,
10,000 input frames corresponds to 100s of input).

5.6 Experimental Setup and Model Hyperparameters

5.6.1 Dataset and Evaluation

The How-2 Dataset [Sanabria et al., 2018] contains 2000h of instructional videos with corre-
sponding text transcripts, video, speech, translations, and summaries. Summarization is evaluated
using standard metrics ROUGE [Lin, 2004b], METEOR [Denkowski and Lavie, 2014], and
BERTScore [Zhang et al., 2020].

5.6.2 Models compared

In this work, we consider three different classes of approaches - toplines,cascade models, and our
end-to-end model.

Toplines: Topline approaches constitute an upper bound on performance within the cascade.
Assuming that the first block in the cascade, i.e., speech recognition has no errors, the toplines
obtain the best possible summarization performance. We use BART [Lewis, 2020] as the pre-
trained text summarization model and also assess the role of model size on summarization
performance. Since BART is not pre-trained for video summarization, there exists a domain
mismatch between the pre-training and the intended task. Therefore, we fine-tuned the BART
models BART-base and BART-large on pairs of (reference transcript, reference summary) from
the How2 dataset and then evaluated the resulting model on the test set. Consistent with training,
we use the reference transcript during testing.
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Cascade Models: We consider multiple cascade approaches to compare the end-to-end model
against. We first train an in-domain speech recognition model on the How2 dataset. This model
obtains a Word Error Rate (WER) of 9.3 on the How2 test set. The first component of our cascade
models includes this in-domain speech recognizer.

Text summarization models are pre-trained on written text, which does not have ASR errors. This
also constitutes a domain shift, and so in this case, rather than fine-tuning on pairs of (reference
transcript, reference summary), we instead fine-tune with pairs of (speech recognition transcript,
reference summary). This increases the robustness of the text summarization model to errors in
speech recognition.

Our cascade models for speech summarization are comprised of the in-domain speech recognition
model and the fine-tuned BART-base and BART-large models. We also compare to cascades
used in other work:

1. A combination of recurrent sequence model for speech recognition and attention-based
recurrent sequence model for text summarization [Palaskar et al., 2019b]

2. A combination of speech recognizer and text summarization model whose input is obtained
by combining multiple speech recognition transcripts [Kano et al., 2021c]

3. A three-module cascade comprising a Kaldi-based [Povey et al., 2011] speech recognizer,
a semantic concept predictor and a text summarization model that can transform semantic
concepts into an abstractive speech summary.

End-to-end model: Our end-to-end model comprises a conformer-based speech encoder with
restricted self-attention and a transformer-based text decoder. It is first pre-trained on utterance-
level speech recognition and fine-tuned on abstractive speech summarization.

5.6.3 Model Hyperparameters

ESPNet [et. al., 2018] is used for speech model training. Our conformer encoder uses 2-fold
convolutional subsampling followed by 12 encoder layers with feed-forward dimensions 2048 and
8 attention heads. The transformer decoder has 6 layers with feed-forward dimension 512 and 4
attention heads. ASR models are trained with joint Connectionist Temporal Classification (CTC)-
Attention [Kim et al., 2017] with the weight for CTC training set to 0.3. The videos are trimmed
to 100s for the video-level speech tasks owing to compute constraints. Specaugment [Park et al.,
2019a] is used during model training and fine-tuning. We use 40-dimensional filter-bank and
3-dimensional pitch features for training all models. The Huggingface transformers library [Wolf,
2020] is used to fine-tune text-only cascade models. BART-large and BART-base [Lewis, 2020]
are fine-tuned on How2 transcript and summaries.
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TABLE 5.2: Word Error Rate (WER) (%) for Test and Held Test sets of the 2000h How-to
Corpus. Window Size of 20 is used for Restricted Self-Attention

Encoder Decoder Test WER (%)
Transformer Transformer 10.2
Conformer Transformer 9.1
+ Restricted Self-Attention Transformer 9.3

5.7 Experimental Results

5.7.1 Speech Recognition

Table 5.2 compares the performance of different architectures for speech recognition on the How2
dataset. We see that a conformer-based speech recognizer obtains a better performance compared
to a transformer-based speech recognizer. We also note that using restricted self-attention as
opposed to the standard multi-head self-attention proposed in [Vaswani et al., 2017b] results in
comparable performance.

5.7.2 Cascade versus End-to-end models

TABLE 5.3: Summarization Performance of Topline, Cascade, and E2E Models using automatic
(ROUGE and METEOR) and semantic evaluation metrics (BERTScore).

Model Parameters ROUGE-L METEOR BERTScore

To
pl

in
e Groundtruth Text

+ BART-large Summarization 400M 55.5 30.0 91.0
+ BART-base Summarization 140M 53.7 27.7 90.7

C
as

ca
de

Conformer ASR 107M
+ BART-large Summarization 400M 52.3 27.8 90.6
+ BART-base Summarization 140M 50.3 25.6 90.3
S2S- PredText2Summary [Palaskar et al., 2019b] - 46.1 22.9 -
ASR + BERTSum [Kano et al., 2021d] - 48.2 - -
Kaldi ASR + Concept2Summary [Palaskar et al., 2021a] - 51.4 30.4 -

E
2E

Conformer Encoder
+ Transformer Decoder 104M 56.10 29.3 91.53

Table 5.3 highlights summarization results on three types of models: topline models, Cascade
models, and end-to-end (E2E) models.

Size of Text Summarization Model across Cascade and Toplines: Of the text summarization
models BART-large and BART-base, BART-large outperforms BART-base in ROUGE, ME-
TEOR, and BERT Scores, showing that larger models can perform better. Similar trends are seen
across these model sizes within our cascade models.

Our Cascades versus prior work: Our in-domain conformer-based speech recognizer coupled
with BART leads to strong cascade models that outperform previous work.
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E2E versus Cascades: The E2E model outperforms the best cascade model on all metrics with
4x fewer parameters, indicating that the end-to-end model can produce more fluent, semantically
relevant summaries. The difference in METEOR between our models is correlated with the
difference in ROUGE-L scores. METEOR scores are content-based, and missing out on key
noun phrases lowers the METEOR scores. From Table 5.3, it is clear that the cascade model and
E2E models have lower METEOR Scores than the cascade concept Model and the Ground-truth
models as the latter are better at retaining these noun phrases.

5.7.3 Ablation: Window Size and Dilation

TABLE 5.4: Effect of Window Size and Dilation in Self-Attention of the Speech Encoder on
E2E Summarization Model Training. W is the Window Size, and D is the dilation factor

W D ROUGE-L METEOR BERTScore
20 ✗ 52.0 26.5 90.5
40 ✗ 53.1 27.3 90.6
60 ✗ 52.5 27.1 90.5
100 5 51.9 26.3 90.5

To understand the impact of context window size on summarization performance, we train models
with different window sizes using a subset of the training data. From Table 5.4, a window size of
W = 40 seems to yield the best ROUGE-L scores, while a smaller window of W = 20 yields a
lower ROUGE-L score. An optimal window size is neither too short nor too long. Short windows
lose important context, while longer windows incorporate less relevant context.

We also consider whether dilation can be used to improve the computational complexity while
retaining comparable performance. Comparing the first and last rows, the first row uses a window
size of 20 and no dilation, while the last row uses a window size of 100 with a dilation factor of 5.
Both of these entries have comparable performance even though the row with the larger window
size can learn more long-term correlations efficiently. This shows that dilation can enable the use
of longer contexts with a lower computational complexity.

5.7.4 Ablation: Qualitative Examples

Apart from obtaining quantitative improvements as seen in Table 5.3, we manually inspect
summaries produced by our best cascade and end-to-end models on the How2 test set.

Table 5.5 demonstrates two kinds of errors that we attribute to the cascade effect — missing
content words(in blue), and mistranscribed words(in red). The proposed E2E approach mitigates
the impact of these two types of errors, improving ROUGE and METEOR scores.
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TABLE 5.5: Qualitative analysis of errors in Cascade and E2E Approaches. Text in red shows
examples of mistranscribed words/phrases while text in blue shows examples of missing words/

phrases

E2E

DEFENDING AGAINST A SELF-DEFENSE TECHNIQUE IS THE PRINCIPLE
OF THE ATTACKER ’S ARM . LEARN HOW TO STRIKE AGAINST A
SELF-DEFENSE IN THIS FREE VIDEO FROM AN INDUCTEE IN THE
US MARTIAL ARTS HALL OF FAME.

Cascade

DEF OR DEFANGING THE SNAKE IS A SELF-DEFENSE TECHNIQUE
THAT TAKES THE ATTACKER’S STRIKE OUT OF PLAY. DEFANG THE SNAKE
WITH TIPS FROM A MARTIAL ARTS INSTRUCTOR IN THIS
FREE VIDEO ON SELF DEFENSE.

Ground
Truth

SELF DEFENSE TECHNIQUES MADE EASY ! LEARN HOW TO STRIKE
AGAINST A PUNCH IN THIS FREE VIDEO FROM AN INDUCTEE IN THE
US MARTIAL ARTS HALL OF FAME .

5.8 Chapter Conclusion

In this chapter, we begin by formulating an end-to-end model for abstractive speech summa-
rization to address the shortcomings of the classical cascade approach. End-to-end modeling
is challenging with many challenges being unique to the task of abstractive summarization.
We focus on the challenges that inhibit the practical realization of end-to-end models, namely,
abstract learning and global acoustic context.

The abstract learning problem results from the complex and indirect mapping between input
speech and output summary and can be addressed by solving simpler problems first and progress-
ing to more complex problems. In this spirit, the abstract learning challenge can be mitigated by
first pre-training the end-to-end model on utterance-level speech recognition, and then fine-tuning
the pre-trained model for abstractive speech summarization.

The global acoustic context problem is a product of very long input sequences that need to
be processed to perform abstractive speech summarization. One solution to this problem is to
replace the encoder self-attention with window-restricted self-attention which limits the amount
of context considered in the self-attention computation.

We compare end-to-end modeling against the classical cascade approach and find that our
approach demonstrates strong performance compared to previous approaches to speech summa-
rization (cascaded pipeline models). We also demonstrate the effects of various window sizes and
dilations on summarization, concluding that optimal window sizes are neither too long nor too
short, and that dilations can be used to look over larger contexts efficiently. Qualitative evaluation
of summaries reveals that end-to-end models outperform cascades due to two types of errors -
mistranscriptions and missing transcriptions.

All the observations and experiments in this chapter focused on an application of summarization,
namely, video summarization, and concluded that end-to-end models outperform cascade ap-
proaches. In the next chapter, we assess the generalizability of this conclusion by benchmarking
end-to-end and cascade models on multiple datasets. To do this, we introduce two novel datasets
for speech summarization, and analyse when end-to-end models can outperform cascade models.
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By restricting the scope of self-attention, every speech frame is not connected to every other
frame within the encoder self-attention. Therefore, the question of whether we are truly learning
global context remains. To be able to use the entire sequence to compute the self-attention without
restriction, and truly learn long-term dependencies, we would need to examine other alternatives
to restricted self-attention. In the next chapter and beyond, we examine other alternatives to
restricted self-attention.



Chapter 6

Introducing the Multi-domain
Benchmark for Speech Summarization

6.1 The Challenge of Data for Speech Summarization

Spoken language understanding (SLU) tasks involve inferring the linguistic structure or semantic
meaning of a speech signal beyond its text transcript. We use this term broadly to include
any natural language processing (NLP) task applied to speech, and tasks that involve linguistic
understanding but also localization in the signal of relevant segments or producing speech as
output. SLU has been an active area throughout the history of speech research [Hemphill et al.,
1990, Calhoun et al., 2010, Busso et al., 2008, Zadeh et al., 2018, Chen et al., 2020a, Cohn et al.,
2019, Yadav et al., 2020, Martinez-Lucas et al., 2020]. However, compared to "lower-level" tasks
like automatic speech recognition (ASR) and speaker identification, SLU has received much less
attention and resources, and specifically there are much fewer benchmarks with freely available
data.

In particular, the SLU task of speech summarization finds application in many fields ranging
from call centers to clinical visits. Automatic methods for speech summarization have many
applications — generating keywords and descriptions from videos, creating talk titles and
abstracts, producing concise summaries of medical visits [Espejel, 2019], and notes from a
lecture, to name a few. There is a need for labeled data to build and benchmark automatic speech
summarizers for all these applications.

First, we consider speech summarization for monologue summarization. Most prior work in
speech summarization [Sharma et al., 2022a, Palaskar et al., 2019b, Shon et al., 2023, Kano
et al., 2021b] focuses on summarizing monologue-style speech in how-to videos from the How2
[Sanabria et al., 2018] dataset. However, abstractive summarization on this dataset is relatively
simple due to shorter videos and formatted reference summaries. Further, all of the raw audio for

48
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TABLE 6.1: Statistics of the publicly available corpora for speech summarization. The nature
of input speech, number of recordings, number of hours of audio, average recording length in
minutes, the average number of words in the summary (transcript), input source, percentage of
non-stop novel words in the summary that do not appear in the transcript are shown for each
corpus, and word compression ratio. Speech is Monologue (Mono), Conversational (Conv), or
Synthetic (Synth). Word compression ratio is computed as the ratio of the number of words in

the transcript to summary, and averaged across the dataset.

Corpus Speech #Recs #Hrs Avg. Mins Avg. #Words Input Source N. Words (%) Comp. Ratio

How2 Mono. 72,981 2,000 1.64 32.79 (229.52) How-to videos 47.55 7.53

Our SLUE - TED Mono. 4,233 830.9 11.77 67.27 (1,749.44) TED talks 55.27 28.95

AMI Conv. 137 100 29.41 291.16 (5,841.73) Meetings 47.9 18.48
ICSI Conv. 59 70 60 534 (10,189) Meetings - 19.08
Spoken Gigaword Synth. 328,880 - - 31.4 (8.3) Article Headlines 55.3 3.78
Ours - Interview Conv. 49,411 4,354 5.28 40.12 (886.37) Radio Interviews 47.79 22.9

this corpus is not publicly available due to users deleting content from YouTube1. Recent work
introduced the TEDSummary corpus [Kano et al., 2021d] for speech summarization to address
these challenges, however, the lack of information about the talks used in their corpus makes it
difficult to reproduce their data selection. To advance the state of monologue summarization, we
introduce SLUE-TED, a corpus containing around 824 hours of real speech from TED talks. The
abstractive summarization task here is to predict the summary and title of the TED talk.

Different from monologue summarization, we consider other domains of application. A recent
work [Huang et al., 2022] introduces the Spoken Gigaword corpus that can be used to predict
article titles based on the first sentence. However, this dataset contains no real speech and is
simpler due to the shorter and synthetic input recordings. There are two public corpora (see Table
1) that can be used for multi-party meeting summarization, such as AMI [McCowan et al., 2005]
and ICSI [Janin et al., 2003]. However, these corpora are very small and are confined to certain
topics and domains. To improve the breadth of corpora for speech summarization and advance
multi-party meeting summarization, we introduce Interview, the largest-to-date open-domain
corpus comprising 4,354h of multi-party radio interviews. Interview provides speech, transcripts,
and short abstractive summaries of radio interviews with spontaneous speech that can be used for
academic research.

In the following sections, we introduce the two new corpora, SLUE-TED and Interview.

6.2 Introducing SLUE-TED

Recent work introduced the TEDSummary corpus [Kano et al., 2021d] for speech summarization
to address these challenges, and based on the crawler, and more recent talks released on the TED
website2, we introduce SLUE-TED, a re-designed corpus of summaries for TED Talks spanning
the years until 2022.

1https://youtube.com
2CC BY–NC–ND 4.0 license
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Statistics of our SLUE-TED can be found in Table 6.1. Recordings have an average length of
11.77 minutes and abstractive summaries are 67 words long on average. We find that, on average,
nearly 66% of words in the title and 57.4% of words in the abstract are present in the transcript,
suggesting that ASR pre-training can be useful in improving speech summarization performance.

For benchmarking and evaluation, we randomly split this corpus into 80% finetune, 10% valida-
tion, and 10% test set as shown in Table 6.2.

TABLE 6.2: SLUE-TED data split

utterances duration (h)

finetune 3384 664
dev 425 81
test 424 84

6.3 Introducing the Interview Corpus

To address the dearth of labeled speech summarization corpora for multiparty open-domain
dialogue, we introduce the Interview corpus. National Public Radio (NPR) hosts shows that are
generally 5-10 minutes long and interviews between hosts and guests. The Interview corpus for
language modeling was introduced in [Majumder et al., 2020], where transcripts with speaker
attribution were published for 105k different two-party and multi-party interactions, however,
this data did not contain any summary annotations or speech. The Mediasum corpus [Zhu et al.,
2021] for abstractive text summarization contains interviews from NPR and CNN along with
corresponding transcript and summary. Summaries are basically the description text provided
for interview recordings. However, this corpus does not contain any audio or links to download
audio. We used the NPR API to search for paired audio and textual summaries and curated the
Interview corpus for speech summarization.

Interview is the largest to-date open-domain public corpus for speech summarization with a
total duration of 4,354h. Table 6.1 compares the statistics of the Interview data to other existing
datasets. Speech recordings contain spontaneous speech along with real audio noises that
represent music, and events inside and outside the studio corresponding to discussion topics. The
dataset has 49.4k recordings that span multiple topics and domains, with an average recording
length of 5.28 minutes. The transcription on average contains 886.4 words and the summary
contains 40.1 words on average, representing a compression ratio of 22.09 between the transcript
and summary. Around 48% of words in the summary are not present in the transcription, making
this a relatively challenging task. On average, each recording has 24 turns and 4 speakers. Audio
download links are available through the repository3 for personal non-commercial and research
use as per NPR’s license terms4 along with transcriptions and abstractive summaries. The corpus
can be used for speech recognition and speech summarization.

3https://github.com/roshansh-cmu/Interview-corpus-SSUM
4https://www.npr.org/about-npr/179881519/rights-and-permissions-information



Introducing Multi-domain Benchmark 51

6.4 Review: Fourier Transform based self-attentions

FNet [Lee-Thorp et al., 2022a] is a recently proposed approach to reduce the computation of the
attention module. It has achieved performance approaching that of models such as Bidirectional
Encoder Representations from Transformers [Devlin et al., 2019b] in the language modeling
tasks. We proposed introducing it to replace the attention in the speech encoder of our dual
speech summarization system.

FNet interprets the Q, K, and V ’s dot product as a convolution representation, and the FNet
changes the Transformer’s self-attention function as Att(Q) = Fseq(Fdim(Q)). Here, Fdim and
Fseq denote the Fourier transform of the hidden dimension direction and time direction. The
computation complexity of FNet is O(DL logL) +O(DL logD). In general, we have L ≫ D;
thus, in this work, we omit the complexity of O(DL logD) for simplicity.

The advantage of this replacement is that, in addition to reducing the computational complexity
to the log order of the sequence length, it saves many resources compared to other methods since
the conventional query, key, and value projection matrices are no longer needed. In addition,
it continues to be able to view the entire series. However, since the Fourier transform has no
learnable parameters, it may have weaker modeling capabilities than other attention modules.

6.5 Benchmarking E2E and Cascade Models across multiple do-
mains

Speech summarization can be addressed using cascade or end-to-end approaches, and depending
on the task and the application domain, different approaches may perform better. In this chapter,
we investigate the strengths and weaknesses of these approaches across a variety of application
domains to conclude their effectiveness. Cascade approaches [Kano et al., 2021b, Palaskar et al.,
2021a, Yu et al., 2021, Palaskar et al., 2019b] summarize speech in the textual domain, by first
transcribing speech, and then using text summarization models on the transcript. While such
cascades can effectively leverage strong pre-trained ASR [Radford et al., 2022, Chan et al.,
2021, Chen et al., 2022] and text summarization [Raffel et al., 2020b, Lewis, 2020] models, they
are prone to error propagation and have slower inference. Furthermore, cascade systems cannot
effectively leverage speech properties like prosody [Chen et al., 2020b,Jurafsky et al., 1998,Tran
et al., 2018] that are not represented in the transcript. To address this, end-to-end models
[Sharma et al., 2022a, Kano et al., 2023a, Matsuura et al., 2023b, Matsuura et al., 2023a, Sharma
et al., 2023b] learn to directly map between speech features and a textual summary, and have
outperformed cascade models on abstractive video summarization. Due to the difference in
corpus size, recording length, nature of speech, and application domain, these observations may
not hold true for all corpora. In this chapter, we conduct a comprehensive evaluation of cascade
and end-to-end models on abstractive summarization tasks involving 4 different corpora and
find that cascade models outperform end-to-end models when the input recording is very long
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and when the corpus is smaller. Through this evaluation, we also study the impact of various
design choices on the performance of end-to-end summarization models – including the ASR
pre-training, long-term context modeling, and the use of large-scale pre-trained speech models
like Whisper [Radford et al., 2022] as a backbone. Experiments demonstrate the need for
strong pre-training, the scope for better long-term context modeling, and the limited utility of
Whisper-style pre-training. Prior work [Shon et al., 2023, Palaskar et al., 2021a, Sharma et al.,
2022a] has focused on building speech summarization models for specific application domains.
Since there exist multiple datasets for the task, the question arises – Can we use other datasets to
improve low-resource summarization? Experiments show the benefits of multi-style training over
fine-tuning for transferring knowledge between Interview and SLUE-TED.

6.5.1 Approach and Models

6.5.1.1 Cascade Models

Model cascades have historically been the de facto approach to speech summarization [Zhu
et al., 2020, Rezazadegan et al., 2020, Manakul et al., 2020, Kano et al., 2021b]. The cascade is
generally composed of an ASR model that first maps the input speech to a textual transcription.
This is followed by an Abstractive Text Summarization (ATS) that generates a summary from the
transcribed speech. The challenge of global context can be addressed by using either utterance-
level or long-form speech transcription (e.g. Whisper), followed by transcript summarization. In
the former case, audio segmentation is used to obtain shorter utterances that can be independently
transcribed using an utterance-level ASR model and then concatenated to obtain the entire
transcript. To best leverage the strengths of the cascade approach, we assemble our cascade with
two powerful pre-trained models: Whisper [Radford et al., 2022] for ASR and T5 [Raffel et al.,
2020b] for ATS. We note that Whisper ASR is used in a zero-shot manner while T5 is fine-tuned
on the dataset in question. To evaluate the effect of ASR transcription errors on downstream
performance, we also perform experiments where the ground truth ASR text is used as the input
to T5.

Whisper: Whisper is a Transformer-based [Vaswani et al., 2017b] sequence model trained on
680k hours of crawled web audio. Model training was performed on 30-second chunks, allowing
the transcription of long-form audio using predictions of prior chunks as additional context.

T5: The Text-to-Text Transfer Transformer (T5) is a Transformer-based sequence model that was
pre-trained using span corruption task, where regions of the input are randomly replaced with a
single span token, on the C4 dataset [Raffel et al., 2020b]. The model is thus pre-trained to use
the unmasked regions to generate the masked content. T5 is then fine-tuned on a variety of tasks,
including text summarization, by pre-pending a task token as part of the label sequence.
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FIGURE 6.1: Comparison of end-to-end architectures. The Conformer and Longformer require
the input speech to be truncated to 100 seconds. Whisper uses only 30s of the input context,
while FNet can utilize the full acoustic context, due to the latter’s higher computational efficiency.
The squares next to the model architectures in the figure represent the typical attention maps
computed by each model, with the white squares denoting points where the attention is not

computed to save memory.

6.5.1.2 End-to-End Models

To address the weaknesses of the cascade approach, end-to-end formulations of speech summariza-
tion have been popularized in recent years [Kano et al., 2023b, Matsuura et al., 2023a, Matsuura
et al., 2023c, Sharma and Raj, 2022, Sharma et al., 2022a, Shon et al., 2022]. These models
generate summaries directly from the input speech, allowing them to leverage para-linguistic
information and avoid propagating ASR errors.

However, the non-monotonic and complex mapping between the input speech and output summary
makes training end-to-end models difficult since there are likely words in the output summary
that are not directly present in the input speech. [Sharma et al., 2022a] addresses this by using
two-stage training – first the sequence model is pre-trained for utterance-level ASR, and then, the
trained ASR model is fine-tuned for speech summarization over longer sequences. [Kano et al.,
2023a] uses an auxiliary encoder with transcripts to better learn this complex mapping while
[Matsuura et al., 2023a] initializes the decoder with a strong generative pre-trained language
model.

Modeling global input context is challenging for many end-to-end approaches due to the quadratic
memory complexity of attention in Transformer-based [Vaswani et al., 2017b] models. For
example, a prior study on speech summarization [Kano et al., 2023b] found that a standard
Conformer [Gulati et al., 2020b] architecture could only fit up to 100 seconds of input speech
on an 80 GB A-100, a far cry from the typical input lengths of 10-20 minutes. As such, recent
work in speech summarization has placed a strong focus on developing methods that can more
efficiently scale to longer inputs [Kano et al., 2023b,Sharma et al., 2022a,Sharma and Raj, 2022].

We benchmark several end-to-end architectures that have been proposed for speech summarization
on each dataset. The Conformer model is among the state-of-the-art for speech recognition
and can be used for speech summarization with truncated inputs. We then experiment with
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architectures that address the memory issues of the Conformer, such as by using restricted
attention or no attention. Finally, we evaluate the efficacy of fine-tuning large-scale pre-trained
ASR models like Whisper for speech summarization. An overview of each architecture is
presented in Figure 6.1.

Conformer: The Conformer [Gulati et al., 2020b] is a convolution-augmented Transformer
[Vaswani et al., 2017b]. It consists of a vanilla multi-head attention block followed by a
convolution module, with both sandwiched between two macaron-like [Lu* et al., 2019] feed-
forward networks. Due to the (O(n2)) quadratic memory complexity of the attention block in
terms of the sequence length n, the input speech needs to be truncated to fit within GPU memory.
In our experiments, we truncate to a maximum length of 100 seconds.

Restricted Attention - Longformer Longformer [Beltagy et al., 2020] restricts attention compu-
tation to a fixed window around every point, with an option to dilate the window w by a factor
of d, allowing for longer context without increased computation. Its memory complexity with
dilation is thus O(n×w/d2). We use the setup proposed in [Sharma et al., 2022a], with a window
size of 60.

Alternatives to Attention - FNet: Rather than attempting to approximate the attention mecha-
nism, some studies in long-form sequence modeling have opted to forgo it entirely [Kano et al.,
2023b, Lee-Thorp et al., 2022a, Khalitov et al., 2023]. We experiment with the FNet [Lee-Thorp
et al., 2022a] architecture, which has been shown to work well in speech summarization [Kano
et al., 2023b]. FNet replaces attention with a parameter-less Fourier transform, which makes
the computational complexity linear in sequence length: O(n log n). Similar to our Long-
former experiments, we use a combination of Conformer and FNet that was proposed for speech
summarization [Kano et al., 2023a]: FNet’s Fourier transform replaces the attention block.

Whisper Fine-tuning: Whisper is fine-tuned for speech summarization. For this purpose, a new
"⟨|SUMMARIZE|⟩" task tag is appended to the vocabulary of multilingual whisper-base. The
model then predicts summaries based on 30 seconds of input context in the format
“⟨|en|⟩⟨|SUMMARIZE|⟩⟨|notimestamps|⟩“

6.5.2 Benchmark Results

Comparing end-to-end and cascade models
How2: Table 6.3 compares various end-to-end and cascade models for speech summarization.
[Kano et al., 2023a] uses a speech and transcript encoder to effectively and accurately model
long-term context, while [Matsuura et al., 2023a] uses transfer fine-tuning from a pre-trained
language model and speech summarization model. [Matsuura et al., 2023b] uses synthetic data
augmentation, and hence is not directly comparable to our FNet baseline. Whisper fine-tuning
performs worse than the Conformer with the same amount of context(30s), showing that Whisper
pre-training is likely not very helpful for speech summarization. The end-to-end FNet(full) model
which utilizes the entire input context outperforms Whisper+T5 cascade for video summarization.
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TABLE 6.3: Summarization Performance of different end-to-end summarization models using
approximate attention mechanisms and truncated inputs on the How2 Corpus

Model ROUGE-1 ROUGE-2 ROUGE-L METEOR BERTScore

Longformer [Sharma et al., 2022a] 60.7 44.9 56.1 29.3 91.53
FNet (100s) 61.20 41.60 58.00 28.30 92.80
Conformer (100s) 64.70 46.70 62.30 30.40 93.00
FNet (full) 66.90 48.70 64.00 32.70 93.50

Dual Encoder [Kano et al., 2023a] 64.9 46.5 61.9 32.0 -
Pre-trained LM [Matsuura et al., 2023a] 67.0 52.1 63.2 34.4 93.98
Synthetic Data [Matsuura et al., 2023b] 68.40 54.10 65.00 34.90 93.80

Whisper FT (30s) 57.67 43.45 54.40 28.03 88.49
Conformer (30s) 63.30 47.58 59.16 31.76 92.08

Whisper+ T5-Base 63.16 44.55 57.45 30.98 91.53
GT + T5-Base 62.14 43.45 56.41 30.49 91.41

TABLE 6.4: Summarization Performance of different end-to-end summarization models using
FNet for different input lengths on the How2 Corpus

Model ROUGE-1 ROUGE-2 ROUGE-L METEOR BERTSc

FNet (30s) 60.00 40.80 57.00 27.50 92.60
FNet (60s) 61.40 42.50 58.50 28.50 92.90
FNet (100s) 61.20 41.60 58.00 28.30 92.80
FNet (FULL) 66.90 48.70 64.00 32.70 93.50

TABLE 6.5: Summarization Performance of different end-to-end summarization models using
approximate attention mechanisms and truncated inputs on the SLUE-TED Corpus

Model ROUGE-1 ROUGE-2 ROUGE-L METEOR BERTScore

Whisper FT (30s) 23.96 5.43 16.80 11.99 85.11

Conformer (100s) 22.00 5.20 15.60 7.10 83.50
Conformer (600s) [Shon et al., 2023] 23.8 5.1 16.3 11.7 84.0

FNet (full) 23.60 5.60 16.70 8.00 83.10

Whisper+ T5-Base 28.11 6.68 18.22 12.62 87.09
GT + T5-Base 30.02 8.08 19.64 13.41 87.35

TABLE 6.6: Summarization Performance of different end-to-end summarization models using
approximate attention mechanisms and truncated inputs on the INTERVIEW Corpus

Model ROUGE-1 ROUGE-2 ROUGE-L METEOR BERTScore

Conformer(100s) 33.65 13.75 25.05 15.73 87.39

FNet(full) 34.81 23.05 31.54 13.63 91.54

Whisper+T5-Base 38.13 17.70 28.22 17.80 89.70
GT+T5-Base 39.46 19.20 29.51 18.66 90.13

TABLE 6.7: Summarization Performance of different end-to-end summarization models using
approximate attention mechanisms and truncated inputs on the AMI Corpus

Model ROUGE-1 ROUGE-2 ROUGE-L METEOR BERTScore

FNet (full) 17.14 6.55 11.68 6.19 70.31

Whisper+ T5-Base 35.03 10.519 18.957 8.64 76.97
GT + T5-Base [Manakul et al., 2020] 36.83 11.98 23.77 - -
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TABLE 6.8: Summarization Performance of different FNet-based end-to-end models using
different ASR initializations on How2

Initialization ROUGE-1 ROUGE-2 ROUGE-L METEOR BERTScore

Fully Trained ASR 66.90 48.70 64.00 32.70 93.50
ASR Epoch 10 42.60 22.60 39.50 38.20 88.70
Scratch 57.10 40.50 53.70 30.40 91.00

TABLE 6.9: Example model outputs when using varying amounts of ASR pre-training.

Source Output

Reference LOOKING FOR NEW LIP COLOR IDEAS ? GET TIPS FOR APPLYING LIP COLOR TO DRAMATIC MAKEUP
IN THIS FREE VIDEO CLIP FROM A PROFESSIONAL COSMETOLOGIST

Fully Trained ASR LOOKING FOR DRAMATIC EYE MAKEUP ? GET TIPS FOR APPLYING SHEER LIP GLOSS
IN THIS FREE VIDEO CLIP FROM A PROFESSIONAL COSMETOLOGIST

ASR Epoch 10 HOW TO APPLY EYE CREASE MAKEUP FOR CREATING AN 80S MAKEUP LOOK ; GET EXPERT TIPS AND
ADVICE ON 1980S MAKEUP TRENDS AND HOW TO APPLY THEM IN THIS FREE INSTRUCTIONAL VIDEO

Scratch LINING THE INSIDE OF YOUR EYE IS A DRAMATIC WAY TO ENHANCE YOUR EYE MAKEUP
LEARN HOW TO LINE THE INSIDE OF YOUR EYE IN THIS FREE VIDEO CLIP FROM A PROFESSIONAL MAKEUP ARTIST

SLUE-TED: Table 6.5 reports the results of various end-to-end and cascade models. It is noted
that strong pre-training using Whisper is competitive, likely because there is a lot of useful
information in the first 30 seconds of a TED talk. Cascade Whisper+T5 outperforms the end-to-
end Fnet (full) in this case. We hypothesize that this is because large-scale text summarization
pre-training likely helps with the more challenging task 5.

Interview: Table 6.6 highlights the performance of various end-to-end and cascade models. The
FNet end-to-end model outperforms the cascade on all metrics except METEOR.

AMI: From Table 6.7, due to the small dataset size used for fine-tuning the end-to-end and cascade
models, the pre-trained text summarization model outperforms the end-to-end FNet model.

In conclusion, for smaller datasets (SLUE-TED and AMI), cascade models outperform the end-
to-end model, while for the larger datasets (Interview and How2), end-to-end models outperform
the cascade. For smaller datasets, large-scale pre-training of the text summarization model is
likely more helpful, making the cascade model more powerful than an end-to-end model that
does not use such pre-training. Further, the smaller datasets (AMI, SLUE-TED) have longer
inputs than the larger datasets, and the performance gap between standard self-attention and
approximations is significant as mentioned above. Methods that can better handle long-term
context and use strong language pre-training [Matsuura et al., 2023a] may enable end-to-end
models to be competitive with cascade models for meeting summarization and TED talk abstract
generation.

Long Context Modeling: Table 6.3 reports performance on the How2 corpus for different end-to-
end models. First, we compare strategies to handle long-term context. Comparing the Longformer,
FNet model, and Conformer with context 100s, we observe a significant gap in performance
between standard attention and the other two approximate attention mechanisms. Table 6.4
compares the performance of speech summarization models trained on How2 with different input
lengths. Performance generally increases with the length of input context, demonstrating the
necessity of long input context modeling.

5This is based on more novel words in the summary compared to How2 or Interview ( 55.27 % versus 4̃7.5,47.8 %)
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Reliance on ASR Pre-training: Prior work [Sharma et al., 2022a, Kano et al., 2023a, Matsuura
et al., 2023b] has used a two-stage training strategy that involves ASR pre-training followed
by summarization fine-tuning. To verify the necessity of strong initialization for end-to-end
summarization, Table 6.8 compares the performance of speech summarization models with
different initialization. A model initialized from a fully trained ASR outperforms models that are
initialized with partially trained ASR and models that use no pre-training. This demonstrates the
benefit of two-stage training for speech summarization. Interestingly, we observe that models
with ASR pre-training tend to deviate more in topic and style from the reference summary (Table
6.9).

6.5.3 Multi-style and Transfer Learning

The presence of multiple datasets for a task provides means to utilize information from other
tasks to improve performance on all or some of the tasks. Multi-style training, which involves
augmenting the training set with data from other corpora has been used to confer noise robustness
and better generalizability in speech recognition [Chen et al., 2022, Lippmann et al., 1987].
However, it is unclear whether multi-style training can benefit speech summarization.

Another method to utilize multiple datasets and models involves transfer learning. Prior work
[Matsuura et al., 2023a] has found that initializing the encoder from a previous summarization
model, and decoder from a pre-trained language model is beneficial. With pre-trained summa-
rization models that are trained on other corpora, fine-tuning can be used to transfer knowledge
across multiple speech summarization tasks. We compare fine-tuning-based transfer learning
with multi-style training for speech summarization.

TABLE 6.10: Transferring knowledge across datasets for speech summarization. INT and TED
represent the Interview and SLUE-TED respectively. X+Y represents multi-style training while

X→Y represents fine-tuning.

Training Data Test ROUGE-1 ROUGE-2 ROUGE-L METEOR BERTScore

TED* TED 20.00 2.84 13.33 7.54 80.62
INT + TED TED 23.53 4.22 15.81 10.09 84.83
INT → TED TED 22.81 3.70 15.17 10.58 83.13

Experimental Results: Given multiple datasets, knowledge may be transferred across sum-
marization tasks to improve model performance under low-resource settings. We compare a
SLUE-TED baseline6 using the Interview model and tokenization against multi-style training
and fine-tuning using the SLUE-TED and Interview datasets. From Table 6.10, we note that
multi-style training with Interview outperforms fine-tuning SLUE-TED a pre-trained Interview
model on SLUE-TED.

6SLUE-TED baseline here uses the same architecture as the E2E model on Interview
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6.6 Chapter Conclusion

In this chapter, we address the paucity of labeled data and standard benchmarks for the evaluation
of speech summarization models.

First, we address the lack of labeled data for speech summarization by introducing two new open-
domain public corpora - SLUE-TED and Interview corpus with 824h and 4,354h of real speech
for abstractive speech summarization. The two corpora address the tasks of abstract and title
prediction from TED talks and abstractive summarization of multi-party meetings respectively.

Then, we compare and contrast end-to-end and cascade approaches on a benchmark comprising
4 different abstractive speech summarization tasks. We find that on larger datasets with relatively
short recordings, end-to-end models outperform cascades, while on smaller datasets, with much
longer recordings, cascade models perform better. There exists a significant gap in performance
between standard self-attention and approximations for end-to-end summarization, and it is
important to address this challenge in future work. Further, two-stage training with ASR pre-
training appears to be important to obtain relevant summaries. When using Interview data
to improve speech summarization on SLUE-TED, we find that multi-style training slightly
outperforms fine-tuning.

Based on the observations made in this chapter, developing methods for better long-context
modeling is an important research direction to unlock the full potential of end-to-end models.

In the next part of this thesis, we examine ways to improve end-to-end models for speech
summarization. Chapter 7 revisits the challenge of global acoustic context to make models
stronger at capturing long-term context.



Part III

Improving Models: Long-term context
and generalization
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Chapter 7

Improving Modeling for Global
Acoustic Context

In this chapter, we examine the challenge of imbuing end-to-end models for speech summarization
with the ability to capture global acoustic context.

In Chapter 5, we introduced the use of restricted self-attentions for speech summarization,
however, we questioned whether limiting the scope of attention allows models to truly learn
global acoustic context. As a solution to this challenge, we examined Fourier transform-based
FNet self-attentions in Chapter 6. Though FNet self-attentions obtain good performance and can
model long-range context, we note that it has a computational complexity of O(NlogN) where
N is the length of the input sequence. The natural question is whether this can be improved upon.
A class of self-attention approximations called linear transformers [Katharopoulos et al., 2020]
use the kernel trick in conjunction with associativity of matrix products to make the self-attention
scale linearly with the length N of the input sequence. However, existing linear transformers
sacrifice performance at the altar of efficiency, and in a bid to bridge the gap, we introduce
the XNORformer, a linear transformer with XNOR-based kernels. Experiments demonstrate
that the proposed XNORformer outperforms the state-of-the-art linear transformer, i.e., the
Cosformer [Qin et al., 2022].

In general, optimized self-attention can help models learn patterns over longer input contexts,
but all optimized self-attentions, like standard self-attention, have capacity limits. This capacity
limit depends on the model architecture and computing memory available, which we will discuss
in greater detail within this chapter. What this means though for any input with a length N

that is beyond the capacity C is that such an input is truncated to comprise only the first C
frames. However, in practice, considering only the first C frames can be inimical to performance.
Any frame(s) after the first C are not considered due to truncation, but, may contain important
information that needs to be in the summary. However, there is no way for such information to
be represented in the summary.
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Therefore, an important challenge to address to enable the practical deployment of such end-to-end
models is the ability to deal with ’arbitrarily long’ sequences. In this chapter, we propose "BASS:
Block-wise Adaptation for Speech Summarization" to facilitate the processing of arbitrarily long
recordings. BASS reframes speech summarization as a streaming process where summaries are
predicted based on blocks of input, and updated within subsequent blocks. Experiments show that
BASS can process arbitrarily long inputs in a performant manner, however, the use of standard
self-attentions within degrades the computational efficiency.

To improve the efficiency of BASS, we propose "R-BASS: Relevance-Aware Blockwise Adapta-
tion for Speech Summarization" that considers only relevant blocks to update context and produce
summaries. Experiments demonstrate that R-BASS can improve efficiency by over 86 % without
significant degradation in performance.

7.1 Linear Self-Attention with Linear Transformer and Cosformer

The restricted self-attention approach introduced in Chapter 5 limits the effective acoustic context
that is used by the speech encoder. Since such approaches limit the scope of self-attention, we
examined the FNet-based self-attention in Chapter 6. However, the computational complexity of
FNet [Lee-Thorp et al., 2022a] is O(Nlog(N)) for a sequence with input length N .

In this section, we consider an alternative, more efficient framework - linear self-attention and
linear transformers whose complexity varies linearly with the input sequence length N .

The O(N2) complexity of softmax-based attention results from inner-product term QiK
⊤
j

that occurs within the similarity term S(Qi,Kj) ∼ exp(QiK
⊤
j ) for the softmax and prevents

factorization of the computation.

Linear transformers replace the exponent over inner products by a factored “product over Kernels”
similarity measure S(Q,K) defined in Equation 7.1, where ϕ() is a “Kernel” function. Using
the associative law of matrix multiplication permits the computation to be of the following form,
which can be computed in linear time.

S(Q,K) = ϕ(Q)ϕ(K)T (7.1)

Oi =
ϕ(Qi)(

∑N
j=1 ϕ(Kj)Vj)∑

j ϕ(Qi)ϕ(Kj)
. (7.2)

Prior works have used Gaussian Kernels [Choromanski et al., 2021], ELU based kernels
[Katharopoulos et al., 2020], and ReLU kernels [Qin et al., 2022]. Of these approaches, the
Cosformer was shown to be the state-of-the-art approach.
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Cosine self-attention [Qin et al., 2022] was introduced to derive a linear cost replacement of
quadratic self-attention without approximating the softmax function. Using a ReLU kernel as a
replacement for the softmax ensures the non-negativity of the attention scores. The authors further
propose a cosine-based re-weighting scheme that stabilizes attention weights by amplifying local
correlations. The proposed cosine re-weighting results in the similarity metric S(Qi,Kj) =

ReLU(Qi)ReLU(Kj)cos(
i− j

N
). Let Ksin

j = ReLU(Kj)sin(
jπ
2N ), Kcos

j = ReLU(Kj)cos(
jπ
2N ),

Qsin
i = ReLU(Qi)sin(

iπ
2N ), and Qcos

i = ReLU(Qi)sin(
iπ
2N ). The resulting output is then:

Oi =

∑N
j=1Q

cos
i ((Kcos

j )TVj) +
∑N

j=1Q
sin
i ((Ksin

j )TVj)∑N
j=1Q

cos
i (Kcos

j )T +
∑N

j=1Q
sin
i (Ksin

j )T
(7.3)

The cosine re-weighting also functions as a relative positional embedding for the attention
computation, and has been shown to improve performance on bidirectional fine-tuning tasks [Qin
et al., 2022].

7.2 Our Proposal: the XNORformer

Though the cosformer achieves incredible performance on language modeling and the Long

Range Arena benchmark, there is a considerable gap in performance between this self-attention
and the standard multi-head self-attention when used for speech recognition on Librispeech-100.
Therefore, it is desirable to develop a different solution with linear complexity and improved
performance.

To do this, we develop a new kernel function which when integrated into the linear transformers
framework yields improved performance. The closest kernel to our proposed approach is the
softmax Kernel, which uses ϕ() = Sm(). Though these succeed in reducing the computational
overhead, they often result in undesirable performance reductions, compared to the full softmax-
based attention. Further, we develop positional embeddings that can incorporate relative positional
biases within the self-attention.

7.2.1 Examining the Sigmoid of the Product

Our objective is to close the gap between linear transformers and the full transformer formulation
without losing the computational advantage of linear time. As mentioned earlier, the main
impediment to linear-time factorization is the softmax over the product in the conventional
transformer.

Our proposal builds on the following insight: consider the simplest version of a softmax, which is
the sigmoid. σ(xy), the sigmoid of the product of two variables x and y, has a distinct XNOR-like
( ¯oplus-like) behavior as shown in Figure 7.1 a. This cannot be factored because the XNOR
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cannot be modeled by a linear boundary. However, analogously to the decomposition of the
XNOR, σ(xy) can be expressed as the sum of two bilinear terms:

σ(xy) ≈ σ(x)⊕̄σ(y) = σ(x)σ(y) + (1− σ(x))(1− σ(y)) (7.4)

Figure 7.1b shows the approximation σ(x)⊕̄σ(y). Except for a narrow region near the axes, the
error is minimal.

(A) (B)

FIGURE 7.1: Approximating the Sigmoid of a Product using the XNOR of the Sigmoids(A)
Left: σ(xy) for x, y ∈ (−100, 100). (B) Right: The approximation σ(x)⊕̄σ(y).

This leads us to our formulation for the XNOR-former.

7.2.2 X-NOR Self-Attention

Drawing from the X-NOR approximation of the sigmoid, we now extend this to approximate the
softmax product in Equation ?? as

S(Qi,Kj) = w1Sm(Qi)Sm(Kj) + w2Sm
′(Qi)Sm

′(Kj), (7.5)

where, as before, Sm represents the softmax operator and Sm′ = 1 − Sm represents its
complement. The weights w1 and w2 account for the fact that the variable is of length N as
opposed to binary.

This gives us the following XNOR factorization of self-attention, which allows it to be computed
in linear time and space complexity.

7.2.3 Experimental Results

On End-to-End Speech Summarization, Table 7.1 highlights the results. We observe that the
proposed W-XNOR self-attention-based model outperforms the Cosformer on a very long input
sequence (10k) task without extensive hyperparameter tuning. The XNOR model has a better
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TABLE 7.1: Results of our models on the speech summarization task for the How2-2000h data.
Abstractive Summarization is evaluated using Rouge scores (ROUGE-1,ROUGE-2,ROUGE-L),
METEOR scores for content, and BERTScore for semantic relevance. Higher numbers are

better.

Model ROUGE-1 ROUGE-2 ROUGE-L METEOR BERTScore
Cosformer baseline 47.91 27.85 42.49 21.26 89.36
W-XNOR 56.50 38.05 51.02 27.21 90.65

performance in terms of the ROUGE-L, METEOR, and BERTScore metrics, which demonstrates
that the proposed W-XNOR model produces more coherent, semantically relevant, content-rich
summaries in comparison to the baseline.

7.3 The Trade-off between memory and performance

From our investigations in this chapter, and previously in Chapters 5, and 6, it is patently
clear there exists a tradeoff between the computational complexity(and memory usage) and
summarization performance obtained using different approaches to capture global acoustic
context. The ideal solution would have the smallest memory usage with the highest performance.

FIGURE 7.2: Plot of summarization performance in ROUGE-L over the How2 dataset for
models that use the first 100 seconds of input context as a function

Figure 7.2 plots the performance of FNet-based, Longformer-based (restricted self-attention),
and standard self-attention as a function of the amount of memory required in the number of float
params to perform the self-attention operation. We note that the FNet performs better than the
Longformer, but has higher complexity. The standard self-attention outperforms the optimized
self-attention by a significant margin but has a much higher computational cost.

Next, we look at the challenge of dealing with arbitrarily long inputs for speech summarization.
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7.4 The Challenge of Arbitrarily Long Inputs

End-to-end speech summarization models [Sharma et al., 2022b, Matsuura et al., 2023b] have
been shown to outperform competitive cascade models that comprise speech recognition and text
summarization modules. Such end-to-end models use very long speech sequences as input, and
standard transformer models cannot handle very long inputs owing to the quadratic computational
complexity of self-attention. Prior work has proposed restricting the scope of attention using
the Longformer [Sharma et al., 2022b, Beltagy et al., 2020] or linear self-attentions like the
XNOR-former [Sharma and Raj, 2022]. However, even with such optimizations, there remains
an upper limit on the number of input frames that a given end-to-end model can consume with
available computing infrastructure.

End-to-end models that consume the entire input at once have limitations on how much input
context can be considered in making predictions. Not being able to consider the entire input
context severely impedes summarization performance, as seen in Chapter 6. This underscores the
importance of developing approaches to summarize arbitrarily long recordings.

One solution to this problem, which we have discussed thus far is the use of optimized self-
attentions. Optimized self-attention can help models learn patterns over longer input contexts.
But all self-attention mechanisms, optimized self-attentions have limits on the amount of input
context that can be considered. For example, with a 6-layer conformer [Gulati et al., 2020b]
encoder, a 32G V-100 GPU can take sequences of length 25,000; and with our XNOR-based
encoder, the same GPU can take 45,000 frames. Any input speech sequence of length greater
than this upper limit is truncated to be able to train and infer, and truncating inputs makes
summarization less accurate since information is effectively removed from the input.

Another solution to this problem could involve using truncated inputs in training and using entire
inputs during inference. However, attention-based sequence models, which are used to realize
end-to-end speech summarization do not generalize well to input lengths that are different from
those used in training [Deng et al., 2022], which makes it important to develop methods that
work similarly during training and inference.

A third potential solution involves expanding the available capacity, i.e., shrinking model sizes
and/or increasing the amount of computing resources. However, modifying the model architecture
could have negative implications on model performance, and increasing the amount of computing
resources is challenging and not sustainable in practice.

A fourth solution could be to use as model input only relevant portions of the speech input to
the end-to-end model. In practice, this may not work since defining relevance and extracting
relevant portions of a recording are incredibly challenging research problems. Furthermore,
the relevant portions of the input recording may exceed the amount of input context that can
be processed given capacity limits. This brings us back to square one and perhaps makes this
solution infeasible.
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In the remainder of this chapter, we develop two solutions to summarize arbitrarily long record-
ings.

7.5 BASS: Blockwise Adaptation for Speech Summarization

One way to circumvent the restrictions on arbitrarily long inputs is to develop methods that use
the maximum permissible input context at a time.

To address the challenge of arbitrarily long input, a viable solution is to build models that can
process a small set of input frames, i.e., a block of input at a time rather than using the entire
input sequence.

FIGURE 7.3: Blockwise modeling for streaming ASR/SLU

Such "block-wise" models can be trained to predict an output after seeing multiple blocks
of input, which is shown in Figure 7.3. Most prior work has been focused on the former to
enable streaming inference for tasks like speech recognition [Rao et al., 2017, Moritz et al.,
2020, Narayanan et al., 2019, Tsunoo et al., 2021, Shi et al., 2021], speech translation [Ma et al.,
2021], spoken intent detection [Deng et al., 2022], and wake word detection [Wang et al., 2021].
Block-wise training for streaming applications uses one block of input at a time to generate a
block-level encoding. These block-level encodings from all blocks are then combined to make an
utterance-level prediction. During training, all the inputs from all blocks, intermediate outputs,
and the final output are retained in the computational graph for backpropagation. This requires
significant computing and memory so these models still can’t scale to very long audio sequences.

The alternative, shown in Figure 7.4 is to design block-wise models that produce outputs after
every block and can be optimized at the block level without requiring the entire input to be
present in the computational graph. Prior work in context-aware speech recognition for long
conversations [Kim and Metze, 2018, Hori et al., 2021, Hori et al., 2020] can be considered
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FIGURE 7.4: Block-wise Modeling with Block-level Optimization used in Contextual Conver-
sational ASR and Proposed for Speech Summarization

instances of such block-wise models, in that they produce an utterance transcription for every
new block of input, which is used to compute a loss and perform block-wise optimization.

Block-level targets like the utterance transcription in this case are relatively easy to derive for
tasks like speech recognition, where there exists a monotonic alignment between the input frames
and output tokens. However, for abstractive speech summarization, the relationship between
input frames and output tokens is non-monotonic and indirect, and it is consequently challenging
to obtain block-level targets.

In this section, we first mathematically formulate the process of block-wise training and introduce
Block-Wise Adaptation for Speech Summarization (BASS), an online model that can be trained
with the full reference summary as the block-level target. This means that our model attempts
to produce the output summary given only the first block, and then subsequently refines its
prediction with every additional block of speech input. While streaming mechanisms assume that
new acoustic inputs may incrementally modify the output, we permit the model to modify the
entire summary if necessary based on the information present in the new input block. When using
such block-wise inputs during training or inference, blocks should have access to the information
encoded by previous blocks. We propose to achieve this by passing the latent representation
across blocks since it is likely where the semantic information is encoded. While it is also
possible to carry forward input acoustics or output summaries, these may not be as useful because
input acoustics may not be as informative, and output summaries could be erroneous or change
entirely with new blocks.

7.5.1 Formulating Block-wise Training

Given a long audio instance with N frames of D-dimensional speech features X = (xi ∈
RD|i = 1, 2, · · · , N), the goal of summarization is to produce a summary token sequence
Y = [y1, y2, · · · yL] of length L, which is shorter than the original sequence but still contains the
relevant semantic information.
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The input sequence X can also be represented as a sequence of T abutting blocks with block size
B such that X = {X1, X2, ...XT }. The i-th input block Xi produces a block-level output Ŷ i,
which is the model hypothesis for the full reference Y . We use the notation X1:T to represent
X1, · · · , XT and Y 1:T to represent Y 1, · · · , Y T .

The goal of a block-wise model is to generate the best possible summary Ŷ T after seeing the T

blocks of input. Equation 7.6 expresses the probability of observing the final output sequence
Y T given the input blocks X1:T based on the joint conditional density P(Y T , Y 1:T−1|X1:T ).

P(Y T |X1:T ) =
∑
Y 1

· · ·
∑
Y T−1

P(Y T , Y 1:T−1|X1:T ) (7.6)

Using the chain rule of probability, we can represent the inner term P(Y T , Y 1:T−1|X1:T ) as
shown in Equation 7.7.

P(Y 1:T |X1:T ) = P(Y T |X1:T , Y 1:T−1)P(Y 1:T−1|X1:T ) (7.7)

Based on the fact that the model is causal (streaming), the present output cannot depend on future
outputs or inputs. This implies P(Y 1:T−1|X1:T ) = P(Y 1:T−1|X1:T−1). Combining this with
Equation 7.7 results in Equation 7.8.

P(Y 1:T |X1:T ) = P(Y T |X1:T , Y 1:T−1)P(Y 1:T−1|X1:T−1) (7.8)

This leads to the following general decomposition based on the chain rule and the streaming
assumption, shown in Equation 7.9.

P(Y 1:T |X1:T ) = P(Y T |X1:T , Y 1:T−1) · · ·P(Y 1|X1) (7.9)

Consider Equation 7.6 which involves marginalizing over the output variables Y 1:T−1, and is
challenging to compute. Rather than evaluating all possible values for past context Y 1:T−1, we
can greedily perform this optimization, i.e., by choosing the block-level output sequence with the
highest probability as context for future predictions. Combining this Viterbi assumption with
Equations 7.6 and 7.9 leads us to the final formulation in Equation 7.10.

P(Y T |X1:T ) ≈ max
Y T

P(Y T |X1:T , Y 1:T−1) · · ·max
Y 1

P(Y 1|X1) (7.10)

In summary, Equation 7.10 demonstrates a setup wherein after receiving a new block of input, we
maximize the probability of the block level output being as close as possible to the ground-truth
summary given past and current block inputs and past block level outputs. In practice, we take
in a block of input and any context from the past, then we compute a divergence between the
block-level output and the ground-truth summary. We perform backpropagation with this criterion
to update the neural network parameters after every block.
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FIGURE 7.5: The framework for our proposed BASS: Blockwise Adaptation for Speech
Summarization

Apart from the aforementioned assumptions, we can also make the Markov assumption while
modeling contextual dependence. To minimize the impact of context from further away blocks
on the current block, we can rewrite P(Y 1:i|X1:i) = P(Y i−M :i|Xi−M :i).

7.5.2 Modeling Strategy and Architecture

The proposed BASS model is shown in Figure 7.5. Different from past work in summarization,
we explicitly introduce a semantic representation variable S = (si ∈ RF |i = 1, 2, 3, · · · ,M),
which comprises M F -dimensional vectors. S contains the semantic information encoded in
the speech X , and separates the acoustics from the summary. Modifying the input language or
ambient environment changes the acoustics, but not the semantics. Summaries are generated by
sampling from this rich semantic representation, and modifying S leads to a different summary
Y .

The process of speech summarization occurs at the intersection of three distinctive spaces- the
acoustic space, the semantic space, and the summary space. The acoustic space comprises the
acoustic input X , which it transforms into semantic representations. The summary Y can be
produced in the summary space by sampling based on the semantic representations S. We can
reasonably assume that the acoustics and summary are conditionally independent given the
semantics, and thus disentangle the acoustics and the summary.

Consider the task of estimating the most likely summary Y given the input speech X under this
setting.

Ŷ = argmax
Y

P(Y |X)

= argmax
Y

∑
S

P(Y, S|X)

≈ argmax
Y

max
S

P(Y, S|X)

(7.11)
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FIGURE 7.6: Updater mechanisms (a) concatenation, (b) gated attention, and (c) hierarchical
attention use previous embedding Si−1 and encoding Enc(Xi) to produce current embedding

Equation 7.11 describes the process of identifying the most likely hypothesis summary Ŷ

given the input X and semantic representation S. From Figure 7.5, based on the conditional
independence between the summary Y and acoustics X given semantic representation S, we can
write P(Y, S|X) = P(Y |X)P(S|X). Thus, we can obtain the solution for Equation 7.11 using
the coordinate descent update shown in Equation 7.12.

Ŝ = argmax
S

P(S|X)

Ŷ ≈ argmax
Y

P(Y |Ŝ)max
S

P(S|X)
(7.12)

From Equations 7.12 and 7.10, BASS estimates P(Y i|X1:i, Y 1:i−1) using Equation 7.13.

P(Y i|X1:i) = P(Y i|Si)P(Si|S1:i−1, Xi) (7.13)

The encoder and decoder model the probabilities P(S|X) and P(Y |S) respectively. The updater
uses the past semantic embeddings and the current encoder output to produce the current semantic
embedding. Figure 7.6 shows three alternate structures for our updater to aggregate semantic
context from the prior and the current block:

1. Concatenation: Si = Concat(Si−1,Encoder(Xi))

The current semantic embedding is obtained by concatenating the embeddings from the
previous and current blocks.

2. Gated Attention:
Si = Encoder(Xi) + w · Attn(Si−1,Encoder(Xi))

The current and previous semantic embeddings are combined using an attention mechanism
and incorporated into the final embedding as a weighted sum.

3. Hierarchical Attention:
Si = Attn([Attn(Si−1, Di),Attn(Encoder(Xi)), Di]), Di)

This method performs the context passing within each decoder block, based on hierarchical
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attention [Libovický and Helcl, 2017]. We compute attention for the current decoder state
Di with the previous and current semantic embeddings independently. Then, we stack the
two attention outputs and perform a second level of attention between this result and the
decoder state.

7.5.3 Experimental Setup

Models: Our models use ESPNet21 [et. al., 2018] and are first pre-trained on the ASR task and
then fine-tuned for summarization. The encoder consists of convolutional subsampling by factor
4, followed by 12 conformer blocks [Gulati et al., 2020b] with 8 attention heads and a hidden size
of 2048. The decoder has 6 transformer blocks, with 4 attention heads and a hidden size of 2048.
The total number of model parameters is 103M. Both the encoder and decoder use a dropout rate
of 0.2. We use a 43-dimensional filter bank and pitch features as input to the encoder.

ASR: ASR models are trained with Connectionist Temporal Classification (CTC) and Cross-
Entropy loss with CTC weight of 0.3. We use the Adam optimizer with peak lr=0.001, and a
warmup scheduler for ASR pre-training. This takes 2 days on 8 V-100 32G GPUs

SUMM: Our summarization models are trained with cross-entropy loss and label smoothing of
0.15. During inference, we use a beam size of 8. Model averaging was not performed as it was
found to hurt summarization performance. Fine-tuning is run for a day on one A40 GPU.

BASS: For BASS models, we use a block size of 1,000 input frames, corresponding to 10s of
audio. We only use the semantic embedding from the previous block as context for the current
block unless otherwise specified.

Evaluation: We evaluate our models with ROUGE [Lin, 2004a], METEOR [Banerjee and Lavie,
2005b], and BERTScore [Zhang* et al., 2020], which are the most common automatic metrics
for evaluating summarization models.

BASS-Scratch: BASS-Scratch models are trained using flat start, without pre-training on the
first block.

BASS-Adapt: BASS-Adapt models are trained by adapting models trained on the first block to
longer input contexts.

7.5.4 Experimental Results

7.5.4.1 Truncated Input Baselines

First, we train end-to-end summarization baseline models on truncated inputs (Trunc) that are 10
seconds long and 30 seconds long. Table 7.2 reports the results of training on truncated inputs

1Code will be released in https://github.com/espnet/espnet
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TABLE 7.2: Performance of Block-wise Adaptation and Training Approaches compared to Trun-
cated Baselines with different inference strategies using ROUGE, METEOR, and BERTScore

metrics- higher scores indicate better performance

Training Method Inf. Pre-train Context ROUGE-L↑ METEOR↑ BERTScore↑
Trunc, Restricted SA [Sharma et al., 2022b] Std. X 100s 56.10 29.30 91.53
Trunc, Full SA [Matsuura et al., 2023d] Std. X 100s 62.10 32.50 93.00
+ TTS Aug. [Matsuura et al., 2023d] Std. X 100s 65.00 34.90 93.80
Trunc-Baseline Std. X 10s 56.79 30.00 91.6
Trunc-Baseline Std. X 30s 59.16 31.76 92.08
Trunc-Baseline Std. X 60s 60.49 32.47 92.38
BASS-Adapt Block 10s 30s 60.17 32.17 92.51
BASS-Train Block X 30s 54.79 29.12 89.40

and evaluating recordings that are 10 seconds and 30 seconds long, compared to different state-
of-the-art approaches referenced in prior work. We note that using the standard full multi-head
attention provides significant gains over restricted self-attention, and therefore use the standard
multi-head self-attention for our experiments.

7.5.4.2 Block-wise Training versus Truncated Training

The proposed BASS method can be used to help models trained on shorter recordings adapt to
longer inputs (BASS-Adapt), or to train models from scratch in a block-wise manner (BASS-Train).
Inference for blockwise models can be performed in the standard manner, i.e., where the entire
input is fed in at once to predict the final output. Alternatively, Block inference can be performed,
where the input is fed as abutting blocks of input as described in Section 7.5.1.

We train BASS-Adapt initialized from the 10-second truncated baseline to handle 30-second
recordings and infer using standard and block mechanisms. BASS-Adapt is compared against
BASS-Train by training a model on 30-second recordings from scratch using our BASS algorithm.
The latter performs worse - for training from scratch, the challenge is relatively poor initial context.
Initially, the learned context is not very helpful which leads to slower convergence and poorer
performance.

We compare both model adaptation and training strategies in Table 7.2. We see that the proposed
BASS-Adapt approach outperforms BASS-Train on all metrics. We also observe that our proposed
BASS algorithm improves over the truncated 10-second baseline and the truncated 30-second
baseline. BASS-Adapt with block inference results in a nearly 4-point improvement in ROUGE-L
over the 10-second truncated baseline, and a 1-point improvement in ROUGE-L over the truncated
30-second baseline. This result is comparable to that obtained by a truncated input baseline that
takes in 60 seconds of audio, showing that our BASS model trained with 30-second recordings
comprising 10-second chunks can do as well as a model trained on 60-second recordings. The
proposed approach is more computationally efficient than the baseline by a factor of 3 since the
proposed approach uses 3x smaller inputs 3 times for quadratic self-attentions.
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TABLE 7.3: Part-of-speech coverage between the Predicted Summary and the Reference for
Truncated 10s baseline and BASS-ADAPT 30s model

Model Noun Verb Adj Adv Prop. Noun

Baseline 10-sec 0.85 0.76 0.84 0.65 0.78
BASS-ADAPT 0.87 0.79 0.84 0.67 0.81

Finally, Table 7.3 sheds light on the improvement in the prediction of different parts of speech in
the reference summary using the best BASS-ADAPT model. We observe that the proposed model
generally improves the prediction of all parts of speech. Future work may benefit from exploring
named entity prediction for summaries.

7.5.4.3 Comparison of Block-wise Adaptation Strategies

TABLE 7.4: Performance of BASS models with block level inference across different imple-
mentations of the semantic updater model. Models are pre-trained on 10s and fine-tuned on 30s.

R-1, R-2, R-3 represent the ROUGE-1, ROUGE-2, and ROUGE-L metrics respectively

Updater ROUGE-1↑ ROUGE-2↑ ROUGE-L↑ METEOR↑ BERTScore↑
Concat 63.99 49.00 60.17 32.17 92.51
Gated Attn 63.94 48.91 60.16 32.12 92.12
Hier. Attn 59.71 43.99 55.74 29.32 91.27

Table 7.4 compares the various modeling strategies for the semantic updater. We observe that
simply concatenating the semantic embedding of the previous (one) block with the current block
yields significant improvements in summarization performance. Of the three updater mechanisms
described in Figure 7.6, gated attention and concatenation appear to yield similar gains in per-
formance, with hierarchical attention performing significantly worse. Gated attention is able to
achieve similar performance while reducing having a very small memory footprint compared to
concatenation.

7.5.5 Comparing BASS to Optimized Self-Attentions

Table 7.5 compares the two dominant approaches for end-to-end speech summarization with
approaches that utilize truncated baselines. Approximation errors with FNet result in a 3.2%
absolute difference in ROUGE-L between the performance of BASS and FNet, for both 30s and
100s long inputs. BASS improves over the standard self-attention-based conformer baselines.
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TABLE 7.5: Performance of BASS models with block-level inference across different imple-
mentations of the semantic updater model. Models are pre-trained on 10s and fine-tuned on 30s.

R-1, R-2, R-3 represent the ROUGE-1, ROUGE-2, and ROUGE-L metrics respectively

Model R-1↑ R-2↑ R-L↑ METEOR↑ BERTScore↑
FNet (30s)2 60 40.8 57 27.5 92.6
BASS (30s,10s) 63.99 49 60.17 32.17 92.51
Conformer (30s) 63.3 47.58 59.16 31.76 92.08
FNet (100s) 61.42 45.37 57.27 29.77 91.62
BASS (100s,25s) 64.57 49.11 60.49 32.47 92.38
Conformer (10s) 60.86 45.13 56.78 29.98 91.41

7.6 Relevance-Aware Blockwise Adaptation for Speech Summariza-
tion (R-BASS)

Block-wise adaptation for Speech Summarization (BASS) [Sharma et al., 2023b] chunks the
long input speech into blocks. These blocks are then processed independently, with the semantic
context being passed across blocks to facilitate remembering information from past blocks.
Though BASS has better performance and is well suited for streaming inference, where summaries
are expected to be updated based on new acoustic information, processing of all relevant and
irrelevant blocks is computationally inefficient. In this section, we introduce R-BASS, a relevance-
aware block-wise model that first predicts whether the new block of acoustic information is
relevant to the summary before integrating new information into the semantic context.

To decide whether a given block is relevant or not, we analyze the acoustics of the block and the
generated summary thus far.

Then, we examine automatic methods to identify the relevance of blocks based on lexical and
semantic similarity. Lexical similarity calculates the number of words in the transcript of a given
block that are present in the final summary. Semantic similarity is assessed by calculating the
similarity between BERT [Devlin et al., 2019b] embeddings of the given block’s transcript and
the summary. Finally, we devise a relevance loss that can be used to guide model predictions
of relevance to be similar to the ones obtained by automatic annotations. From experiments on
How2, R-BASS improves efficiency while retaining comparable performance.

7.6.1 Introducing R-BASS

The fundamental idea behind R-BASS is to develop a mechanism to help the model learn when
new acoustic information is relevant. When the acoustic information in a new block is relevant,
we can update the semantic context based on it, otherwise not. This approach (1) saves time and
memory and (2) ensures that the context we use across blocks is comprised solely of relevant
information.
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Since we aggregate context in the semantic space for BASS, decisions on relevance need to be
made before updation.

FIGURE 7.7: Proposed Relevance-Aware Block-wise Adaptation for Speech Summarization

Figure 7.7 shows the model architecture for R-BASS where we insert a new relevance estimator
in the semantic space. The goal of the relevance estimator is to predict whether the acoustic
information present in the current block is relevant to the summary. During training, when we
have access to the ground-truth summary, all we need to do is estimate the similarity between
the ground-truth summary and the encoded speech representations. However, during inference,
we do not have access to the reference summary to make decisions about relevance. Therefore,
we approximate relevance during both training and inference by using the similarity between
the summary from the previous output block Ŷ i−1 and the output of the encoder for the current
block, i.e., Enc(Xi). Equation 7.14 shows how we compute relevance Ri of the i-th block using
new speech information Xi, where Sim. stands for a similarity function.

Ri = Sim.(Y,Xi) ≈ Sim.(Ŷ i−1, Enc(Xi)) (7.14)

To compute similarity, there is a need to bring Ŷ i−1 and Enc(Xi) into a common space. We
utilize a cross-attention mechanism between the previous summary and the current acoustics and
obtain an attention-based context vector. Since relevance is modeled at the block level, we first
obtain the temporal mean of this attended context. The mean attended context vector is then
projected down to a single value that represents the probability that the current block is relevant.

Since backpropagation is performed at the block level for BASS, the previous semantic embedding
is detached from the computational graph while processing the current block. That is, gradients
do not flow through the past summary while computing relevance. To ensure that the encoder
representations do not degrade when computing relevance, we detach the encoder representation
Enc(Xi) from the computational graph as well. In this way, the trainable attention and linear
projection parameters used for computing relevance are the only parameters updated.
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To ensure that model predictions of relevance are reasonable, we develop methods to automatically
tag blocks as relevant and irrelevant. Then, we use these labels along with a relevance loss to
help the model learn to accurately predict relevance.

7.6.2 Identifying Relevance and R-BASS-Inf

To automatically label the relevance of blocks, we compare the reference summary with the
ground-truth block-level transcript, rather than the input speech. Humans generally annotate
relevance by looking for: (a) common keywords between the transcript and summary, and
(b) related sentences based on semantics. If the block-level transcript under consideration has
keywords that are present in the summary, then the block may be considered relevant - we refer
to this as lexical similarity. If the block-level transcript is related in intent or meaning to the
summary, then the block is relevant, and we refer to this as semantic similarity. We can use these
relevance pseudo-labels directly during inference (R-BASS-Inf) to decode using only relevant
blocks. We compare this to a random baseline which randomly selects x% blocks without
relying on any relevance metric, so as to validate whether the notions of relevance capture useful
information. We remove stop words using NLTK [Bird and Loper, 2004] before computing
similarity metrics. Apart from using labels during inference, we can also train R-BASS models
to predict relevance on a given block, optimized using a relevance loss that is described in the
next section.

Lexical Similarity: One of the ways to capture relevance is to assess word overlap. We
calculate the ratio of the number of words in the current block’s transcript that occur in the
reference summary to the number of words in the block transcript. This ratio reflects the
degree of lexical similarity. If the i-th block’s transcript is denoted as T i, and the reference
summary is represented as Y , then the lexical similarity LS(T i, Y ) can be written as follows:
LS(T i, Y ) = Count(y ∈ T i|y ∈ Y )/Count(y)

The ratio LS(T i, Y ) represents the degree of relevance. However, in R-BASS, we focus only on
whether or not a given block is relevant. Therefore, we apply a threshold τ to convert LS(T i, Y )

to binary.

Semantic Similarity: This metric captures similarity in the semantic space between the block-
level transcript T i and the reference summary Y . We extract BERT [Kenton and Toutanova,
2019] embeddings from the transcript and reference summary. The cosine similarity between the
two embeddings is our measure of semantic similarity SS(T i, Y ). This computation is described
in as follows: SS(T i, Y ) = cos-sim(B(T i),B(Y )) where B() represents the BERT embeddings
of the given text. We use τ = 0.4 based on the data distribution to . get binary values
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7.6.3 Introducing Relevance Loss for Gated Attention

Now that we devised mechanisms to model relevance with R-BASS, and methods to obtain
automatic annotations, we describe the Relevance loss. To estimate the true relevance Ri, for the
i-th block, we compute a Binary Cross-Entropy (BCE) loss between the predicted relevance R̂i

and the reference annotation R. In doing so, we explicitly train the model to learn the weights
that capture the relevance of the transcript and the reference summary. In practice, we find this to
work better than the original approach. The BCE loss can be written as shown in Equation 7.15.

Lbce = −E(y log(p) + (1− y) log(1− p)) (7.15)

7.6.4 Experimental Setup

Experiments are performed on the How2 dataset for video summarization. Our conformer encoder
[Gulati et al., 2020b] - transformer [Vaswani et al., 2017b] decoder models use ESPNet2 [et.
al., 2018], and computational cost and hyperparameters. Our end-to-end speech summarization
models are first pre-trained on the ASR task and then fine-tuned for summarization. The encoder
consists of convolutional subsampling by factor 4, followed by 12 conformer [Gulati et al., 2020b]
blocks with 8 attention heads and hidden size 2048. The decoder has 6 transformer [Vaswani
et al., 2017b] blocks, with 4 attention heads and hidden size 2048. Models have 103M paraeters.
Both the encoder and decoder use a dropout rate of 0.2. We use a 43-dimensional filter bank and
pitch features as input to the encoder. Summarization models are first pre-trained on ASR using
joint CTC-attention [Watanabe et al., 2017] and then fine-tuned for summarization [Sharma et al.,
2022a].

Our experiments were performed using 4xA40 48GB GPUs - ASR pretraining took 2 days, while
BASS and R-BASS fine-tuning took 1.5 days and 0.8 days respectively.

7.6.5 Experimental Results

First, we show that the lexical and semantic relevance, as described earlier, are related to each
other. We consider blocks of 10s to have more fine-grained control blocks and calculate the
lexical and semantic relevance per block, creating a vector of binary relevance measures for each
recording. We then take the dot product of the two vectors, and average over all the examples.
The averaged dot product is 0.7, demonstrating that semantic and lexical relevance capture similar
information in the data.

Figure 7.8 shows the binary relevance of the lexical and semantic similarity scores, averaged
over all the examples in the training data. The first block is the most relevant on average, and
relevance decreases as the block index increases. The plot also demonstrates that both semantic
and lexical similarity have similar trends across the blocks. Comparing this to a random baseline,
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FIGURE 7.8: Binary relevance scores averaged over all training samples as a function of block
index in audio recordings

the performance drop is 64.9%, which is quite significant demonstrating the importance of
choosing relevant blocks.

TABLE 7.6: Performance of R-BASS-Inf and R-BASS w/ Loss using Lexical and Semantic
Similarity. ROUGE-L, METEOR, and BERTScore are reported with the % of dropped blocks

(efficiency gain

Updater ROUGE-L↑ METEOR↑ BERTScore↑ % Dropped↑
Baseline-FNet 57.27 29.77 91.62 -
Baseline- BASS 57.98 31.67 91.48 -

Random Inf. Baseline 55.76 30.47 90.91 63.90
Lex R-BASS Inf.(GT) 57.96 31.67 91.48 42.25
Sem R-BASS Inf.(GT) 57.96 31.67 91.48 63.90

Lex. R-BASS w/ Loss 57.05 30.91 91.30 69.2
Sem. R-BASS w/ Loss 57.82 31.15 91.42 86.31

R-BASS with Relevance Loss: Table 7.6 summarizes the results of using automatic annotations
for training and inference. When the reference relevance annotations are used to guide semantic
context updation during inference (R-BASS Inf.), over 64 % of blocks can be dropped for longer
sequences using semantic relevance, while lexical relevance can reduce around 40 % of the
blocks. When using the proposed training and inference method, we find that the number of
dropped blocks can be further increased with a small drop in performance. Training with lexical
relevance can enable dropping 69.2 % of blocks and training with semantic relevance enables
dropping up to 86 % of blocks. R-BASS with semantic relevance is 2.2x faster than the BASS for
inference.

Qualitative Analysis: We perform qualitative analysis by human inspection to evaluate the
impact of the slight degradations in the performance of R-BASS on summary quality. We
observe from Table 7.7, that the quality of summaries is not significantly degraded when using
R-BASS. We also compute UniEval [Zhong et al., 2022b] scores that attempt to mimic human
preference and find from Table 7.8 that R-BASS does not significantly degrade summary quality
on consistency, coherence, relevance, and factualness.
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TABLE 7.7: Qualitative Analysis of R-BASS results

Ground-truth BASS R-BASS R-BASS-Inf
LOOKING FOR
NEW LIP COLOR
IDEAS ? GET
TIPS FOR APPLY-
ING LIP COLOR
TO DRAMATIC
MAKEUP IN THIS
FREE VIDEO
CLIP FROM A
PROFESSIONAL
COSMETOLO-
GIST .

DRAMATIC
EYE MAKEUP .
GET TIPS FOR
APPLYING LIP
GLOSS IN THIS
FREE VIDEO
CLIP FROM A
PROFESSIONAL
COSMETOLO-
GIST .

ADDING PINKY
LIP COLOR CAN
BE TRICKY . GET
TIPS FOR US-
ING PINKY LIP
COLOR IN THIS
FREE VIDEO
CLIP FROM A
PROFESSIONAL
COSMETOLO-
GIST .

DRAMATIC
EYE MAKEUP .
GET TIPS FOR
APPLYING LIP
GLOSS IN THIS
FREE VIDEO
CLIP FROM A
PROFESSIONAL
COSMETOLO-
GIST .

COMBINE OYS-
TER SAUCE
, SHERRY ,
SESAME OIL
AND WATER FOR
A SAUCE TO
COOK THE
CHICKEN
IN . MAKE
SAUCE FOR
CANTONESE
CHICKEN
WITH GINGER-
SCALLION
FRIED RICE
WITH TIPS
FROM A PROFES-
SIONAL CHEF
IN THIS FREE
VIDEO ON CULI-
NARY ARTS .

ADD THE CORN-
STARCH TO THE
CHICKEN MARI-
NADE FOR THE
CHICKEN MARI-
NADE . ADD
CORNSTARCH
FOR GENERAL
TSO ’S CHICKEN
WITH FRIED
MUSHROOM
RICE WITH
TIPS FROM A
PROFESSIONAL
CHEF IN THIS
FREE VIDEO ON
CULINARY ARTS
.

THE CHICKEN
MARINADE IS A
MARINADE FOR
THE CHICKEN
. MAKE THE
CHICKEN STOCK
FOR GENERAL
TSO ’S CHICKEN
WITH FRIED
MUSHROOM
RICE WITH
TIPS FROM A
PROFESSIONAL
CHEF IN THIS
FREE VIDEO ON
CULINARY ARTS
.

ADD THE CORN-
STARCH TO THE
CHICKEN MARI-
NADE FOR THE
CHICKEN MARI-
NADE . ADD
CORNSTARCH
FOR GENERAL
TSO ’S CHICKEN
WITH FRIED
MUSHROOM
RICE WITH
TIPS FROM A
PROFESSIONAL
CHEF IN THIS
FREE VIDEO ON
CULINARY ARTS
.

7.7 Revisiting the Memory-Performance Tradeoff

In this section, we revisit the memory performance tradeoff introduced in Section 7.3.

Figure 7.9 plots the performance in ROUGE-L on the How2 dataset as a function of number of
float numbers needed to compute self-attentions for an input of size 100s. The figure was updated
to include the proposed block-wise methods for speech summarization. We observe that though
BASS significantly improves performance, it also comes with a 5x increase in computational
complexity over FNet due to the use of standard self-attentions within each block. However,
using our notion of semantic relevance and the proposed R-BASS approach, we see that the
model maintains performance while discarding the 5x increase in computational complexity.



Improving Modeling for Global Acoustic Context 80

UniEval Measure R-BASS Inf. BASS R-BASS w/ Loss

Coherence 0.69 0.69 0.67
Consistency 0.70 0.70 0.69

Fluency 0.85 0.85 0.83
Relevance 0.79 0.79 0.77

Overall 0.76 0.76 0.74

TABLE 7.8: UniEval scores of R-BASS-Inf, BASS and R-BASS w/ Loss models

FIGURE 7.9: The Memory Performance Trade-off Plot with all Methods

R-BASS achieves the best of both worlds – highest performance in ROUGE-L terms and low
computational complexity of the self-attention, and the point representing R-BASS is in our ideal
spot - the top left.
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7.8 Chapter Conclusion

In this chapter, we addressed the challenge of the global acoustic context by proposing three
solutions.

To reduce the computational complexity of FNet self-attentions while bridging the performance
gap between the state-of-the-art linear transformer and standard self-attention, we introduce the
XNORformer. Experiments show that the proposed XNORformer outperforms the state-of-the-art
linear transformer, i.e., the Cosformer on speech summarization for the How2 data.

We shed light on the trade-off between summarization performance and computational complexity
of the self-attention for all approaches. We note that though FNet and linear transformers improve
complexity over the standard self-attention, performance suffers a significant degradation.

To address this performance gap and enable speech summarization models to process arbitrarily
long inputs, we introduce Block-wise Adaptive for Speech Sequences (BASS) - an algorithm
that consumes the input in blocks and passes semantic context across blocks to encourage better
learning. The BASS algorithm can be used to adapt pre-trained truncated input models to longer
sequences, or train models over long sequences from scratch. We show that the proposed model
outperforms truncated baselines and enables the training of speech summarization models with
very long inputs.

Experiments show that BASS significantly improves performance over the optimized self-
attentions, but has a greater computational cost. To improve the efficiency of BASS, R-BASS is
introduced. We propose a novel mechanism to obtain binary relevance decisions during model
inference and introduce automatic methods to produce annotations for relevance based on lexical
and semantic similarity between the reference summary and ground-truth block-level transcript.
Experiments demonstrate that these two methods of automatically producing relevance annota-
tions are correlated and that there exist multiple irrelevant blocks by this measure within long
recordings. Finally, we discuss a relevance loss formulation to help the model predict relevance
based on lexical and semantic similarity. Experiments show that training with the proposed
semantic similarity loss enables end-to-end processing by a single model with 86% gain in
efficiency and 2.2x faster inference than BASS while obtaining relatively small performance
degradations.

Revisiting the performance-computational cost tradeoff shows that R-BASS obtains the best
performance at the least cost.



Chapter 8

Improving Diversity of Summaries with
AugSumm

Automatic summarization models are heavily influenced by the structure of the summaries used
to train them. This can be problematic because these reference summaries themselves can be
shaped by factors beyond the content itself.

For example, the How2 corpus contains short, uppercase summaries, often starting with "in
this free video." Models trained on this data tend to generate similar summaries, regardless of
the input recording, mimicking the structure of the training data rather than creating optimal
summaries for all recordings.

This raises concerns about comprehension and potential bias. Different individuals may have
varying preferences for summary structure and phrasing – what works for one reader might not
be ideal for another [Fisk and Hurst, 2003].

Current speech summarization models typically rely on supervised learning, where they are
trained on labeled data consisting of audio recordings and a single corresponding reference
summary for each recording. However, for any given audio recording, there can be multiple valid
summaries that convey the same information using different sentence structures and phrasing.
Therefore, a more effective approach for training speech summarization models within the
supervised learning paradigm would be to train them to generate any or all of the valid summaries
with different structures, rather than forcing them to adhere to a single structure. This multi-
reference training framework offers several advantages:

1. Reducing annotator bias: By incorporating diverse perspectives, the model wouldn’t be
solely influenced by individual preferences in the training data.

2. Enhancing diversity: Utilizing multiple references could lead to summaries with varying
structures and presentations, potentially catering to a wider range of reader preferences.
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3. Improving generalizability: Utilizing multiple references during training may improve the
ability of the model to generalize to new and unseen application domains.

However, creating corpora with multiple reference summaries presents a challenge. Traditionally,
human annotation serves as the primary method, but it is a costly and time-consuming process,
making large-scale annotation for multiple references impractical.

In this chapter, we address this limitation by using large language models (LLMs) as a proxy
for human annotators. We use them as generative models to sample additional references for
training and evaluation since they are exceptional at generating human-like text [Aher et al.,
2023, Sorensen et al., 2022, Argyle et al., 2023].

We introduce AugSumm (Augmenting Summaries), a method to generate additional synthetic
summaries based on available data — the reference (ground-truth) transcript of audio files or
the reference summary of audio recordings where it exists. Additional reference summaries
can be obtained based on the reference transcript of the input audio by the direct process of
summarization, which we term AugSumm-direct. Additional references can be generated by
paraphrasing existing reference summaries, which we term AugSumm-paraphrase. We note
that AugSumm-direct can be applied to any corpus that contains audio recordings since the
transcript can be obtained using speech recognition, while AugSumm-paraphrase requires a
corpus with abstractive reference summaries. In this chapter, we demonstrate the benefits of
AugSumm using the existing How2 [Sanabria et al., 2018] corpus for speech summarization.
Analysis shows that LLM-generated AugSumm summaries are useful and valid by extensively
examining the generated summaries with lexical-, semantic-, and human-based metrics. Our
human evaluation finds that AugSumm summaries are more valid than the reference summaries
with a 95% confidence interval.

Once additional summaries are generated, multiple methods can be used to incorporate them
within training. We explore three primary paradigms — multi-style training, two-stage training,
and a combination of the two. For evaluation, we construct a new synthetic evaluation set with
AugSumm summaries to evaluate model generation for structures different from those in the
existing reference summaries. Experiments show that using AugSumm summaries in training
can play a critical role in altering its behavior during inference. Pre-training on both AugSumm
and existing reference summaries, and fine-tuning on the existing reference summaries improved
all 10 metrics across both the original and synthetic test sets.

8.1 The challenge of unitary references

The goal of Automatic Speech Summarization [Murray et al., 2010, Palaskar et al., 2019a, Li
et al., 2019, Shang et al., 2018] is to condense essential information from long recordings and
generate human-like summaries. Figure 8.1 shows the different steps in the process of generating
abstractive summaries from input speech.
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FIGURE 8.1: The Process of Abstractive Summarization includes selecting important portions
of speech (semantic concepts), aggregating these, and then paraphrasing to produce the final

summary

Humans summarize speech in two steps: (i) select important semantic concepts and (ii) com-
bine these concepts to form an abstractive summary. Humans differ in what they perceive as
important [Rath et al., 1961], and how they combine these important concepts to form a summary.
Therefore, numerous valid summaries exist given input speech due to differences in concept
selection and semantic concept combination, and these summaries can be reasonably modeled as
belonging to a distribution.

However, current approaches for automatic speech summarization use a single subjective ground-
truth human-annotated summary from one annotator to train and evaluate summarization models.
We believe that sampling a single ground-truth summary per sample does not sufficiently represent
the entire distribution, and hence both the training and evaluation of SSUM models with a single
reference can be sub-optimal [Cohan et al., 2022].

In the following section, we introduce AugSumm, our method to address the challenge of unitary
references for speech summarization.

8.2 Our Approach: AugSumm

To generate summaries with greater fluency, coherence, and lexical diversity, we contend that it
is necessary to expose models to multiple references during training.

Obtaining multiple human-annotated summaries for each recording would be ideal for a more ac-
curate approximation of the underlying distribution. However, the high cost of human annotation
makes obtaining multiple references through human annotation infeasible.

Recently, large language models have been shown to be exceptional at generating text in a manner
humans Large Language Models (LLMs) [Ouyang et al., 2022, Touvron et al., 2023a, Touvron
et al., 2023b] to generate textual data for summarization. LLMs have been used in prior work
to generate synthetic data for text classification using approaches such as Self-Instruct [Wang
et al., 2023], AttrPrompt [Yu et al., 2023a], ZeroGen [Ye et al., 2022], and more recently use
in-context learning with seed samples [Yu et al., 2023b]. However, generating synthetic data for
abstractive speech summarization is more complex, and has not been addressed in prior work to
the best of our knowledge.
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8.2.1 Formulation

As we saw in Chapter 2, speech summarization models attempt to represent the probability
distribution P (Y |X; θ), i.e., the likelihood of predicting the summary sequence Y given the
input speech X .

To train such models in a supervised manner, we sample pairs (X,Y ) from the true joint
distribution of X and Y, P(X,Y ) and create a training corpus D. The greater the number of such
pairs sampled, the better the training corpus is at representing the true joint distribution P(X,Y ).
Sampling in this case corresponds to obtaining more human annotations Y for many different
speech inputs X . There are two main limitations of this sampling method.

First, speech summarization models are trained to estimate P (Y |X; θ). Random sampling from
the joint distribution yields a set of valid (X,Y ) pairs, however, sampling from P (Y |X) is likely
better. The latter means that X is selected first, and for every X , we sample multiple values
from P (Y |X), effectively improving distribution coverage and reflecting the fact that there are
multiple valid summaries for every input. Second, additional samples require human annotations,
and this is challenging to obtain in practice. The proposed AugSumm aims to sample additional
training examples for every X from the conditional distribution P(Y |X).

Since the true probability density, P(Y |X) is unknown, we resort to using a model with parame-
ters θ that represents P (Y |X; θ) to obtain such samples. It is also challenging to obtain models
that represent P (Y |X), so we factor the conditional distribution to include the transcript T .

P (Y |X) ≈ maxTP (Y |T )P (T |X). (8.1)

From Equation 8.1, the conditional distribution P (Y |X) can be factored into the product of the
likelihood of producing a summary given the transcript P (Y |T ), and the probability of obtaining
the transcript T from the input speech X . The second term P (T |X) is 1 for ground-truth
transcripts (from ASR data or human transcription). Therefore, the problem of modeling P (Y |X)

reduces to modeling P (Y |T ). Any generative text summarization model, including an LLM,
represents precisely this probability.

Based on this formulation, AugSumm obtains synthetic summaries from the LLM by sampling
as shown in Equation 8.2, where P (Y |T, Prompt) represent the LLM operation with a static
Prompt and Ysynth represents the generated summary.

Ysynth ∼ P (Y |T, Prompt). (8.2)
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8.2.2 AugSumm-direct

The first approach, Augsumm-direct, utilizes Equation 8.2 to generate synthetic summaries Ysynth
from transcripts by using direct_prompt in place of Prompt as shown in Equation 8.3

Ysynth ∼ P (Y |T, direct_prompt) (8.3)

However, because AugSumm adopts LLMs in place of humans to obtain summaries, the output
summary can be erroneous. To address this, we prompt the LLM to generate extractive summaries
by selecting key phrases from the input transcript and combining them. This helps produce
additional references using words that already exist in the transcript rather than generating
unconstrained abstractive summaries that are factually inconsistent with the transcript.

You are here to create an extractive summary from the transcript. An extractive summary uses words from the
input to convey the important portions of the video. Please make sure that the summary has between 40 and 60
words. Respond with only the extractive summary for: {transcription}.
transcription:

FIGURE 8.2: Prompt for extractive AugSumm in word-level, directly generated using the
transcript only without GT summary.

You are here to create an extractive summary from the transcript. An extractive summary uses words from the
input to convey the important portions of the video. Please make sure that the summary has between 40 and 60
words. Respond with only the extractive summary for: {transcription}. transcription:

FIGURE 8.3: Direct AugSumm Prompt that produces word-level extractive summaries generated
from the transcript of the audio input.GT_len refers to the number of words of the GT summary.

Figure 8.3 displays the prompt used. AugSumm-direct can be used with any speech data with
available transcriptions and hence it has the potential to train speech summarization models with
existing thousands of hours of ASR corpora.

8.2.3 AugSumm-paraphrase

AugSumm-direct presents a straightforward approach to sample additional summaries. However,
we found empirically that current LLMs cannot generate valid abstractive summaries that focus
on the same semantic concepts as the available reference.

As reported in prior work, prompting affects the generated outputs of LLM significantly [White
et al., 2023]. We therefore propose another method, AugSumm-paraphrase to sample additional
summaries by simply paraphrasing existing reference summaries.

In AugSumm-paraphrase, we devise prompts to query LLMs so that they paraphrase ground-truth
reference summaries. An example prompt is shown in Figure 8.4.
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You are here to paraphrase a given summary in the same style as the provided input. Please make sure that the
summary has between min(GT_len-10, 20) to max(GT_len+5, 20) words. given summary:

FIGURE 8.4: Paraphrase AugSumm Prompt (without concept words) that uses the reference
(ground-truth) summary as input to produce paraphrases.GT_len refers to the number of words

of the GT summary.

P (Y |T ) =
∑
YGT

P (Y, YGT |T ) =
∑
YGT

P (Y |T, YGT )P (YGT |T )

≈
∑
YGT

P (Y |YGT )P (YGT |T ).
(8.4)

Mathematically, AugSumm-paraphrase represents the conditional probability P (Y |T ) based on
the conditional density of P (Y, YGT |T ) as shown in Equation 8.4 where P (YGT |T ) represents
the process of human annotation and is a constant.

Using the fact that Y and YGT are conditionally independent given the transcript T , we note that
P (Y |T ) can be expressed in terms of P (Y |YGT ). This probability can be modeled by an LLM
that produces a Y based only on the ground-truth reference summary.

Ysynth ∼ P (Y |YGT , paraphrase_prompt) (8.5)

Using a different static prompt paraphrase_prompt, sampling occurs as shown in Equation
8.5. Compared to Augsumm-direct, Augsumm-paraphrase uses YGT instead of T and a different
prompt.

You are here to paraphrase a given summary in the same style as the provided input. Please make sure that the
summary has between min(GT_len-10, 20) to max(GT_len+5, 20) words. Also please include these words in the
summary: {important_keys}. given summary:

FIGURE 8.5: Augsumm-paraphrase Prompt (with concept words) that uses the reference
(ground-truth) summary as input to produce paraphrases that contain the provided concept

words.GT_len refers to the number of words of the GT summary.

To restrict the focus of paraphrasing from modifying important entities within the augmented
summaries, we propose to modify Augsumm-paraphrase by providing a specific set of semantic
concepts within the prompt.

For this purpose, we first extract semantic concepts as noun/verb phrases from the summary
following [Palaskar et al., 2021b, Sharma et al., 2022b]. Then, we modify the prompt as shown
in Figure 8.5 to produce the extracted semantic concepts within the paraphrase AugSumm.
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8.3 Experimental Setup

8.3.1 Models and Data

Experiments were performed on the How2 dataset for speech summarization. Our E2E speech
summarization models are implemented as attention-based sequence models with a 12-layer
conformer [Gulati et al., 2020b,Guo et al., 2021] encoder, and a 6-layer transformer decoder. The
encoder and decoder use a feedforward dimension of 2,048 and 512, along with 8 and 4 attention
heads respectively. To efficiently process longer sequences, we replace standard self-attention
with a parameter-less Fourier transform from FNet [Lee-Thorp et al., 2022b], which has been
shown to work well for speech summarization [Kano et al., 2023b]. 43-dimensional filter-bank
pitch features are extracted using Kaldi [Povey et al., 2011] and used as input to the model. The
model is first pre-trained on ASR using the hybrid CTC/attention loss [Watanabe et al., 2017]
with a CTC weight of 0.3 before being trained for speech summarization using cross-entropy.
SpecAugment [Park et al., 2019b] is used for ASR pre-training, while no augmentation is used
for speech summarization training.

8.3.2 Metrics

We employ a diverse set of metrics that assess lexical and semantic similarity between hypothesis
and reference summaries. Lexical metrics in this paper include ROUGE-1 [Lin, 2004b] and
ROUGE-L [Lin, 2004b]. These metrics measure in a word sense how close the model-generated
summaries are compared to the reference summary. Semantic metrics complement lexical
metrics by directly comparing semantic embeddings to assess similarity. In this work, we
employ BERTscore [Zhang et al., 2019] and UniEval [Zhong et al., 2022a] as model-based
metrics. We selected these two model-based metrics because BERTscore is a widely adopted
metric in the research community and UniEval, although relatively new, provides scores across
various dimensions that are also used in human evaluation – coherence, consistency, fluency, and
relevance. Coherence and consistency compare the model-generated output with the transcript.
Fluency is measured using the model-generated output only. Relevance compares the model-
generated output with a reference.

8.4 Experimental Results

8.4.1 Quality of AugSumm summaries.

Tables 8.1 and 8.2 report multiple metrics that reflect the quality of LLM-generated summaries.
For paraphrase AugSumm, Table 8.1, all three UniEval metrics except relevance were higher
than the ground truth. For relevance, which measures how relevant a given summary is compared
to the ground truth, is 98.32. Surprisingly, even BERTscore computed with ASR transcript
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TABLE 8.1: Quality comparison of paraphrase AugSumm. Results between 2 to 7 columns are
model-based where the first four are from UniEval [Zhong et al., 2022a] and the two last are
from BERTscore [Zhang et al., 2019]. ROUGE-1 is based on lexical similarity. (Pa: paraphrase,
Coh: coherence, Con: consistency, Flu: fluency, Rel: relevance, RG1: ROUGE-1 with transcript,
BT-T: BERTscore with transcript, BT-G: BERTscore with ground-truth summary, HME: human

evaluation (validity, %)

Coh Con Flu Rel BT-T BT-G RG1 HME
GT 81.11 80.10 91.30 - 82.65 - 12.48 51.67
Pa 86.04 83.76 94.89 98.32 82.65 93.77 12.49 65.33

TABLE 8.2: Evaluating the quality of synthetic data generated using Direct AugSumm. (Di:
direct AugSumm, Coh: coherence, Con: consistency, Flu: fluency, Rel: relevance, ROUGE-1:

ROUGE-1 with transcript,RG-L: ROUGE-L with transcript)

Coh Con Flu BERTScore-Trans ROUGE-1 RG-L
GT 81.11 80.10 91.30 82.65 12.48 8.30
Di 97.00 93.04 92.57 85.09 28.65 23.15

as reference were almost identical, indicating that semantics are preserved. ROUGE-1 scores
are also similar, showing a similar degree of word overlap in synthetic summaries. For direct
AugSumm, Table 8.2, three UniEval metrics were higher than both the paraphrase AugSumm and
ground-truth .1 ROUGE-1 and -L is higher than ground truth. High ROUGE values occur because
we constrain the model to use the words within the transcript to generate direct summaries.

We further conducted a human evaluation, with 20 annotators and 15 questions each to choose
among the four options: (i) summary 1 is valid while summary 2 is not, (ii) summary 2 is valid
while summary 1 is not, (iii) Both summaries are valid, and (iv) Both summaries are invalid. In
total, we received 300 responses, with 51, 92, 104, and 53 responses for each respective option.
Here, summary 1 is the ground-truth How2 summary and 2 is the AugSumm summary. Therefore,
from human ratings, ground-truth, and AugSumm summaries were considered valid 51.67 ±
0.0565% and 65.33 ± 0.0538% of the time respectively with a 95% confidence interval. We partly
attribute this to the fact that How2 summaries were constructed by crawling user descriptions
from YouTube and inserting them into predefined sentence structures. In summary, AugSumm
summaries are valid based on lexical, semantic, and human evaluation.

TABLE 8.3: Baseline results trained with and without AugSumm labels. Results better than the
Baseline are depicted in boldface and the best performance is underlined. ROUGE metrics with

∗ are measured using AugSumm labels. (BT-A: BERTscore with AugSumm test set)

Coh Con Flu Rel BT-G RG1 RGL RG1* RGL* BT-A
Sharma et al. - - - - 91.53 60.73 56.10 - - -
Baseline 68.58 72.66 82.92 77.57 92.16 61.95 57.52 47.69 36.77 88.40
Paraphrase 77.18 81.09 86.81 81.93 88.88 51.44 35.20 43.98 30.13 87.16
+ w/ concept 78.26 81.29 85.54 82.65 90.21 54.95 35.69 47.80 31.78 88.40
Direct 81.73 86.37 83.15 62.93 81.36 23.04 16.10 17.99 12.84 80.69

1As summaries being extractive, it’s not meaningful to measure relevance.
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8.4.2 Baselines and AugSumm-only.

Table 8.3 compares the baseline and speech summarization models trained only with AugSumm
summaries. Our baseline based on FNet outperforms the reported performance with restricted
self-attention [Sharma et al., 2022b], and thus, we use the former. All models trained with
AugSumm demonstrated improved performance on UniEval; however, the baseline has the best
result on other metrics. Overall, we conclude that models trained with AugSumm have the
potential for improvement when jointly trained with an existing ground-truth summary using
various techniques.

TABLE 8.4: Comparing approaches to utilize AugSumm for training. All experiments have
been conducted using “Paraphrase, w/ concept” in Table 8.3. Results better than the Baseline is

depicted in boldface and the best performance is underlined. (Pt: pre-train, Ft: fine-tune)

Coh Con Flu Rel BT-G RG1 RGL RG1* RGL* BT-A
1 stage training

GT-only (=Baseline) 68.58 72.66 82.92 77.57 92.16 61.95 57.52 47.69 36.77 88.40
AugSumm-only 78.26 81.29 85.54 82.65 90.21 54.95 35.69 47.80 31.78 88.40
GT half + AugSumm half 73.34 76.77 83.91 80.10 91.32 58.89 47.76 47.94 34.89 88.49
Enlarge (GT+AugSumm) 75.73 78.38 84.81 82.18 91.52 60.30 47.30 49.14 34.54 88.66

2 stage training
Pt Augsumm-only → Ft GT 69.74 73.52 83.48 77.11 92.44 63.17 58.96 48.50 37.65 88.59
Pt Enlarge → Ft GT 69.70 73.42 83.17 78.79 92.48 63.64 59.37 48.52 37.61 88.53
Pt GT → Ft AugSumm 67.18 72.33 82.01 76.18 92.20 63.00 58.76 47.74 36.79 88.27

8.4.3 Using AugSumm in Training

Table 8.4 shows the result of our various techniques to leverage AugSumm along with the existing
ground-truth summary. “ground-truth half + AugSumm half” and “Enlarge” in Rows 3 and 4
show results when using both AugSumm and ground-truth labels by mixing the two or using them
all. These two experiments improve all four UniEval metrics, but ROUGE or BERTscore with the
ground-truth summary does not improve. We contend that this is because, in this setup, models
are optimized to produce both the ground-truth or AugSumm summary during training, both of
which contain different semantic concepts and phrase structures. ROUGE and BERTScore on the
AugSumm test set improve when using both ground-truth and AugSumm data in training.

Rows 5 to 7 demonstrate the impact of adopting 2-stage training. 2-stage training is effective
regardless of what kind of label is used in the pre-training and fine-tuning stages. Among them,
pre-training with both labels and fine-tuning with the ground-truth summary (Row 6) performed
the best. All 10 metrics showed improvement and ROUGE scores improved on both ground-truth
and AugSumm test sets. Based on these results, we conclude that AugSumm can be used to build
speech summarization models that generalize better.
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8.5 Chapter Conclusion

In this chapter, we proposed AugSumm, which uses LLMs to augment summary labels for SSUM.
We compared two methods to generate synthetic reference summaries - directly summarizing
speech transcripts and paraphrasing existing GT summaries. Experiments on How2 showed that
both were beneficial. Multiple methods to utilize augmented and GT summaries were discussed,
with the 2-stage training framework yielding improvements across lexical and semantic metrics
and across original and augmented test sets. We can obtain a 1-point absolute improvement in
ROUGE-L by using AugSumm.

The success of this work, using LLMs as a source of data augmentation, inspires multiple
directions for future work. First, advanced training techniques such as contrastive learning and
mix-up can be now applied to better leverage multiple summary labels per audio file. Second, this
method can be extended to several tasks such as speech translation where the label is a sentence.
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Chapter 9

Conclusion and Future Directions

9.1 Thesis Conclusions

This thesis has delved deep into the problem of speech summarization and made several contribu-
tions to automatic methods for speech summarization.

First, we identify the limitations of the classical cascade approach and propose a novel end-to-
end approach for speech summarization. To realize end-to-end models on available computing
resources, we address two imperative challenges – abstract learning to optimize models to
learn the complex and indirect relationship between speech and summary, and global acoustic
context to enable models to utilize long input contexts for speech summarization. To address the
concern of abstract learning, we draw inspiration from curriculum learning to devise a two-stage
training approach that involves pre-training the speech summarization model for utterance-
level transcription and then fine-tuning the model for abstractive speech summarization. We
recommend the use of restricted self-attentions to allow end-to-end models to look over longer
input contexts. The proposed end-to-end approach leads to significantly improved performance
with fewer parameters and a simpler training method, demonstrating that end-to-end models are
not only a viable alternative for video summarization but also that they are the more performant
and efficient alternative.

Next, we address the paucity of labeled data for speech summarization by introducing two
new datasets – SLUE-TED, a dataset of TED talks where the task is to predict the abstract and
title given the audio recording, and Interview, a dataset of multi-party radio interviews from
the National Public Radio (NPR) for abstractive meeting summarization. We then develop a
benchmark comparing end-to-end and cascade models on the 4 abstractive speech summarization
corpora. Experiments show that end-to-end models can outperform cascade models on larger
datasets, which mirrors observations made in speech translation research.

We also explore the task of human annotation for abstractive speech summarization. Annotators
can either read a transcript of spoken content or listen to the audio recording to produce an
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abstractive speech summary, and we question whether differences exist between these approaches.
We collect expert and non-expert annotations for 1002 recordings from the Interview test set
and perform extensive analysis on the collected summaries. Analysis shows that speech-based
summaries are more factually consistent and information selective, and result in higher inter-
annotator agreement compared to transcript-based summaries. We also find that errors in the
transcript degrade human annotation, and that expert annotators produce more informative and
reliable summaries.

Next, we take on the task of improving the ability of end-to-end models to look over longer
input contexts. We show that F-Net-based self-attentions can yield the best performance, and
develop a new linear transformer based on a new XNOR kernel that improves performance
over the state-of-the-art linear transformer, i.e., the Cosformer. To address the challenge of
arbitrarily long recordings, we develop BASS: Blockwise Adaptation for Speech Summarization
that re-frames speech summarization as a streaming problem. Experiments show that BASS not
only improves efficiency and allows the use of arbitrarily long recordings but also helps improve
model performance on video summarization. BASS can be in-efficient for non-streaming settings,
and hence we introduce a relevance-aware version of BASS, R-BASS, to improve the efficiency
of BASS by over 86% while retaining comparable performance.

Finally, we note that speech summarization models are constrained to produce summaries that
are similar in structure to data used in model training. Further, though there exist multiple valid
summaries for a given recording, current datasets and approaches rely on a single reference
summary for training and evaluation. We address this limitation by prompting Large Language
Models (LLMs) to generate augmentation summaries and describing methods to use these
summaries for training and evaluation using our AugSumm approach. Experiments show that
AugSumm can improve the quality of resulting summaries, on coherence, consistency, fluency,
relevance, and lexical similarity.

In summary, in this thesis, we have demonstrated that end-to-end modeling is a viable and in many
cases more performant alternative to the classical cascade approach. We have addressed various
challenges within end-to-end models, and shown how end-to-end models can be improved.

9.2 Future directions for the field

The work done in this thesis has significant implications for the research and product development
industries. It is my hope that this thesis motivates and inspires the next generation of researchers
and technologists to contribute to the field of speech summarization. In this section, I list a few
ideas to ponder for future work in speech summarization.
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9.2.1 New Applications of Speech Summarization

Speech summarization has a myriad of applications, and existing corpora do not cover all such
applications. The work in this thesis is largely application-agnostic, but using application-specific
knowledge can further improve speech summarization. For example, in the medical domain,
knowledge of medical terms and entities can significantly improve the prediction of doctor’s
notes.

In multi-party party settings, knowledge of meeting participants and overlapping information
can improve the usefulness and quality of summaries. Within multi-lingual and code-switching
environments, making summarization models aware of languages can enable cross-lingual
summarization as well. All of these integrations can be performed in an end-to-end manner to
enhance impact and retain relatively simple model architectures.

9.2.2 Custom Summarization with Multimodal Foundation Models

The state of artificial intelligence has advanced immensely with the development and deployment
of large-scale foundation models that can do multiple tasks based on prompting. Such paradigms
enable models to perform new tasks based on simple task descriptions, and that is the need of the
hour.

All summaries are not the same, hence being able to customize the type and nature of summaries
is essential. For example, for some applications, we may prefer extractive over abstractive
summaries, and for others, longer summaries over shorter summaries. There may be cases where
specific information is desired to be retained within the summary – for example, it may be
desirable for meeting summaries to have information on meeting updates and tasks that need to
be completed, while TED talk abstracts may not have this feature.

9.2.3 Explainable Summarization and Summarization Evaluation

An important challenge in summarization and machine learning more broadly is the lack of
explainability within end-to-end models. It is important to understand what neural networks
learn, and how they make output predictions. Another aspect could include using insights gained
from human summarization to build explainable and interpretable end-to-end models for speech
summarization.

Finally, there is no consensus on the approach for automatic summary evaluation and that remains
an active area of research.
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