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Abstract

Voices and faces are the two most important signal categories in our social interactions.

Despite the different physical structures, voices and faces contain highly similar types

of information, including linguistic information (phonemes for voices and viseme for

faces), affective state, and identity characteristics (weight, gender, age, etc.). For this

reason, the associations of voices and faces have seen significant research interest in

psychology, cognitive science, artificial intelligence, and a few more other fields.

In this thesis, we attempt to explore the identity associations between voices and faces

by developing computational mechanisms for reconstructing faces from voice. More

specifically, the task is designed to answer a question: Given an unheard audio clip

spoken by an unseen person, can we algorithmically picture a face that has as many

associations as possible with the speaker, in terms of identity?

The link between voice and face has been established from many perspectives. Direct

relationships include the effect of the underlying skeletal and articulator structure of the

face and the tissue covering them, all of which govern the shapes, sizes, and acoustic

properties of the vocal tract that produces the voice. Less directly, the same genetic,

physical, and environmental influences that affect the development of the face also affect

the voice. Given these demonstrable dependencies, it is reasonable to hypothesize that it

may be possible to reconstruct faces from voice signals algorithmically. Our hypothesis

is that if any facial parameter influences the speaker’s voice, its effects on the voice must be

discoverable by a properly designed computational model.

This thesis presents how we approach the goal of generating faces from voice in three

stages. First, we consider the cross-modal matching problem: given a voice recording,

one must select the speaker’s face from a gallery of face images. To this end, we propose

disjoint mapping networks to learn representations of voices and faces in a shared space,

such that their representations can be compared to one another. The results of matching

empirically demonstrate the possibility of disambiguating faces from the voice. Second,
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we address the problem of reconstructing 2D face images from voices. We propose a

simple but effective computational framework based on generative adversarial networks

(GANs). The generated face images are visually plausible and have identity associations

with the true speaker. Last, we investigate the problem of reconstructing 3D facial shapes

from voices. We propose an anthropometry-guided framework that identifies which

anthropometric measurements (AMs) are predictable from voice, and then reconstructs

the 3D facial shapes from those predictable AMs. Compared to baseline methods, our

results demonstrate notable improvements, especially in reconstructing the shapes of

speakers’ noses.
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Chapter 1

Introduction and Background

Voices and faces play pivotal roles in our social interactions. They are special in human

neural selectivity [12]. Neurocognitive studies have shown that listening to a voice or

viewing a face engages psychological and neural mechanisms that are not engaged by

other categories of nonvocal sounds or other object categories [13, 14]. Despite their

different physical manifestations, voices and faces contain highly similar types of infor-

mation, including linguistic information (phonemes for voice and viseme for faces [15]),

affective state, and identity characteristics (weight, gender, age, etc.). For this reason,

the associations between voices and faces have gathered significant research interest in

psychology [16, 17, 18], cognitive science [19, 20], and many other fields.

Researchers in artificial intelligence have also attempted to investigate such audiovi-

sual associations algorithmically. A number of computational models have been devel-

oped for animating given faces with the linguistic information and affective state from

voice signals [21, 22, 23]. Such animated faces are loosely referred to as "talking faces".

The fact that this can be done demonstrates that voices can be accurately associated to

the motions and shapes of lip, tongue, teeth, jaw, etc. Research shows that the per-

formance of talking faces can be further improved by leveraging facial landmarks as

intermediate representations [24, 25, 26]. Compared to linguistic and affective informa-

tion, identity associations between voices and faces have received comparatively little

1
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Figure 1.1: Anatomy of the vocal tract.

scientific attention.

In this thesis, we attempt to explore the identity associations between voices and

faces by developing computational mechanisms for reconstructing faces from voices.

More specifically, the task is designed to answer the question: Given an unheard audio

clip spoken by an unseen person, can we algorithmically picture a face that has as many

associations as possible with the speaker, in terms of identity. It seems magical or im-

possible, but we as humans do this all the time. When we hear a song, we may imagine

what the singer looks like without being aware of it. Or when we talk to someone over

telephone, we may form a metal picture of the person we are talking with.

1.1 Motivation

A person’s voice is incontrovertibly predictive of their face. Direct relationships stem

from the voice production mechanism [27, 28], as shown in Fig. 1.1. The underlying

skeletal and articulator structures of the face and the tissue covering them, govern the

shapes, sizes, and acoustic properties of the vocal tract that produces the voice. The

structures related to the nose affect the nasalence and nasal resonances [29, 30].

Less directly, demographic factors affect the face morphology as well as the voice

pitch. For example, aging not only changes the facial appearance (e.g. skin texture), but
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General low level auditory analysis General low level visual analysis

Face structural analysis

Face recognition units

Person identity nodes

Voice recognition units

Voice structural analysis

Vocal affect analysis

Vocal speech 
analysis

Facial affect analysis

Facial speech 
analysis

Figure 1.2: A model for voice and face perception. Reproduced from [1]

also changes the tissue composition of the vocal cords and the dimensions of the vocal

chambers [31]. Gender also affects voice. Biologically, with higher testosterone levels,

males are prone to have a prominent eyebrow ridge, broad chin, small eyes, and thin lips

[32], while the vocal folds situated in the larynx also increase in thickness and length,

leading to a lower voice pitch [33].

Neurocognitive studies indicate that neuro-cognitive pathways for voices share a

common structure with that for faces [34, 1, 35] – the two may follow parallel pathways

within a common recognition framework, as shown in Fig. 1.2. In empirical studies

humans have demonstrated the ability to associate voices of unknown individuals to

pictures of their faces [19, 18]. They have been observed to show improved ability to

memorize and recall voices when the pictures of the speaker’s face (but not imposter

faces) are previously shown to them [36, 37, 38].

Given these demonstrable dependencies, it is reasonable to hypothesize that it may

be possible to reconstruct faces from voice signals algorithmically. Our hypothesis is that

if any facial parameter influences the speaker’s voice, its effects on the voice must be discoverable

by a properly designed computational model.
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1.2 Related Work

In the past few years, much effort has been devoted to the audiovisual association learn-

ing. SVHF [39] presents a cross-modal matching setting, where given a voice recording

and many face images, one must choose a face image such that the chosen face matches

the speaker of the voice recording. A similar setting of matching a face image to many

voice recordings is also included. Results show that the correct voice or face can be

chosen with more than 80% accuracy in a two-alternative forced-choice setting. Fur-

thermore, experiments also show that the matching accuracy is greatly dependent on

demographic factors such as gender and age. This problem is formulated as metric

learning in [40, 41]. [42] adopts self-supervised learning for the voice and face matching

problem, so that a predictive model can be trained on unlabeled video data.

Recently, Speech2Face [43] has been proposed to generate 2D face images from voice.

In this study, the authors have produced average-looking faces and these faces are shown

to have consistent ages and facial measurements with the those of real speakers. [44]

produce more realistic face images from voices using conditional generative adversar-

ial networks (cGANs) [45, 46] in a closed-set setting. [47] extends the cGANs-based

framework with advanced generator architecture, achieving improved quality for the

generated images.

1.3 Roadmap

In this thesis, we explore the problem of reconstructing faces from voice and approach

the research objective step by step. Specifically, we start with a cross modal selection

problem. We develop a disjoint mapping network (DIMNet) to map a voice recording

to the face image of the speaker, or vice versa. While matching is not reconstruction,

this can be considered as a nonparametric approach for generating faces from voice.

The selected face is the reconstruction result. Moreover, voice to face matching can be
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accurately evaluated objectively – we can quantify how accurate the "reconstruction" is.

So we believe this is a good starting point.

However, we also see the limitation of the matching problem, which relies heavily on

a large-scale high-quality gallery set. Motivated by this, we work on the problem of 2D

face image reconstruction from voice, where we develop a voice to face model based on

generative adversarial networks (GANs). For unheard voices spoken by unseen persons,

we obtain perceptually plausible results. In a test based on human judgment, we show

that the generated faces do have identity associations with the true speaker.

Nonetheless, the generated images include many identity-unrelated factors, like the

hair, hat, illumination, background, etc. We cannot control their presence or absence.

These limitations motivate us to work on reconstructing 3D facial shapes from voices.

The solutions are twofold. First, we propose a self-supervised approach for 3D face

reconstruction from videos. This method can then be used to construct an audiovisual

dataset, which comprises paired voices and 3D facial shapes. Secondly, we propose a

"3D facial shape from voice" (SfV) approach based on anthropometric measurements

(AMs). With SfV, we discover many facial AMs that are predictable from voice, and we

can reconstruct 3D facial shapes from these measurements. Compared to the baseline

methods, our results demonstrate notable improvements, especially in reconstructing

the noses of female speakers.

1.4 Applications

This work has a number of potential applications, including those for law enforcement

(e.g. supporting facial sketches generated by police artists based on eyewitness testi-

monies with more objective and accurate technologies), forensics, health services, gam-

ing, entertainment, etc. As it becomes more accurate, more uses for it will emerge. Here

we introduce two real world applications which have adopted the techniques in this

work.



CHAPTER 1. INTRODUCTION AND BACKGROUND 6

Figure 1.3: A live demonstration of voice profiling.

Voice profiling. Voice profiling refers to the process of deducing personal charac-

teristics and bio-relevant parameters from their voices [48, 49], like gender, ethnicity,

emotion, height, weights, and so on. Our work enables a new physical entity – the face

– to be derived from voice. We demonstrated a live system for voice profiling at the

World Economic Forum in Tianjin, China from September 18 to 20, 2018. A snapshot

of the system is shown in Fig. 1.3. It was tested by nearly a thousand people within a

span of 3 days. The system demonstrated made multiple profile deductions from voice,

and also recreated the speaker’s 3D facial shape in virtual reality. People found it to be

surprisingly accurate even in its then nascent state.

Public education. We worked with Wunderman Thompson, a digital marketing and

advertising company based in New York with 200 offices in 90 markets and over 20,000

employees, on a project for revealing the "faces behind fraud". This project attempts to

create videos, where scammers tell the truth about their scams and reveal how they con

people out of money. Previously, such videos were made with the voices and faces from

selected voice actors reading a script. With the work we have done in this thesis, we can

now use the voices of real scammers to generate their faces. In other words, we can now
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(a)

(b)

(c)

(d)

Figure 1.4: (a) 2D face images generated from the voice of real scammers. (b)(c)(d)
Snapshots of intermediate images in the process of 2D face generation.

generate videos that are made using real scammers’ voices and the faces generated from them

by our techniques. We present some examples of faces generated from real scammers’

voices in Fig. 1.4.

1.5 Privacy and Fairness

Privacy. Voices carry a wealth of profile information about the speaker (such age, gen-

der, ethnicity, health status, etc.). Generating faces from voice may further increase the

risk of privacy leakage. For this reason, the algorithms that we developed must be used

in an ethical way. Facial reconstruction must not be done if the speakers’ voice is not

completely public or if the speaker it not a public figure and not in agreement with
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(or has not given consent for) such use of their voice. From a technical perspective,

de-identifying voices and faces [50, 51] is an effective solution to protect the privacy of

speakers, and our work can be used for detecting and visualizing the the remaining

identity information.

Fairness. It is important for an algorithm to be equitable in its performance for

different demographic groups, since biased performance may adversely affect users and

even lead to discrimination. In this thesis, where possible, we explicitly take fairness

into consideration and perform separate evaluations for different groups of individuals

based on the demographic and other factors.

1.6 Thesis Organization

This thesis is organized as follows. In Chapter 2 we introduce a cross modal match-

ing framework for voices and faces and show that it can be used as a nonparametric

approach for voice to face generation. In Chapter 3 we present a voice to 2D face im-

age generation model. In Chapter 4 we explore the conditional estimation and apply

it to a self-supervised approach for 3D face reconstruction from video. In Chapter 5

we introduce the use of anthropometric measurement, and apply it to 3D facial shape

reconstruction from voice. We present our conclusions in Chapter 6.



Chapter 2

Voice and Face Matching

In this chapter, we investigate the associations between voice and face by cross-modal

matching. The specific problem we look at is the one wherein we have an existing

database of samples of people’s voices and images of their faces, and we aim to auto-

matically and accurately determine which voices match to which faces.

2.1 Introduction

A person’s face is predictive of their voice. Biologically, the genetic, physical and envi-

ronmental influences that affect the face also affect the voice.

Humans have been shown to be able to associate voices of unknown individuals to

pictures of their faces [19]. Humans also show improved ability to memorize and recall

voices when previously exposed to pictures of the speaker’s face, but not imposter faces

[36, 37, 38]. Cognitively, studies indicate that neuro-cognitive pathways for voices and

faces share common structure [34], possibly following parallel pathways within a com-

mon recognition framework [1, 35]. The above studies lend credence to the hypothesis

that it may be possible to find associations between voices and faces algorithmically as

well.

This problem has seen significant research interest, in particular since the recent

9
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introduction of the VoxCeleb corpus [3], which comprises collections of video and audio

recordings of a large number of celebrities. The existing approaches [39, 40, 42] have

generally attempted to directly relate subjects’ voice recordings and their face images,

in order to find the correspondences between the two. [39] formulates the mapping

as a binary selection task: given a voice recording, one must successfully select the

speaker’s face from a pair of face images (or the reverse – given a face image, one must

correctly select the subject’s voice from a pair of voice recordings). They model the

mapping as a neural network that is trained through joint presentation of voices and

faces to determine if they belong to the same person. In [42, 40], the authors attempt

to learn common embeddings (i.e., vector representations) for voices and faces that can

be compared to one another to identify associations. The networks that compute the

embeddings are also trained through joint presentation of voices and faces, to maximize

the similarity of embeddings derived from them if they belong to the same speaker. In

all cases, the voice and face are implicitly assumed to directly inform about one another.

In reality, though, it is unclear how much these models capture the direct influence of

the voice and face on one another, and how much is explained through implicit capture

of higher-level variables such as gender, age, ethnicity etc., which individually predict

the two. These higher-level variables, which we will refer to as covariates1 can, in fact,

explain much of our ability to match voices to faces (and vice versa) under the pre-

viously mentioned “select-from-a-pair” test (where a voice must be used to distinguish

the speaker’s face from a randomly-chosen imposter). For instance, simply matching the

gender of the voice and the face can result in an apparent accuracy of match of up to 75%

in a gender-balanced testing setting. Even in a seemingly less constrained “verification”

test, where one must only verify if a given voice matches a given face, matching them

based on gender alone can result in an equal error rate of 33% [52]. Even matching the

voice and the face by age (e.g. matching older-looking faces to older-sounding voices)
1To be clear, these are covariates, factors that vary jointly with voice and face, possibly due to some

other common causative factors such as genetics, environment, etc. They are usually not claimed to be
causative factors themselves.



CHAPTER 2. VOICE AND FACE MATCHING 11

C
on

tr
as

tiv
e 

L
os

s

T
ri

pl
et

 L
os

s

M
ul

ti-
ta

sk
 

C
la

ss
ifi

ca
tio

n

Multiple Covariates 
Supervision

(a) Seeing Faces and Hearing Voices (b) Learnable PINs (c) Learning Face-Voice Association

Gender

Identity

Nationality

(d) The Proposed DIMNet

Pa
ir

 
C

on
st

ru
ct

io
n

T
r
ip

le
t 

C
on

st
ru

ct
io

n

Positive 
Pair

Positive 
Pair

Negative 
Pair

Negative 
Pair

B
in

ar
y 

C
la

ss
ifi

ca
tio

n

Concat

Match or 
not?

Pa
ir

 
C

on
st

ru
ct

io
n

Embeddings of Single 
Face or Voice as Input

No Need for Pair or 
Triplet Construction

...
...

... ...
......

...
...

..
.

...... ...

...

Identity 1

Identity 2
Identity 3

Voice Embedding

Face Embedding

Direct dependence between voices and faces Dependence between different modalities and the covariates

Figure 2.1: Overview of the proposed DIMNet and its comparison to other approaches.

could result in match accuracy that’s significantly better than random.

Previous studies [39, 42] attempt to disambiguate the effect of multiple covariates

through stratified tests that separate the data by covariate value. The results show that

at least some of the learned associations are explained by the covariate, indicating that

their learning approaches do utilize the covariate information, albeit only implicitly.

In this chapter, we propose a novel framework to learn mappings between voices and

faces that do not consider any direct dependence between the two, but instead explic-

itly exploit their individual dependence on the covariates. We define covariate as the

identity-sensitive factors that can simultaneously affect voice and face, e.g. nationality,

gender, identity (ID), etc. We do not require the value these factors take to be the same

between the training and test set, since what we are learning is the nature of the covari-

ation with the variable in general, not merely the covariation with the specific values

the variable takes in the training set. In contrast to existing methods where supervision

is provided through the correspondence of voices and faces, our learning framework,

Disjoint Mapping Network (DIMNet), obtains supervision from common covariates, ap-

plied separately to voices and faces, to learn common embeddings for the two. The

comparison between the existing approaches and DIMNets are illustrated in Fig. 2.1 ((a)

from [39], (b) from [40], (c) from [42], and (d) from our proposed DIMNets). Compared

to other methods, DIMNets present a voice-face embedding framework via multi-task

classification and require no pair construction (i.e., both voices and faces can be input
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sequentially without forming pairs).

DIMNet comprises individual feature learning modules which learn identically-dimensioned

features for data from each modality, and a unified input-modality-agnostic classifier

that attempts to predict covariates from the learned feature. Data from each modal-

ity are presented separately during learning; however the unified classifier forces the

feature representations learned from the individual modalities to be comparable. Once

trained, the classifier can be removed and the learned feature representations are used

to compare data across modalities.

The proposed approach greatly simplifies the learning process and, by considering

the modalities individually rather than as coupled pairs, makes much more effective use

of the data. Moreover, if multiple covariates are known, they can be simultaneously used

for the training through multi-task learning in our framework. As shown in Fig. 2.2,

the input training data can be either voice or face, and there is no need for voices and

faces to form pairs. Modality switch is to control which embedding network (voice or

face) to process the data. While the embeddings are obtained, a multi-task classification

network is applied to supervise the learning.

Compared to current methods [39, 40, 42], DIMNets achieve consistently better per-

formance, indicating that direct supervision through covariates is more effective in these

settings. We find that of all the covariates, ID provides the strongest supervision. The

results obtained from supervision through other covariates also match what may be

expected. Our contributions of this chapter are summarized as follows:

• We propose DIMNets, a framework that formulates the problem of cross-modal

matching of voices and faces as learning common embeddings for the two through

individual supervision from one or more covariates, in contrast to current ap-

proaches that attempt to map voices to faces directly. An overview of our frame-

work is given in Fig. 2.2.

• In this framework, we can make full use of multiple kinds of label information
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Figure 2.2: Our DIMNet framework.

(provided by covariates) with a multi-task objective function.

• We achieve the state-of-the-art results on multiple tasks. We are also able to isolate

and analyze the effect of the individual covariate on the performance.

Moreover, we note that the proposed framework is applicable in any setting where

matching of different types of data which have common covariates is required.

2.2 The Proposed Framework

Our goal is to learn common vector representations for both voices and faces, that permit

them to be compared to one another. In the following sections we first describe how we

learn them from their relationship to common covariates. Subsequently, we describe how

we will use them for comparison of voices to faces.

2.2.1 Leveraging Covariates to Learn Embeddings

The relationship between voices and faces is largely predicted by covariates – factors that

individually relate to both the voice and the face. To cite a trivial example, a person’s

gender relates their voice to their face: male subjects will have male voices and faces,

while female subjects will have female voices and faces. More generally, many covariates

may be found that relate to both voice and face [53].
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Our model attempts to find common representations for both face images and voice

recordings by leveraging their relationship to these covariates (rather than to each other).

We will do so by attempting to predict covariates from voice and face data in a common

embedding space, such that the derived embeddings from the two types of data can be

compared to one another.

Let V represent a set of voice recordings, and F represent a set of face images. Let C

be the set of covariates we consider. For the purpose of this chapter, we assume that all

covariates are discrete valued (although this is not necessary). Every voice recording in

V and every face in F can be related to each of the covariates in C. For every covariate

C ∈ C we represent the value of that covariate for any voice recording v as C(v), and

similarly the value of the covariate for any face f as C( f ). For example, C could be ID,

gender, or nationality. When C is ID, C(v) and C( f ) are the ID of voice v and face f ,

respectively.

Let Fv(v; θv) : v 7→ Rd be a voice embedding function with parameters θv that maps any

voice recording v into a d-dimensional vector. Similarly, let Ff ( f ; θ f ) be a face embedding

function that maps any face f into a d-dimensional vector. We aim to learn θv and θ f

such that the embeddings of the voice and face for any person are comparable.

For each covariate C ∈ C we define a classifier HC(x; ϕC) with parameter ϕC, which

assigns any input x ∈ Rd to one of the values taken by C. The classifier HC(·) is

agnostic to which modality its input x was derived from; thus, given an input voice v, it

operates on features Fv(v; θv) derived from the voice, whereas given a face f , it operates

on Ff ( f ; θ f ).

For each v (or f ) and each covariate C, we define a loss L(HC(Fv(v; θv); ϕC), C(v))

between the covariate predicted by HC(.) and the true value of the covariate for v, C(v).

We can now define a total loss L over the set of all voices V and the set of all faces F ,

over all covariates as
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L(θv, θ f , {ϕC}) = ∑
C∈C

λC

(
∑

v∈V
L(HC(Fv(v; θv); ϕC), C(v))

+ ∑
f∈F

L(HC(Ff ( f ; θ f ); ϕC), C( f ))
) (2.1)

λC is the weight for each covariate. In order to learn the parameters of the embedding

functions, θ f and θv, we perform the following optimization.

θ∗v , θ∗f = arg min
θv,θ f

min
{ϕC}

L(θv, θ f , {ϕC}) (2.2)

2.2.2 Disjoint Mapping Networks

In DIMNet, we instantiate Fv(v; θv), Ff ( f ; θ f ) and HC(x; ϕC) as neural networks. Fig.

2.2 shows the network architecture we use to train our embeddings. It comprises three

components. The first, labelled Voice Network in the figure, represents Fv(v; θv) and is

a neural network that extracts d-dimensional embeddings of the voice recordings. The

second, labelled Face Network in the figure, represents Ff ( f ; θ f ) and is a network that

extracts d-dimensional embeddings of face recordings. The third component, labelled

Classification Networks in the figure, is a bank of one or more classification networks,

one per covariate considered. Each of the classification networks operates on the d-

dimensional features output by the embedding networks to classify one covariate, e.g.

gender.

The training data comprise voice recordings and face images. Voice recordings are

sent to the voice-embedding network, while face images are sent to the face-embedding

network. This switching operation is illustrated by the switch at the input in Fig.2.2. In

either case, the output of the embedding network is sent to the covariate classifiers.

As can be seen, at any time the system either operates on a voice, or on a face, i.e. the

operations on voices and faces are disjoint. During the learning phase too, the updates

of the two networks are disjoint – loss gradients computed when the input is voice only

update the voice network, while loss gradients derived from face inputs update the face

network, while both contribute to updates of the classification networks.



CHAPTER 2. VOICE AND FACE MATCHING 16

In our implementation, specifically, Fv(·) is a convolutional neural network that op-

erates on Mel-Spectrographic representations of the speech signal. The output of the

final layer is pooled over time to obtain a final d-dimensional representation. Ff (·) is

also a convolutional network with a pooled output at the final layer that produces a

d-dimensional representation of input images. The classifiers HC(·) are all simple multi-

class logistic-regression classifiers comprising a single softmax layer.

Finally, in keeping with the standard paradigms for training neural network systems,

we use the cross-entropy loss to optimize the networks. Also, instead of the optimiza-

tion in Eq. 2.2, the actual optimization performed is the one below. The difference is

inconsequential.

θ∗v , θ∗f , {ϕ∗
C} = arg min

θv,θ f ,{ϕC}
L(θv, θ f , {ϕC}) (2.3)

2.2.3 Training the DIMNet

All parameters of the network are trained through backpropagation, using stochastic

gradient descent. During training, we construct the minibatches with a mixture of

speech segments and face images, as the network learns more robust cross-modal fea-

tures with mixed inputs. Taking voice as an example, we compute the voice embeddings

using Fv(v; θv), and obtain the losses using classifiers HC(·) for all the covariates. We

back-propagate the loss gradient to update the voice network as well as the covari-

ate classifiers. The same procedure is also applied to face data: the backpropagated

loss gradients are used to update the face network and the covariate classifiers. Thus,

the embedding functions are learned using the data from their modalities individually,

while the classifiers are learned using data from all modalities.

2.2.4 Using the Embeddings

Once trained, the embedding networks Fv(v; θv) and Ff ( f ; θ f ) can be used to extract

embeddings from any voice recording or face image. Given a voice recording v and
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a face image f , we can now compute a similarity between the two through the cosine

similarity S(v, f ) =
F⊤

v Ff
∥Fv∥2∥Ff ∥2

. We can employ this similarity to evaluate the match of

any face image to any voice recording. This enables us, for instance, to attempt to rank

a collection of faces f1, · · · , fK in order of estimated match to a given voice recording v,

according to S(v, fi), or conversely, to rank a collection of voices v1, · · · , vK according to

their match to a face f , on order of decreasing S(vi, f ).

2.3 Experiments

We ran experiments on matching voices to faces, to evaluate the embeddings derived by

DIMNets. The details of the experiments are given below.

Datasets. Our experiments were conducted on the Voxceleb [3] and VGGFace [54]

datasets. The Voxceleb dataset consists of 153,516 audio segments from 1,251 speakers.

Each audio segment is taken from an online video clip with an average duration of 8.2

seconds. For the face dataset, we used a manually filtered version of VGGFace. After

face detection, there remain 759,643 images from 2,554 subjects.

We use the intersection of the two datasets, i.e. subjects who figure in both corpora,

for our final corpus, which thus includes 1,225 IDs with 667 males and 558 females from

36 nationalities. We use ID, gender and nationality as our covariates, all of which are

provided by the datasets. The data are split into train/validation/test sets, following the

settings in [39]. Details are shown in Table 2.1.

Table 2.1: Statistics for the data appearing in VoxCeleb and VGGFace.

# of samples train validation test total
speech segments 112,697 14,160 21,799 148,656
face images 313,593 36,716 58,420 408,729
IDs 924 112 189 1,225
genders 2 2 2 2
nationalities 32 11 18 36
testing instances - 4,678,897 6,780,750 11,459,647

The visual data used in Section 2.3.4 is densely extracted from the video in VoxCeleb1
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dataset at 25/6 fps. It contains 100,000 segmented speaking face-tracks obtained by

SyncNet [55], leading to 1,218,575 frames (images). For fair comparison, we follow the

train/val/test split strategy from [40] in our experiments. The evaluations are performed

based on the provided lists [40], which specify the testing pairs of voices and faces.

Preprocessing. Separated preprocessing pipelines are employed to data from differ-

ent modalities, i.e. audio segments and face images. For audio segments, we use a voice

activity detector interface from the WebRTC project to isolate speech-bearing regions of

the recordings. Subsequently, 64-dimensional log Mel-spectrograms are generated, us-

ing an analysis window of 25ms, with hop of 10ms between frames. We perform mean

and variance normalization of each mel-frequency bin.

For training, we randomly crop out regions of varying lengths of 300 to 800 frames

(so the size of the input spectrogram ranges from 300 × 64 to 800 × 64 for each mini-

batch, around 3 to 8 seconds). For the face data, facial landmarks in all images are

detected using MTCNN [56]. The cropped RGB face images of size 128 × 128 × 3 are

obtained by similarity transformation. Each pixel in the RGB images is normalized by

subtracting 127.5 and then dividing by 127.5. We perform data augmentation by hori-

zontally flipping the images with 50% probability in minibatches (effectively doubling

the number of face images).

Training. The detailed network configurations are given in Table 2.2. For the voice

network, we use 1D convolutional layers, where the convolution is performed along the

axis that corresponds to time. The face network employs 2D convolutional layers. For

both, the convolutional layers are followed by batch normalization (BN) [57] and recti-

fied linear unit activations (ReLU) [58]. The numbers within the parentheses represent

the size and number of filters, while the subscripts represent the stride and padding. So,

for example, (3, 64)/2,1 denotes a 1D convolutional layer with 64 filters of size 3, where

the stride and padding are 2 and 1 respectively, while (3 × 3, 64)/2,1 represents a 2-D

convolutional layer of 64 3 × 3 filters, with stride 2 and padding 1 in both directions.

Note that 924, 2, and 32 are the number of unique values taken by the ID, gender, and
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Table 2.2: CNN architectures: details.

layer voice face

embedding
network

Conv

(3, 256)/2,1[
(3, 256)/1,1

(3, 256)/1,1

] (3 × 3, 64)/2,1[
(3 × 3, 64)/1,1

(3 × 3, 64)/1,1

]
(3, 384)/2,1[
(3, 384)/1,1

(3, 384)/1,1

] (3 × 3, 128)/2,1[
(3 × 3, 128)/1,1

(3 × 3, 128)/1,1

]
(3, 576)/2,1[
(3, 576)/1,1

(3, 576)/1,1

] (3 × 3, 256)/2,1[
(3 × 3, 256)/1,1

(3 × 3, 256)/1,1

]
(3, 864)/2,1[
(3, 864)/1,1

(3, 864)/1,1

] (3 × 3, 512)/2,1[
(3 × 3, 512)/1,1

(3 × 3, 512)/1,1

]
(3, 64)/2,1 (3 × 3, 64)/2,1

AvgPool t × 1 h × w × 1
classification

network FC 64 × 924, 64 × 2, 64 × 32

nationality covariates, respectively. The final face embedding is obtained by averaging

the feature maps from the final layer, i.e. through average pooling. The final voice embed-

ding is obtained by averaging the feature maps at the final convolutional layer along the

time axis alone. Note that the classification networks are single-layer softmax units with

as many outputs as the number of unique values the class can take (2 for gender, 32 for

nationalities, and 924 for IDs in our case).

We follow the typical settings of SGD for optimization. Minibatch size is 256. The

momentum and weight decay values are 0.9 and 0.001 respectively. To learn the networks

from scratch, the learning rate is initialized at 0.1 and divided by 10 after 16K iterations

and again after 24K iterations. The training is completed at 28K iterations.

Testing. We use the following protocols for evaluation:

• 1:2 Matching. Here, we are given a probe input from one modality (voice or face),

and a gallery of two inputs from the other modality (face or voice), including one

that belongs to the same subject as the probe, and another of an “imposter” that
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does not match the probe. The task is to identify which entry in the gallery matches

the probe. We report performance in terms of matching accuracy – namely what

fraction of the time we correctly identify the right instance in the gallery.

To minimize the influence of random selection, we construct as many testing in-

stances as possible through exhaustive enumeration all positive matched pairs (of

voice and face). To each pair, we include a randomly drawn imposter in the gallery.

We thus have a total of 4,678,897 trials in the validation set, and 6,780,750 trials in

the test set.

• 1:N Matching. This is the same as the 1:2 matching, except that the gallery now

includes N − 1 imposters. Thus, we must now identify which of the N entries in

the gallery matches the probe. Here too results are reported in terms of matching

accuracy. We use the same validation and test sets as the 1:2 case, by augmenting

each trial with N − 2 additional imposters. So the number of trials in validation

and test sets is the same as earlier.

• Verification. We are given two inputs, one a face, and another a voice. The task is to

determine if they are matched, i.e. both belong to the same subject. In this problem

setting the similarity between the two is compared to a threshold to decide a match.

The threshold can be adjusted to trade off false rejections (FR), i.e. wrongly rejecting

true matches, with false alarms (FA), i.e. wrongly accepting mismatches. We report

results in terms of equal error rate, i.e. when FR = FA. We construct our validation

and test sets from those used for the 1:2 matching tests, by separating each trial

into two, one comprising a matched pair, and the other a mismatched pair. Thus,

our validation and test sets are exactly twice as large as those for the 1:2 test.

• Retrieval. The gallery comprises a large number of instances, one or more of which

might match the probe. The task is to order the gallery such that the entries in

the gallery that match the probe lie at the top of the ordering. Here, we report
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performance in terms of Mean Average Precision (MAP) [59]. Here we use the entire

collection of 58,420 test faces as the gallery for each of our 21,799 test voices, when

retrieving faces from voices. For the reverse (retrieving voices from faces), the

numbers are reversed.

Each result is obtained by averaging the performances of 5 models, which are individu-

ally trained.

Covariates in Training and Testing. We use the three covariates provided in the

dataset, namely identity (I), gender (G), and nationality (N) for our experiments. The

treatment of covariates differs for training and test.

• Training. For training, supervision may be provided by any set of (one two or

three) covariates. We consider all combinations of covariates, I, G, N, (I,G), (I,N),

(G,N) and (I,G,N). Increasing the number of covariates effectively increases the

supervision provided to training. All chosen covariates were assigned a weight of

1.0.

• Testing. As pointed out in [52], simply recognizing a covariate such as gender can

result in seemingly significant matching performance. For instance, just recogniz-

ing the subjects’ gender from their voice and images can result in a 33% EER for

verification, and 25% error in matching for the 1 : 2 tests. In order to isolate the

effect of covariates on performance hence we also stratify our test data by them.

Thus we construct 4 testing groups based on the covariates, including the unstrati-

fied (U) group, stratified by gender (G), stratified by nationality (N), and stratified

by gender and nationality (G, N). In each group the test set itself is separated into

multiple strata, such that for all instances within any stratum the covariate values

are the same.
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Table 2.3: Acc. (%) of covariate prediction.

method gender classification nationality classification
voice face voice face

DIMNet-I - - - -
DIMNet-G 97.48 99.22 - -
DIMNet-N - - 74.86 60.13
DIMNet-IG 97.70 99.42 - -
DIMNet-IN - - 74.17 60.27
DIMNet-GN 97.59 99.06 74.62 60.50
DIMNet-IGN 97.69 99.15 74.37 59.88

2.3.1 Cross-modal Matching

In this section, we report results on the 1:2 and 1:N matching tests. In order to ensure

that the embedding networks do indeed leverage on accurate modelling of covariates, we

first evaluate the classification accuracy of the classification networks for the covariates

themselves. Table 2.3 shows the results.

The rows of the table show the covariates used to supervise the learning. Thus, for

instance, the row labelled “DIMNet-I” shows results obtained when the networks have

been trained using ID alone as covariate, the row labelled “DIMNet-G” shows results

when supervision is provided by gender, “DIMNet-IG” has been trained using ID and

gender, etc.

The columns of the table show the specific covariate being evaluated. Since the iden-

tities of subjects in the training and test set do not overlap, we are unable to evaluate the

accuracy of ID classification. Note that we can only test the accuracy of the classification

network for a covariate if it has been used in the training. Thus, classification accuracy

for gender can be evaluated for DIMNet-G, DIMNet-GN and DIMNet-IGN, while that

for nationality can be evaluated for DIMNet-N, DIMNet-GN and DIMNet-IGN.

The results in Table 2.3 show that gender is learned very well, and in all cases gender

recognition accuracy is quite high. Nationality, on the other hand, is not a well-learned

classifier, presumably because the distribution of nationalities in the data set is highly

skewed [39], with nearly 65% of all subjects belonging to the USA. It is to be expected
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Table 2.4: Performance comparison of 1:2 matching for models trained using different
sets of covariates.

method voice → face (ACC %) face → voice (ACC %)
U G N G, N U G N G, N

SVHF-Net 81.0 63.9 - - 79.5 63.4 - -
DIMNet-I 83.5± 0.4 70.9±0.6 82.0±0.5 69.9±0.8 83.5±0.5 71.8±0.6 82.4±0.5 70.9±0.8
DIMNet-G 72.9±0.6 50.3±0.7 71.9±0.5 50.2±0.7 72.5±0.5 50.5±0.7 72.2±0.5 50.6±0.7
DIMNet-N 57.5±0.5 55.3±0.7 53.0±0.4 52.0±0.6 56.2±0.4 54.3±0.6 53.9±0.4 52.0±0.6
DIMNet-IG 84.1±0.4 71.3±0.6 82.7±0.6 70.4±0.8 84.0±0.4 71.7±0.6 83.0±0.5 70.8±0.5
DIMNet-IN 83.0±0.4 70.0±0.7 81.0±0.6 68.6±0.8 82.9±0.4 70.9±0.6 81.9±0.5 70.2±0.8
DIMNet-GN 75.9±0.4 56.7±0.6 72.9±0.5 53.5±0.7 73.8±0.7 54.9±0.5 72.6±0.5 53.5±0.9
DIMNet-IGN 83.7±0.5 70.8±0.3 81.8±0.5 69.2±0.7 83.6±0.7 71.4±0.5 82.5±0.4 70.5±0.6

therefore that nationality as a covariate will not provide sufficient supervision to learn

good embeddings.

1:2 matching. Table 2.4 shows the results for the 1:2 matching tests. In the table, the

row labelled “SVHF-Net” gives results obtained with the model of [39].

The columns are segregated into two groups, one labelled “voice → face” and the

other labelled “face → voice”. In the former, the probe is a voice recording, while the

gallery comprises faces. In the later the modalities are reversed. Within each group the

columns represent the stratification of the test set. “U” represents test sets that are not

stratified, and include the various covariates in the same proportion that they occur in

the overall test set. The columns labelled “G” and “N” have been stratified by gender

and nationality, respectively, while the column “G, N” represents data that have been

stratified by both gender and nationality. In the stratified tests, we have ensured that

all data within a test instance have the same value for the chosen covariate. Thus, for

instance, in a test instance for voice → face in the “G” column, the voice and both faces

belong to the same gender. This does not reduce the overall number of test instances,

since it only requires ensuring that the gender of the imposter matches that of the probe

instance.

We make several observations. First, DIMNet-I performs better than SVHF-Net, im-

proving the accuracies by 2.45%-4.02% for the U group, and 7.01%-8.38% for the G group.

It shows that mapping voices and faces to their common covariates is an effective strat-
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Figure 2.3: Performance of 1:N matching

egy to learn representations for cross-modal matching.

Second, DIMNet-I produces significantly better embeddings that DIMNet-G and

DIMNet-N, highlighting the rather unsurprising fact that ID provides the more use-

ful information than the other two covariates. In particular, DIMNet-G respectively

achieves 72.90% and 72.47% for voice to face and face to voice matching using only gen-

der as a covariate. This verifies our hypothesis that we can achieve almost 75% matching

accuracy by only using the gender. These numbers also agree with the performance

expected from the numbers in Table 2.3. As expected, nationality as a covariate does not

provide as good supervision as gender. DIMNet-IG is marginally better than DIMNet-I,

indicating that gender supervision provides additional support over ID alone.

Third, we note that while DIMNet-I is able to achieve good performance on the

dataset stratified by gender, DIMNet-G only achieves random performance. The per-

formance achieved by DIMNet-G on the U dataset is hence completely explained by

gender matching. Once again, the numbers match to those in [52]. 1:N Matching. We

also experiment for N > 2. Unlike SVHF-Net [39] that needs to train different models

for different N in this setting, we use the same model for different N. The results in

Fig. 2.3 shows accuracy as a function of N for various models.
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Table 2.5: Verification results.

method verification (EER %)
U G N G, N

DIMNet-I 25.0±0.2 35.0±0.5 25.9±0.7 35.7±0.9
DIMNet-G 34.9±0.1 49.7±0.2 35.1±0.4 49.7±0.5
DIMNet-N 45.9±0.4 47.0±0.6 47.9±0.8 48.9±1.1
DIMNet-IG 24.6±0.2 34.8±0.4 25.5±0.7 35.7±0.8
DIMNet-IN 25.5±0.2 36.2±0.4 27.3±0.7 37.4±0.8
DIMNet-GN 33.3±0.5 46.7±0.2 34.8±0.3 48.1±0.5
DIMNet-IGN 25.0±0.2 35.8±0.4 26.8±0.7 37.3±0.7

All the results in Fig. 2.3 are consistent with Table 2.4. As expected, the performance

of all methods degrades with increasing N. In general, DIMNets that use ID as supervi-

sion outperform SVHF-Net by a considerable margin, showing that DIMNets are able to

make best use of the ID information. We obtain the best results when both ID and gen-

der are used as supervision covariates. However, the results obtained using only gender

information as covariate is much worse, which is also consistent with the analysis in

[52].

2.3.2 Cross-modal Verification

For verification, we need to determine whether an audio segment and a face image are

from the same ID or not. We report the equal error rate (EER) for verification in Table

2.5.

In general, DIMNets that use ID as a covariate achieve an EER of about 25%, which

is considerably lower than the 33% expected if the verification were based on gender

matching alone. The results in Table 2.5 show that using both gender and ID information

as covariates can further improve the performance over using ID alone, well validating

the superiority of our multi-task learning framework.

Using proper combination of covariates is crucial to the performance. ID is arguably

the most effective covariate supervision. More interestingly, nationality is seen to be

an ineffective covariate, while gender alone as a covariate produces results that well
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Table 2.6: Retrieval performance (mAP).

method voice → face (mAP %) face → voice (mAP %)
ID gender nationality ID gender nationality

Random 0.6 52.6 40.7 0.6 52.6 40.7
DIMNet-I 4.3±0.1 89.6±0.4 43.3±0.2 4.2±0.1 88.5±0.4 43.7±0.2
DIMNet-G 1.1±0.1 97.8±0.6 41.6±0.2 1.2±0.1 97.2±0.6 42.0±0.2
DIMNet-N 1.2±0.1 57.0±0.3 45.7±0.7 1.0±0.1 56.9±0.3 49.3±0.6
DIMNet-IG 4.4±0.1 93.1±0.5 43.2±0.1 4.2±0.1 92.2±0.4 43.9±0.2
DIMNet-IN 3.9±0.1 89.7±0.4 44.0±0.7 4.0±0.14 88.4±0.39 45.9±0.66
DIMNet-GN 1.89±0.1 95.9±0.4 45.2±0.6 1.6±0.1 94.00±0.4 48.4±0.5
DIMNet-IGN 4.1±0.1 92.3±0.6 44.1±0.6 4.1±0.1 91.3±0.6 45.8±0.6

matches our expectation.

2.3.3 Cross-modal Retrieval

We also perform retrieval experiments using voice or face as query. Table 2.6 lists the

mean average precision (mAP) of the retrieval for various models.

The columns in the table represent the covariate being retrieved. Thus, for example,

in the “ID” column, the objective is to retrieve gallery items with the same ID as the

query, whereas in the “gender” column the objective is to retrieve the same gender.

We note that ID-based DIMNets produce the best features for retrieval, with the best

performance obtained with DIMNet-IG. Also, as may be expected, the covariates used in

training result in the best retrieval of that covariate. Thus, DIMNet-G achieves an mAP

of nearly 98% on gender, though on retrieval of ID it is very poor. As in other experi-

ments, nationality remains a poor covariate in general. Compared to gender (2 classes)

and nationality (unbalanced 28 classes), retrieving ID is a challenging problem given the

large amount of identities (182 classes). The significant and consistent improvements

over chance-level results show that the DIMNet models do learn some useful associa-

tions between voices and faces.
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Table 2.7: AUCs (%) of DIMNets under different testing groups.

Seen-Heard Unseen-Unheard
U G N A G, N, A U G N A G, N, A

[40] 87.0 74.2 85.9 86.6 74.0 78.5 61.1 77.2 74.9 58.8
DIMNet-I 95.1±0.2 90.8±0.3 93.4±0.2 95.2±0.1 88.9±0.2 82.5±0.1 71.0±0.3 81.1±0.1 77.7±0.1 62.8±0.4
DIMNet-IG 94.7±0.2 89.8±0.2 93.2±0.1 94.8±0.1 87.8±0.2 83.2±0.1 71.2±0.4 81.9±0.2 78.0±0.1 62.8±0.4

2.3.4 Comparisons to the current state-of-the-art

We compare DIMNet with the state of the art [40]. The results are reported in Table 2.7.

Note that it is fair comparison because the DIMNet models in this section are trained

with and evaluated on the same released datasets in [40]. There are two evaluation

protocols, including Seen-Heard and Unseen-Unheard scenarios. The identities of the

training and testing set have overlaps in Seen-Heard scenario (closed-set), while they

are fully disjoint in Unseen-Unheard scenario (open-set). For each scenario, there are

5 testing groups based on the covariates, including the unstratified group (U), group,

stratified by gender (G), stratified by nationality (N), stratified by age (A), and stratified

by (G, N, A). We compute the area under the curve (AUC) for different testing groups.

It is clear that DIMNets produce better embeddings than [40] for pair-wise verifica-

tion on both seen-heard and unseen-unheard scenarios. Specifically, DIMNets achieve

8%-15% absolute and 3%-10% absolute improvements on seen-heard and unseen-unheard

test set, respectively. Compared to DIMNet-IG, DIMNet-I performs better on the seen-

heard test set while DIMNet-IG is better on the unseen-unheard test set. It implies that

introducing useful covariates improves the generalization capability of DIMNet.

2.4 Discussion

We have proposed that it is possible to learn common embeddings for multi-modal in-

puts, particularly voices and faces, by mapping them individually to common covariates.

In particular, the proposed DIMNet architecture is able to extract embeddings for both

modalities that achieves consistently better performance than the methods that directly
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Figure 2.4: Visualization of voice and face embeddings using multi-dimensional scaling
[2].

map faces to voices.

The approach also provides us the ability to tease out the influence of each of the

covariates of voice and face data, in determining their relation. The results show that the

strongest covariate, not unexpectedly, is ID. The results also indicate that prior results

by other researchers who have attempted to directly match voices to faces may perhaps

not be learning any direct relation between the two, but implicitly learning about the

common covariates, such as ID, gender, etc.

Our experiments also show that although we have achieved possibly the best re-

ported performance on this task, thus far, the performance is not anywhere close to

prime-time. In the 1 : N matching task, performance degrades rapidly with increasing

N, indicating a rather poor degree of true match.

To better understand the problem, we have visualized the learned embeddings from

DIMNet-I in Fig. 2.4 to provide more insights. The left panel shows subjects from the

training set, while the right panel is from the test set. The visualization method we used

is multi-dimensional scaling (MDS) [2], rather than the currently more popular t-SNE

[60]. This is because MDS tends to preserve distances and global structure, while t-SNE

attempts to retain statistical properties and highlights clusters, but does not preserve

distances.

From Fig. 2.4, we immediately notice that the voice and face data for a subject are

only weakly proximate. While voice and face embeddings for a speaker are generally
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relatively close to each other, they are often closer to other subjects. Interestingly, the

genders separate (even though gender has not been used as a covariate for this particular

network), showing that at least some of the natural structure of the data is learned.

Fig. 2.4 shows embeddings obtained from both training and test data. We can observe

similar behaviors in both, showing that the the general characteristics observed are not

just the outcome of overfitting to training data. The visualization in Fig. 2.4 also shows

that there is still significant room for improvement. For example, it may be possible to

force compactness of the distributions of voice and face embeddings through modified

loss functions such as the center loss [61] or angular softmax loss [62], or through an

appropriately designed loss function that is specific to this task.



Chapter 3

2D Face Reconstruction from Voice

In this chapter, we focus on the problem of reconstructing face images from voices.

Specifically, we generate a face image from any given voice recording. The face image

is expected to have as many identity associations as possible with the true face of the

speaker.

3.1 Introduction

A person’s voice is incontrovertibly statistically related to their facial structure. The rela-

tionship is, in fact, multi-faceted. Direct relationships include the effect of the underlying

skeletal and articulator structure of the face and the tissue covering them, all of which

govern the shapes, sizes, and acoustic properties of the vocal tract that produces the

voice [27, 28]. Less directly, the same genetic, physical and environmental influences

that affect the development of the face also affect the voice. Demographic factors, such

as gender, age and ethnicity too influence both voice and face (and can in fact be inde-

pendently inferred from the voice [63, 64] or the face [65]), providing additional links

between the two.

Neurocognitive studies have shown that human perception implicitly recognizes the

association of faces to voices [1]. Studies indicate that neuro-cognitive pathways for

30



CHAPTER 3. 2D FACE RECONSTRUCTION FROM VOICE 31

voices share a common structure with that for faces [34] – the two may follow parallel

pathways within a common recognition framework [1, 35]. In empirical studies, humans

have shown the ability to associate voices of unknown individuals to pictures of their

faces [19]. They are seen to show improved ability to memorize and recall voices when

previously shown pictures of the speaker’s face, but not imposter faces [36, 37, 38].

On the other hand, reconstructing the face from voice is a challenging, maybe even

impossible task for several reasons [66]. First, it is an ill-posed cross-modal problem:

Although many face-related factors affect the voice, it may not be possible to entirely

disambiguate them from the voice. Even if this were not the case, it is unknown a priori

exactly what features of the voice encode information about any given facial feature

(although one may take guesses [66]). Moreover, the signatures of the different facial

characteristics may lie in different spoken sounds; thus, in order to obtain sufficient

evidence, the voice recordings must be long enough to have sufficient coverage of sounds

to derive all the necessary information. The information containing in a single audio clip

may not be sufficient for constructing a face image.

In particular, we aim at addressing this task in an open-set scenario, where recon-

struction is performed on unheard and unseen identities, which are never presented

during training. Thus the voice-feature to face-feature associations must be learned in a

manner that generalizes beyond the set of examples provided in training.

Yet, although prima facie the problem seems extremely hard, recent advances in neu-

ral network based generative models have shown that they are able to perform similarly

challenging generative tasks in a variety of scenarios, when properly structured and

trained [67, 68]. In particular, generative adversarial networks (GANs) [45] have demon-

strated the ability to learn to generate highly sophisticated imagery, given only signals

about the validity of the generated image, rather than detailed supervision of the content

of the image itself [46, 69]. We use this ability to learn to generate faces from voices.

For our solution, we propose a simple but effective data-driven framework based on

generative adversarial networks (GANs), as illustrated in Fig. 3.1. It includes 4 major
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Figure 3.1: The proposed GANs-based framework for generating faces from voices.

components: voice embedding network, generator, discriminator, and classifier. The ob-

jective of the network is simple: given a voice recording it must generate a face image

that plausibly belongs to that voice. The voice recording itself is input to the genera-

tor network in the form of a voice embedding vector extracted by a voice embedding

network. The generator is trained using a pair of discriminators. The first evaluates if

the images it generates are realistic face images. The second discriminator (classifier)

verifies that the identity of face image output by the generator does indeed match the

actual identity of the speaker.

We present both qualitative and quantitative evaluations of the results produced by

our model. The qualitative results show that our framework is able to map the voice

manifold to face manifold. We can observe many identity associations between the

generated faces and the input voices. The generated faces are generally age and gender

appropriate, frequently matching the real face of the speaker. Additionally, given non-

speech input the outputs become unrealistic, showing that the learned mapping is at

least somewhat specific, in that the face manifold it learns are derived primarily from

the voice manifold and not elsewhere. In addition, for different speech segments from

the same person, the generated faces exhibit reasonable intra-class variation.

We also propose a number of quantitative evaluation metrics to evaluate the output

of our network, based on how specific the model is in mapping voices to faces, how

well the high-level attributes of the generated face match that of the speaker, and how

well the generated faces match the identity (ID) of the speaker itself. For the last metric
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(ID matching), we leverage the cross-modal matching task [39], wherein, specifically, we

need to match a speech segment to one of the two faces, where one is the true face of the

speaker, and another is an “imposter.” Our tests reveal that the network is highly specific

in generating faces in response to voices, produces quantifiably gender-appropriate faces

from voices, and that the matching accuracy is much better than chance, or what may

be obtained merely by matching gender. We refer the reader to the experiments section

for actual numbers.

Overall, our contributions are summarized as follows:

• We introduce a new task of generating faces from voice in voice profiling. It could

be used to explore the relationship between voice and face modalities.

• We propose a simple but effective framework based on generative adversarial net-

works for this task. Each component in the framework is well motivated.

• We propose to quantitatively evaluate the generated faces by using a cross-modal

matching task. Both the qualitative and quantitative results show that our frame-

work is able to generate faces that have identity association with the input voice.

3.2 The Proposed Framework

Before we begin, we first specify some of the notation we will use. We represent voice

recordings by the symbol v, using super or subscripts to identify specific recordings.

Similarly, we represent face images by the symbol f . We will represent the identity of

a subject who provides voice or face data as y. We will represent the true identity of

(the subject of) voice recording v as yv and face f as y f . We represent the function that

maps a voice or face recording to its idenitity as ID(), i.e. yv = ID(v) and y f = ID( f ).

Additional notation will become apparent as we introduce it.
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Our objective is to train a model F(v; Θ) (with parameter Θ) that takes as input a

voice recording v and produces, as output a face image f̂ = F(v; Θ) that belongs to the

speaker of v, i.e. such that ID( f̂ ) = ID(v).

We use the framework shown in Figure 2.2 for our model, which decomposes F(v; Θ)

into a sequence of two components, Fe(v; θe) and Fg(e; θg). Fe(v; θe) : v → e is a voice

embedding function with parameter θe that takes in a voice recording v and outputs an

embedding vector e that captures all the salient information in v. Fg(e; θg) : e → f is a

generator function that takes in an embedding vector and generates a face image f̂ .

We must learn θe and θg such that ID(Fg(Fv(v; θe); θg) = ID(v).

3.2.1 Training the network

Data. We assume the availability of face and voice data from a set of subjects Y =

{y1, y2, · · · , yk}. Correspondingly, we also have a set of voice recordings V = {v1, v2, ..., vN},

with identity labels Yv = {yv
1, yv

2, ..., yv
N} and a set of faces F = { f1, f2, ..., fM} with iden-

tity labels Y f = {y f
1 , y f

2 , ..., y f
M}, such that yv ∈ Y ∀yv ∈ Yv and y f ∈ Y ∀y f ∈ Y f . N

may not be equal to M.

In addition, we define two sets of labels R = {r1, r2, ..., rM | ∀i, ri = 1} and R̂ =

{r̂1, r̂2, ..., r̂N | ∀i, r̂i = 0} corresponding Y f and Yv respectively. R is a set of labels that

indicates that all faces in F are “real.” R̂ is a set of labels that indicates that any faces

generated from any v ∈ V are synthetic or “fake.”

GAN framework. In training the model, we impose two supervision signals. First, the

output f̂ of the generator in response to any actual voice input v must be a realistic face

image. Second, it must belong to the same identity as the voice, i.e. ID( f̂ ) = f v. As

explained in Section 1, we will use a GAN framework to train Fe(.; θe) and Fg(.; θg). This

will require the definition of adversary that provide losses that can be used to learn the

model parameters.

We define an adversarial objective. First, the discriminator Fd determines if any input
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image ( f or f̂ ) is a genuine picture of a face, or one generated by the generator, i.e.

assigns any face image ( f or f̂ ) to its real/fake label (r or r̂). The loss function for Fd is

defined as Ld(Fd( f ), r) (or Ld(Fd( f̂ ), r̂)). Second, classifier Fc learns to assign any real face

image f to its identity label y f . Accordingly, the loss function for Fc is Lc(Fc( f ), y f ).

Last, the generator Fg takes in a voice recording v and attempts to generate any

face image f̂ that can be classified to real label r and identity label yv by Fd and Fg,

respectively. The corresponding loss function for Fg is Ld(Fd(Fg(v), r) + Lc(Fc(Fg(v)), yv).

In our implementation, we instantiate Fe(v; θe), Fg(e; θg), Fd( f ; θd) and Fc( f ; θc) as

convolutional neural networks, shown in Fig. 2.2. Fe is the component labeled as Voice

Embedding Network. v is the Mel-Spectrographic representations of speech signal. The

output of the final convolutional layer is pooled over time, leading to a q-dimensional

vector e. Fg is labeled as Generator. f and f̂ are RGB images with the same resolution

of w × h. Fd and Fc are labeled as Discriminator and Classifier, respectively. The loss

functions Ld and Lc of these two components are the cross-entropy loss.

Training the network. The training data comprise a set of voice recordings V and a set

of face images F . From the voice recordings in V we could obtain the corresponding

generated face images F̂ = { f̂ = Fg(Fe(v)) | ∀v ∈ V}.

The framework is trained in an adversarial manner. To simplify, we use a pretrained

voice embedding network Fe(v; θe) from a speaker recognition task, and freeze the pa-

rameter θe when training our framework. Fd is trained to maximize ∑M
i=1 Ld(Fd( fi), ri) +

∑N
i=1 Ld(Fd( f̂i), r̂i) with fixed θe, θg and θc. Similarly, the Fc is trained to maximize

∑M
i=1 Lc(Fc( fi), yi) with fixed θe, θg and θd. The Fg is trained to maximize ∑N

i=1 Ld(Fd( f̂i), ri)+

Lc(Fc( f̂i), yv
i ) with θe, θd and θc fixed, where f̂i = Fg(Fe(vi)). The training pipeline is

summarized in Algorithm 1.

Once trained, Fd( f ; θd) and Fc( f ; θc) can be removed. Only Fd( f ; θd) and Fc( f ; θc) are

used for face generation from voice during the inference phase. It is worth noting that

the targeted scenario is open-set. In our evaluations, the model is required to work on

previously unseen and unheard identities, i.e. yv ∈ Y in the training phase, while yv /∈ Y
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Algorithm 1 The training algorithm of the proposed framework

Input: A set of voice recordings with identity label (V ,Yv). A set of labeled face images
with identity label (F ,Y f ). A voice embedding network Fe(v; θe) trained on V with
speaker recognition task. θe is fixed during the training. Randomly initialized θg, θd,
and θc

Output: The parameters θg.
1: while not converged do
2: Randomly sample a minibatch of n voice recordings {v1, v2, ..., vn} from V
3: Randomly sample a minibatch of m face images { f1, f2, ..., fm} from F
4: Update the discriminator Fd( f ; θd) by ascending the gradient

∇θd

(
∑n

i=1 log(1 − Fd( f̂i)) + ∑m
i=1 log Fd( fi)

)
5: Update the classifier Fc( f ; θc) by ascending the gradient (a[i] indicates the i-th

element of vector a)
∇θc

(
∑m

i=1 log Fc( fi)[y
f
i ]
)

6: Update the generator Fg( f ; θc) by ascending the gradient
∇θg

(
∑n

i=1 log Fc(Fg(Fe(vi)))[yv
i ] + ∑m

i=1 log Fd(Fg(Fe(vi)))
)

7: end while

in the testing phase.

3.3 Experiments

In our experiments, the voice recordings are from the Voxceleb [39] dataset and the face

images are from the manually filtered version of VGGFace [54] dataset. Both datasets have

identity labels. We use the intersection of the two datasets with the common identities,

leading to 149,354 voice recordings and 139,572 frontal face images of 1,225 subjects. We

follow the train/validation/test split in [39]. The details are shown in Table 3.1.

Separated data pre-processing pipelines are employed to audio segments and face

images. For audio segments, we use a voice activity detector interface from the WebRTC

project to isolate speech-bearing regions of the recordings. Subsequently, we extract

64-dimensional log Mel-spectrograms using an analysis window of 25ms, with a hop

of 10ms between frames. We perform mean and variance normalization of each mel-

frequency bin. We randomly crop an audio clips around 3 to 8 seconds for training, but

use the entire recording for testing. For the face data, facial landmarks in all images are
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detected using [70]. The cropped RGB face images of size 3 × 64 × 64 are obtained by

similarity transformation. Each pixel in the RGB images is normalized by subtracting

127.5 and then dividing by 127.5.

Table 3.1: Statistics of the datasets used in our experiments

train validation test total
# of speech segments 113,322 14,182 21,850 149,354
# of face images 106,584 12,533 20,455 139572
# of subjects 924 112 189 1,225

Training. The network architecture is given in Table 3.2. The parameters in the

convolutional layers of discriminator and classifier are shared in our experiments. For

the voice embedding network, we use 1D convolutional layers. Conv 3/2,1 denotes 1D

convoluitonal layer with kernel size of 3, where the stride and padding are 2 and 1,

respectively. Each convolutional layer is followed by a Batch Normalization (BN) [57]

layer and Rectified Linear Units (ReLU) [58]. The output shape is shown accordingly,

where ti+1 = ⌈(ti − 1)/2⌉ + 1. The final outputs are pooled over time, yielding a 64-

dimensional embedding. We use 2D deconvolutional layers with ReLU for the generator

and 2D convolutional layers with Leaky ReLU (LReLU) for the discriminator and clas-

sifier. The final output is given by fully connected (FC) layer. We basically follow the

hyperparameter setting in [71]. We used the Adam optimizer [72] with learning rate of

0.0002. β1 and β2 are 0.5 and 0.999, respectively. We use a minibatch size of 128 samples.

The training is completed at 100K iterations.

3.3.1 Qualitative Results

As a first experiment, we compared the outputs of the network in response to various

noise signals to outputs obtained from actual speech recordings. Figure 3.2 shows out-

puts generated for four different types of noise. Each row shows the generated faces

using one of the four noise audio segments with different durations.
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Table 3.2: CNN architectures: details.

Voice Embedding Network Generator
Layer Act. Output shape Layer Act. Output shape
Input - 64 × t0 Input - 64 × 1 × 1

Conv 3/2,1 BN + ReLU 256 × t1 Deconv 4 × 4/1,0 ReLU 1024 × 4 × 4
Conv 3/2,1 BN + ReLU 384 × t2 Deconv 3 × 3/2,1 ReLU 512 × 8 × 8
Conv 3/2,1 BN + ReLU 576 × t3 Deconv 3 × 3/2,1 ReLU 256 × 16 × 16
Conv 3/2,1 BN + ReLU 864 × t4 Deconv 3 × 3/2,1 ReLU 128 × 32 × 32
Conv 3/2,1 BN + ReLU 64 × t5 Deconv 3 × 3/2,1 ReLU 64 × 64 × 64

AvePool 1 × t5 - 64×1 Deconv 1 × 1/1,0 - 3 × 64 × 64
Discriminator Classifier

Layer Act. Output shape Layer Act. Output shape
Input - 3 × 64 × 64 Input - 3 × 64 × 64

Conv 1 × 1/1,0 LReLU 32 × 64 × 64 Conv 1 × 1/1,0 LReLU 32 × 64 × 64
Conv 3 × 3/2,1 LReLU 64 × 32 × 32 Conv 3 × 3/2,1 LReLU 64 × 32 × 32
Conv 3 × 3/2,1 LReLU 128 × 16 × 16 Conv 3 × 3/2,1 LReLU 128 × 16 × 16
Conv 3 × 3/2,1 LReLU 256 × 8 × 8 Conv 3 × 3/2,1 LReLU 256 × 8 × 8
Conv 3 × 3/2,1 LReLU 512 × 4 × 4 Conv 3 × 3/2,1 LReLU 512 × 4 × 4
Conv 4 × 4/1,0 LReLU 64 × 1 × 1 Conv 4 × 4/1,0 LReLU 64 × 1 × 1

FC 64 × 1 Sigmoid 1 FC 64 × k Softmax k

(a) 1s (b) 2s (d) 5s (e) 10s(c) 3s

White Gaussian noise

Babble noise

Pink noise

Brown noise

Figure 3.2: The generated face images from noise input. (a)-(e) are 1, 2, 3, 5, and 10
seconds, respectively.

We evaluated noise segments of different durations (1, 2, 3, 5, and 10 seconds) to ob-

serve how the generated faces change with the duration. The generated images are seen

to be blurry, unrecognizable and generally alike, since there is no identity information

in noise. With longer noise recordings, the results do not improve. Similar results are

obtained over a variety of noises.



CHAPTER 3. 2D FACE RECONSTRUCTION FROM VOICE 39

(a) 1s (b) 2s (d) 5s (e) 10s(c) 3s (f) Reference images

Figure 3.3: (a)-(e) The generated face images from regular speech recordings with dif-
ferent durations. (f) the corresponding reference face images.

On the other hand, when we use regular speech recordings with the aforementioned

durations as inputs, outputs tend to be realistic faces, as seen in Figure 3.3. The results

indicate that while the generator does learn to produce face-like images, actual faces

are produced chiefly in response to actual voice. We infer that while the generator

has learned to map the speech manifold to the manifold of faces, it maps other inputs

outside of this manifold.

Figure 3.3 also enables us to subjectively evaluate the actual output of the network.

These four speakers (from top to bottom) are Danica McKellar, Cindy Williams, Damian

Lewis, and Eva Green. These results are typical and not cherry-picked for presentation

(several of our reconstructions match the actual speaker closely, but we have chosen

not to selectively present those to avoid misrepresenting the actual performance of the

system).

The generated images are on the left, while the reference images (the actual faces

of the speakers) are on the right. To reduce the perceptual bias and better illustration,

we show multiple reference face images for each speaker. Although the generated and

the reference face indicate different persons, the identity information of these two are

matched in some sense (like gender, ethnicity, etc.). With longer speech segments, the
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generated faces gradually converge to faces associatable with the speaker. Figure 3.4

shows additional examples demonstrating that the synthesized images are generally

age- and gender-matched with the speaker. For each group, images on the left are the

generated images and images on the right are the references.

(a) (b) (c)

Figure 3.4: The generated faces from (a) old voices, (b) male voices, (c) female voices.

(a) Generated face images (b) Reference images

Figure 3.5: Faces generated from different segments of speech from the same speaker,
and the reference faces. Each row shows the results for the same speaker.

In the next experiment, we select 7 different speech recordings of each speaker and

generate the faces from the entire recordings. The results are shown in Figure 3.5 (refer-

ence images are also provided for comparison). Once again, the results are typical and

not cherrypicked. We believe that the images in each row exhibit reasonable variations

of the same person (except the fourth image in the first row), indicating that our model
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is able to build a mapping between the speech group to face group, thus retaining the

identity of the face across speech segments from the same speaker.

3.3.2 Quantitative Results

We attempt to quantitatively distinguish between the faces generated in response to

noise from those generated from voice using the discriminator Fd() itself. Note that Fd()

is biased, and has explicitly been trained to tag synthesized faces as fake. The mean

and standard deviation (obtained from 1000 samples) of its output value in response

to actual voices are 0.09 and 0.13 respectively, while for (an identical number of) noise

inputs they are 0.06 and 0.07 respectively. Even a biased discriminator is clearly able to

distinguish between faces generated from voices, and those obtained from noise.

As a first test, we attempted to ID (classify) faces derived from test recordings of the

speakers in the training set. On a set of 4620 recordings, from 924 identities, we achieved

a top-1 accuracy of 61.7% and a top-5 accuracy of 82.3%, showing that the voice-based

face reconstructions do actually faithfully capture the identities of known subjects.

For unknown subjects, we ran a gender classifier on 21,850 generated faces (from the

speech segments in test set). The classifier was trained on the face images in the training

set using the network architecture of the discriminator, with an accuracy of 98.97% on

real face images. The classifier obtained a 96.45% accuracy in matching the gender of the

generated faces to the known gender of the speaker, showing that the generated faces

are almost always of the correct gender.

Finally, we evaluated our model by leveraging the task of voice to face matching.

Here, we are given a voice recording, a face image of the true speaker, and a face im-

age of an imposter. We must match the voice to the face of the true speaker. Ideally,

the probe voice could be replaced by the generated face image if they carry the same

identity information. So the voice to face matching problem reduces to a typical face

verification or face recognition problem. The resulting matching accuracy could be used
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to quantitatively evaluate the association between the speech segment and the generated

face.

We construct the testing instances (a probe voice recording, a true face image, and

an “imposter” face) using data in the testing set, leading to 2,353,560 trials. We also

compute the matching accuracy on about 50k trials constructed from a small part of the

training set to see how well the model fit to the training data. We also perform stratified

experiments based on gender where we select the imposter face with the same gender

as the true face. In this case, gender information cannot be used for matching anymore,

leading to a more fair test.

The results are shown in Table 3.3. Our results are given by replacing the probe voice

embeddings by the embeddings of the generated face. The high accuracies obtained on

the training set for the unstratified and gender stratified tests (96.83% and 93.98% respec-

tively) show that generated faces do carry correct identity information for the training

set. The results on the test set on unstratified and gender stratified tests (76.07% and

59.69% respectively) are better than those in DIMNets-G [73], indicating that our model

learns more associations than gender. The large drop compared to the results on the

training set shows however that considerable room remains to improve generalizability

in the model.

Table 3.3: The voice to face matching accuracies.

unstratified group (ACC. %) stratified group by gender (ACC. %)
(training set / testing set) (training set / testing set)

DIMNets-I [73] - / 83.45 - / 70.91
DIMNets-G [73] - / 72.90 - / 50.32

ours 96.83 / 76.07 93.98 / 59.69

3.4 Discussion

The proposed GAN-based framework is seen to achieve reasonable reconstruction re-

sults. The generated faces have identity associations with the true speaker. There re-
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mains considerable room for improvement. Firstly, there are obvious issues with the

GAN-based output: The produced faces have features such as hair that are presumably

not predicted by voice, but simply obtained from their co-occurrence with other features.

The model may be more appropriately learned through data cleaning that removes obvi-

ously unrelated aspects of the facial image, such as hair and background. The proposed

model is vanilla in many ways. For instance [74, 75] describe several explicit correspon-

dences between speech and face features, e.g. different phonetic units are known to

relate to different facial features. We are investigating models that explicitly consider

these issues.



Chapter 4

3D Face Reconstruction from Video

In this chapter, we propose a self-supervised approach for reconstructing 3D faces from

video. This method is used for collecting a 3D audiovisual dataset from video data,

where we can extract paired 3D faces and voice recordings for subsequent research.

4.1 Introduction

Reconstructing 3D faces from single-view 2D images has been a longstanding problem

in computer vision. The common approach represents the 3D face as a combination of

its shape, as represented by the 3D coordinates of a number of points on its surface called

vertices, and its texture, as represented by the reflectances of red, green and blue at these

vertices [76]. The problem then becomes learning a regression model between the 2D

images, and vertices and their reflectances.

The regression itself may be learned using training data where both, the 2D images

and the corresponding 3D parameters are available. However, these data are scarce,

and even the ones that are available generally only have shape information [77, 78, 79];

the ones that do have other parameters are usually captured in a controlled environ-

ment [80] or are synthetic [81], which is not representative of real-world images. Con-

sequently, there is great interest in self-supervised learning methods, which learn the

44
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Figure 4.1: Conventional 3D face reconstruction and our CEST framework. The dotted
lines separate the modules used for inference from those used for training.

regression model from natural in-the-wild 2D images or videos, without explicit access

to 3D training data [5, 82].

The problem is complicated by the fact that the actual image formation depends not

only on the shape and texture of the face, but also on the illumination (the intensity and

direction of the incident light), and other factors such as the viewpoint (incorporating the

orientation of the face and the position of the camera), etc. Thus, the learned regression

model must also account for these factors. To this end, the general approach is one where

shape, reflectance, illumination and viewpoint parameters are all extracted from the 2D

image. The regression model that extracts these facial parameters are learned through

self-supervision: the extracted facial parameters are recombined to render the original 2D

image, and the model parameters are learned to minimize the reconstruction error.

The solution, however, remains ambiguous because a 2D image may be obtained
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Figure 4.2: The overall training pipeline of the proposed CEST framework.

from different combinations of shape, texture, illumination and viewpoint. To ensure

that the self-supervision provides meaningful disentanglement, the manner in which

the facial parameters are recombined to reconstruct the 2D image are based on the ac-

tual physics of image formation [5, 82, 81]. To further reduce potential ambiguities,

regularizations are necessary. Reflectance symmetry has been proposed as a regular-

izer [83, 4, 84], wherein the reflectance of a face image and its mirror reflection are

assumed to be identical. Smoothness has also been employed to regularize the shape

and reflectance [82, 4]. Additional regularization may be obtained by considering cor-

respondences between multiple images of the same face [85, 7], particularly when they

are obtained under near identical conditions such as the sequence of images from a

video. The approach in [7] has considered reflectance consistency, where reflectances of

all image frames in a video clip are assumed to be similar.

In all of these prior works, the target parameters, namely the shape, reflectance, illu-

mination and viewpoint parameters are all individually estimated, without considering

their direct influences on one another, although they are jointly optimized. In effect, at

inference time they assume that the estimate of, e.g. the reflectance, is conditionally inde-

pendent of the estimated shape or viewpoint, given the original 2D image. The coupling

among the four is only considered during (self-supervised) training, where they must

all combine to faithfully recreate the input 2D image [86, 87, 6, 83, 7]. This is illustrated
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in Fig. 4.1(a).

In reality, 2D images are reduced-dimensional projections, and thus imperfect rep-

resentations of the full three-dimensional structure of the face, and the aspects of re-

flectance and illumination imprinted in them are not independent of the underlying

shape of the object or the viewpoint they were captured from. Therefore, the captured

2D image represents a joint interaction among viewpoint, shape, reflectance and illu-

mination. Consequently, the statistical estimates of any of these four factors may not,

in fact, be truly conditionally independent of one another given only the 2D image (al-

though, given the entire 3D model they might have been). Thus, modelling all of these

variables as being conditionally independent effectively represents a lost opportunity

since, by predicting them individually, the constraints they impose on one another are

ignored. Optimization-based approaches [88, 85, 89] do attempt to capture the depen-

dence by iteratively estimating shape and reflectance from one another. However, these

methods require correspondence information of the image sequence in a video and suf-

fer from costly inference.

In this chapter, we propose a novel learning-based framework based on conditional

estimation (CEST). CEST explicitly considers the statistical dependency of the various

3D facial parameters (shape, viewpoint, reflectance and illumination) upon one another,

when derived from single 2D image. The specific form of the dependencies adopted in

this chapter is shown in Fig. 4.1(b). We note that the CEST framework is very general

and allows us to consider any other dependency structures. Our paper serves as one of

the many potential choices that work well in practice. To this end, we present a specific,

and intuitive, solution in CEST, where the viewpoint, facial shape, facial reflectance, and

illumination are predicted sequentially and conditionally. In this context, the prediction of

facial shape is conditioned on the input image and the derived viewpoint; the prediction

of facial reflectance is conditioned on the input image, derived viewpoint and facial

shape; and so forth.

As before, learning remains self-supervised, through comparison of re-rendered 2D
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images obtained with the estimated 3D face parameters to the original images. As

additional regularizers, we also employ reflectance symmetry constraints [83, 4, 84],

and reflectance consistency constraints (across frames in a short video clip) [7]. These

are included in the form of cross-frame reconstruction error terms, the number of which

increases quadratically with the number of video frames considered together for self-

supervision. To address the dramatically increased number of reconstruction terms, we

propose a stochastic optimization strategy to improve training efficiency.

We present ablation studies and comparisons to state-of-the-art methods [5, 83, 7] to

evaluate CEST. We show that CEST produces better reflectance and structured illumi-

nation, leading to more realistic rendered faces with fine facial details, compared to all

other tested methods. It also achieves better shape estimation accuracy on AFLW2000-

3D [90] and MICC [91] datasets than current state-of-the-art self-supervised and fully

supervised approaches. Overall, our contributions can be summarized as follows:

• We propose CEST, a conditional estimation framework for 3D face reconstruction

that explicitly considers the statistical dependencies among 3D face parameters.

• We propose a specific design for the decomposition of conditional estimation,

where the viewpoint, shape, reflectance, and the illumination are derived sequen-

tially.

• We propose a stochastic optimization strategy to efficiently incorporate reflectance

symmetry and consistency constraints into CEST. As the number of video frames

increase, the computational complexity of CEST is increased linearly, rather than

quadratically.

4.2 Related Work

Monocular 3D face reconstruction by self-supervised learning. Many research studies

published recently aim to learn 3D facial parameters from a single image in a self-
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supervised manner. In [6], the authors propose a coarse-to-fine framework to improve

the details in reconstructed 3D faces. Ayush et al. [5] present a model-based deep convo-

lutional face autoencoder (MoFA) to fit a 3DMM to shape, reflectance, and illuminance.

InverseFaceNet [92] trains a direct regression model on a synthetic training corpus that

is generated by self-supervised bootstrapping. SfSNet [81] combines labeled synthetic

and unlabeled real-world images in learning, and produces accurate depth map, and

reflectance and shade disentanglement. To better characterize facial details, 3DMM is

generalized to a nonlinear model in [82, 83]. [93] uses mesh convolutions for 3D faces,

leading to a light-weight model with competitive performance. [11] incorporates the

multi-view consistency from geometry, pixel, and depth as constraints.

However, these approaches generally do not consider correspondences across frames

in a video. FML [7] is the first self-supervised framework that incorporates video clues

in training. The shape and reflectance for each video frame are approximated by av-

eraging the shapes and reflectances in a video clip. However, models trained on the

averaged representations may not work well for a single image if the number of multi-

frame images is large, due to the large gap between averaged and isolated images. On

the contrary, CEST uses representations from single images. More importantly, it uses

conditional estimation for predicting the facial parameters, and does not assume con-

ditional independence between them, an often unrealistic assumption employed in the

previously mentioned approaches.

Optimization-based 3D face reconstruction. [85] proposes to fit a template model to

photo-collections by updating the viewpoint, geometry, lighting, and texture iteratively.

[89] fits a face model to detected 3D landmarks, and refines the texture and geometry

details. [86] learns facial subspaces for identity and expression variations with a para-

metric shape prior. [94] considers 3D face reconstruction as a global variational energy

minimization problem, and estimates dense low-rank 3D shapes for video frames.

While these approaches can be considered conditional estimation, they focus on de-

riving 3D facial parameters from video, and are not relevant to the problem of deriving
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them from single-frame images, the problem addressed in our work. For CEST, video

clips are viewed as consistent collections of images used to better learn the model.

4.3 The Proposed Framework

In this work, we adopt a common practice from 3D Morphable Model (3DMM) [76],

which represents a 3D face as a combination of shape and reflectance. The shape com-

prises a collection of vertices S = [S(1); S(2); ...; S(K)] ∈ RK×3, where K is the number of

vertices and S(i) = [S(i, 1), S(i, 2), S(i, 3)] denotes the xyz coordinates in the Cartesian

coordinate system. The typology for S is consistent for different faces. The reflectance

comprises a collection of pixel values R = [R(1); R(2); ...; R(K)] ∈ RK×3. Each row

R(i) = [R(i, 1), R(i, 2), R(i, 3)] comprises the pixel values (ie, RGB) at position S(i).

4.3.1 Framework Overview

The problem of 3D face reconstruction from a 2D image is that of obtaining estimates

of the shape S, reflectance R, viewpoint v and illumination ℓ, given an input image I.

Statistically, we aim to estimate the most likely values for these variables, given the input

image:

Ŝ, R̂, v̂, ℓ̂ = arg max
S,R,v,ℓ

P(S, R, v, ℓ|I) (4.1)

The challenges of the aforementioned estimation are twofold: first P(S, R, v, ℓ|I) must

be modelled, and second, arg maxS,R,v,ℓ P(S, R, v, ℓ|I) must be computed.

Modelling P(S, R, v, ℓ|I) directly is a challenging problem, and the problem must

be factored down. Prior approaches [82, 5, 93] have decomposed this problem by

assuming that shape, reflectance, viewpoint and illumination are all conditionally in-

dependent, given the image. We formulate this decomposition as P(S, R, v, ℓ|I) =

P(S|I)P(R|I)P(v|I)P(ℓ|I). This leads to simplified estimates where each of the vari-

ables can be independently estimated, i.e. Ŝ = arg maxS P(S|I), R̂ = arg maxR P(R|I),
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etc. As we have discussed earlier, the conditional independence assumption is question-

able, since the conditioning variable, I, is a lower-dimensional projection of the 3D face

that entangles the four variables.

In CEST we explicitly model the conditional dependence, as shown in Fig. 4.1(b).

Specifically we decompose the joint probability as

P(S, R, v, ℓ|I)

= P(v|I)P(S|I, v)P(R|I, v, S)P(ℓ|I, v, S, R)
(4.2)

Coupling the variables in this manner results in a complication: even factored as above,

maximizing the joint probability with respect to S, R, v, and ℓ must be jointly performed,

since the variables are coupled. We approximate it instead with the following sequential

estimate, based on the sequential decomposition above:

v̂ = arg max
v

P(v|I) Ŝ = arg max
S

P(S|I, v̂)

R̂ = arg max
R

P(R|I, v̂, Ŝ) ℓ̂ = arg max
ℓ

P(ℓ|I, v̂, Ŝ, R̂)

(4.3)

The second challenge is that of actually computing the arg max operations in Equa-

tion 3. Rather than attempting to model the probability distributions explicitly and

maximizing them, we will, instead, model the estimators in Equation 3 as parametric

functions:
v̂ = fv(I; θv) Ŝ = fs(I, v̂; θs)

R̂ = fr(I, v̂, Ŝ; θr) ℓ̂ = fℓ(I, v̂, Ŝ, R̂; θℓ)
(4.4)

The problem of learning to estimate the 3D facial parameters thus effectively reduces to

that of estimating the parameters θv, θs, θr and θl.

Using the common approach, we formulate the learning process for these parameters

through an autoencoder. fv(), fs(), fr() and fℓ() are, together, viewed as the learnable

encoder in the autoencoder, which estimate v, S, R and ℓ respectively. The decoder is

a deterministic differentiable renderer R() with no learnable parameters, which recon-

structs the original input I from the values derived by the encoder as Î = R(S, R, v, ℓ).

The parameters of the encoder are learned to minimize the error between Î and I.
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4.3.2 Facial Parameters Inference

Viewpoint. We first predict the viewpoint parameters from the given image, using a

function fv(I; θv) : I → v ∈ R7. Here v is used to parameterize the weak perspective

transformation [95], including 3D spatial rotation (SO(3)), the translation (xyz coordi-

nates), and the scaling factor.

Shape. The prediction of shape is conditioned on the given image I and the pre-

dicted v. Since the same face captured with different viewpoints should be correspond

to the same facial shape, it is beneficial to exclude as much viewpoint information from

the image I as possible before the shape prediction. With the predicted v, we can align

the image to its canonical view in 2D plane, as shown in Fig. 4.2. The viewpoint v

comprises the scale factor v1, 3D spatial rotation parameters [v2, v3, v4], and 3D trans-

lation parameters [v5, v6, v7]. The original image I is cropped to its canonical view in

2D plane with viewpoint v. The cropping is given by (I ◦ v)(x′, y′) = I(x, y), where the

transformation from (x′, y′) to (x, y) is formulated in the following. x

y

 =

 exp(v1) · cos v4 exp(v1) · sin v4 v5

− exp(v1) · sin v4 exp(v1) · cos v4 v6


 x′

y′

 (4.5)

Bilinear interpolation is used if x or y is not an integer.

The cropped image is denoted by I ◦ v. A function fs(I ◦ v; θs) : I ◦ v → α ∈ R228×1

with learnable parameter θs is constructed to predict the shape coefficients α. The shape

coefficients α are defined by a statistical model of 3D facial shape:

S⃗ = S̄ + Uα, (4.6)

where S⃗ ∈ R3K×1 is the vectorized S, and S̄ ∈ R3K×1 is the mean shape. U ∈ R3K×228

is the PCA basis from Basel Face Model (BFM) [96] and 3DFFA [90] for identity and

expression variation, respectively. S̄ and U are fixed during the training and testing of

CEST. With the predicted α, the shape S can be obtained using equation 4.6.

Reflectance. Previous approaches usually predict the reflectance coefficients in a

predefined model [5, 4], unwrapped UV map of reflectance [82, 83, 80, 97], or graph
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representation of the reflectance [98, 93] from the image directly. In CEST, we adopt

the UV map representation for reflectance. However, the prediction of the reflectance is

conditioned not only on the given image I, but also on the predicted viewpoint v and

shape S.

The process is illustrated in Fig. 4.2. We first compute the image-coordinate facial

shape Q ∈ RK×2 by projecting the world-coordinate facial shape S with viewpoint v us-

ing weak perspective transformation. The 3D spatial rotation is represented by a rotation

vector w = [v2; v3; v4] ∈ R3×1: the unit vector u = w
∥w∥2

is the axis of rotation, and the

magnitude ϕ = ∥w∥2 is the rotation angle. The weak perspective transformation is used

to project the world-coordinate facial shape S to image-coordinate Q, as formulated in
Q(i, 1)

Q(i, 2)

Q(i, 3)

 = exp(v1) ·
((

ww⊺+(cos ϕ) · (1−ww⊺)
)


S(i, 1)

S(i, 2)

S(i, 3)

+ (sin ϕ) ·w×


S(i, 1)

S(i, 2)

S(i, 3)


)
+


v5

v6

v7

 .

(4.7)

Next, we construct an intermediate representation, i.e. UV map of the illuminated

texture T [95], which is obtained by unwrapping the given image I based on the pre-

dicted face shape Q. Subsequently, the UV map of reflectance A is predicted from the

illuminated texture T by a reflectance function fr(T ; θr). The reflectance R can be recov-

ered from A by UV wrapping.

The basic idea for computing the T is illustrated in Fig. 4.3. For each T(x′, y′) (the

pixel values at position (x′, y′)), we trace its corresponding position (x, y) in I. The

illuminated texture can be simply obtained by T(x′, y′) = I(x, y), where bilinear in-

terpolation is used for inferring the pixel values of I at position (x, y) if x or y is not

an integer. The computation of (x, y) is as follows. First, the canonical face shape S̄

is mapped to the UV space by cylinder unwrapping. We determine the triangle en-

closing the point (x′, y′) on a grid based on the vertex connectivity, which is provided

by the 3DMM. The triangle is represented by its three vertices Q′(i), Q′(j), and Q′(k).

Since the topology of the facial shape in image space and UV space are the same, the

vertices in these two space have one-to-one correspondence. We could easily get the



CHAPTER 4. 3D FACE RECONSTRUCTION FROM VIDEO 54

UV
unwrapping

wrapping

(b) Conditional Estimation Model: P(R | I,v,S  )

 (a) Independent Estimation Model: P(R | I  )

Input image

Input image

Qi

Qj

Qk

Q’i

Q’jQ’k

UV space

(x’, y’)
(x, y)

image space

R

RATI, v, S

fr

Figure 4.3: Illustration of generating the UV map of the illuminated texture.

corresponding vertices Q(i), Q(j), and Q(k). Now the position (x, y) can be computed

by x = κ1Q(i, 1) + κ2Q(j, 1) + κ3Q(k, 1) and y = κ1Q(i, 2) + κ2Q(j, 2) + κ3Q(k, 2), where

the κs are the coefficients computed by Q′(i), Q′(j), Q′(k), and (x′, y′) in barycentric co-

ordinate system [99]. Given the vertices of a triangle (Q(i), Q(j), Q(k)) and its enclosing

grid point (x, y) on image. The barycentric coefficients can be computed by

di =

 Q(j, 1)− Q(i, 1)

Q(j, 2)− Q(i, 2)

 , dj =

 Q(k, 1)− Q(i, 1)

Q(k, 2)− Q(i, 2)

 , dk =

 x − Q(i, 1)

y − Q(i, 2)

 ,

dii = d⊺
i di, djj = d⊺

j dj, dij = d⊺
i dj, dki = d⊺

k di, dkj = d⊺
k di,

κ2 =
djjdki − dijdkj

diidjj − dijdij
, κ3 =

diidkj − dijdki

diidjj − dijdij
, κ1 = 1 − κ2 − κ3.

(4.8)

The barycenteric coefficients κ1, κ2, and κ3 are in the range of [0, 1] if the grid point (x, y)

is in the triangle. For the invisible triangles (caused by self-occlusion), we simply ignore

them.

With the illuminated texture T , the UV map of the reflectance A can be produced

by a function fr(T ; θr), where θr is the learnable parameters. It is worth noting that the

input (T) and output (A) of fr are spatially aligned in UV space, so the learning process
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can be greatly facilitated. Subsequently, the reflectance R is obtained by a wrapping

function R = Ψ(A) [95], which has no learnable parameters. The wrapping function

Ψ : A ∈ R256×256×3 → R ∈ RK×3 is defined as R(i) = A(U(i, 1), U(i, 2)), where i is

the index for the vertices of a 3D face. R(i) and A(U(i, 1), U(i, 2)) are 3-dimensional

vectors. U ∈ RK×2 is the coordinates of shape in UV space from 3DMM [76]. Again,

bilinear interpolation is used if U(i, 1) or U(i, 2) is not an integer.

Illumination. Following the previous studies [87, 83], we assume the distant smooth

illumination and purely Lambertian surface properties [100]. Spherical Harmonics (SH)

[101] are employed to approximate the incident radiance at a surface. We use 3 SH bands,

leading to 9 SH coefficients. The illumination function is defined as fℓ(I, T , A; θℓ) :

(I, T , A) → ℓ ∈ R9×1, which takes the given image, illuminated texture map and UV

map of reflectance as input, and produces the illumination parameters.

So far, the 3D face model parameters R, S, v, and ℓ are predicted, and we are able

to recombine them and render the image by the expert-designed rendering module,

Î = R(S, R, v, ℓ).

4.3.3 Objectives for Self-Supervised Learning

The functions fs, fr, fv, and fℓ are modelled by convolutional neural networks (CNNs)

with learnable parameters θs, θr, θv, and θℓ, respectively. Since all the learning modules

and expert-designed renderer are differentiable, the proposed framework is end-to-end

trainable. The learning objective is to minimize the differences between the original im-

age I and the rendered image Î. Following the practices in previous work, the learning

objective does not include the pixels in nonface region, e.g. hair, sunglasses, scarf, etc.

We identify if a pixel belongs to face or nonface region by a face segmentation network

fseg, which is trained on CelebAMask-HQ dataset [102] with the segmentation labels

provided in the dataset. Once trained, fseg is fixed during the training and testing of

CEST. We denote the effective face region as a mask M, so the pixel at position (x, y) is
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included in reconstruction if M(i, j) = 1, and excluded if M(i, j) = 0. The photometric

loss can be written as

Lph = E(I, S, R, v, ℓ, M)

= ∥M ⊗ I − M ⊗ Î∥1

= ∥M ⊗ I − M ⊗R(S, R, v, ℓ)∥1,

(4.9)

where ∥ · ∥1 measure the ℓ1 distance and ⊗ denotes the element-wise multiplication.

However, if we simply optimize Lph, CEST will learn a degraded solution, where the

reflectance A simply copies the pixel values from T , and ℓ yields an isotropic radiator,

radiating the same intensity of radiation in all directions. In this case, CEST does not

learn semantically disentangled facial parameters, but leads to a perfect reconstruction

for Î.

To avoid this, we adopt the symmetry and consistency constraints for reflectance.

The facial reflectance is assumed to be horizontally symmetric and consistent in a video

clip. Suppose Ii and Ij are two face images from the same video clip. One of the possible

solutions is to add the regularization terms ∥Ri − R⋊⋉
i ∥, ∥Rj − R⋊⋉

j ∥, and ∥Ri − Rj∥ to the

learning objective, where R⋊⋉
i and R⋊⋉

j are the horizontally flipped versions of Ri and

Rj. However, it is difficult to tune loss weights to balance the reconstruction and reg-

ularization terms. Instead, we adopt an alternative solution by constructing additional

reconstruction terms as constraints [84]. The learning objective for reconstructing Ii and

Ij can be written as

Lph = E(Ii, Si, Ri, vi, ℓi, Mi) + E(Ij, Sj, Rj, vj, ℓj, Mj)

+ E(Ii, Si, Rj, vi, ℓi, Mi) + E(Ij, Sj, Ri, vj, ℓj, Mj)

+ E(Ii, Si, R⋊⋉
i , vi, ℓi, Mi) + E(Ij, Sj, R⋊⋉

j , vj, ℓj, Mj)

+ E(Ii, Si, R⋊⋉
j , vi, ℓi, Mi) + E(Ij, Sj, R⋊⋉

i , vj, ℓj, Mj)

(4.10)

Stochastic optimization. As can be seen, the number of reconstruction terms is in-

creased dramatically. From n frames of the same video, 2n2 reconstruction terms can be
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constructed. This is not scalable. To address this problem, we propose to optimize the

learning objective in a stochastic way. For each training iteration, only a subset of the

reconstruction terms are optimized. Specifically, a set of video frames {I1, I2, ..., IN} are

randomly sampled from different videos. The frames are grouped by videos, labeled as

ξ = {ξ1, ξ2, ..., ξN}. For any Ii, instead of enumerating all the possible reflectances and

obtaining numerous reconstruction terms, we randomly select some other frame from

the same video, denoted as Ij (under the condition of ξ j = ξi), and use Rj and R⋊⋉
i to con-

struct two reconstruction terms for Ii. With this strategy, the number of reconstruction

terms is reduced from O(n2) to O(n). Formally, the learning objective can be written as

Lph =
1
N

N

∑
i=1,ξ j=ξi

(
E(Ii, Si, Rj, vi, ℓi, Mi) + E(Ii, Si, R⋊⋉

i , vi, ℓi, Mi)
)
. (4.11)

To stabilize the training of CEST, we use 2D key points via Lkp = 1
NNkp

∑N
i=1 ∑

Nkp
j=1 ∥Qi(k j)−

qi(j)∥1 where q(j) is the set of detected 2D key points on image, and k j is the index of

the vertex associating to the 2D key point. We also regularize the energies of shape

coefficients with Lrg = 1
N ∑N

i=1 ∥αi∥2
2. An off-the-shelf landmark detector [70] is used to

produce Nkp = 68 key points for a detected face. The total loss consists of the following

terms:

L = Lph + λ1Lkp + λ2Lrg (4.12)

where λ1 and λ2 are hyperparameters.

4.4 Experiments

We qualitatively and quantitatively evaluate CEST with ablation experiments and com-

parisons to state-of-the-art methods [5, 42, 7, 103]. In ablation experiments, we compare

CEST to the independent version of CEST (IEST) where facial parameters are estimated

in a uncoupled way, and other variants trained with different constraints. Qualitative

results include the predicted shape, reflectance, illumination, reconstructed face, etc. We
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also show the relighted faces, which are obtained by illuminating reflectances with dif-

ferent illuminations. Quantitative results evaluate the qualities of the predicted shape

and rendered face. The metrics we used are normalized mean error (NME) [104] and

photometric error for shape and rendered face, respectively. NME is defined as the av-

erage per-vertex Euclidean distance between the predicted and targeted point clouds

normalized by the outer 3D interocular distance. Photometric error is the mean absolute

errors between pixel values in the original images and reconstruction images.

4.4.1 Experimental Settings

For fair comparison, we train two separate CEST models with VoxCeleb1 [3] and 300W-

LP [90] respectively. VoxCeleb1 is a video dataset collected from the Internet. The videos

of speakers are captured in different in-the-wild scenarios. A subset of 4,727 videos of

267 persons are used in the training, leading to 6,279,609 video frames. The faces in

video frames are cropped to the size of 256× 256 based on the detected facial key points

using [70]. 300W-LP is a synthetic image dataset, containing 122,450 images provided

with dense landmarks. Since we focus on self-supervised learning, we only use a sparse

set of 68 sparse landmarks as a regularization in training.

Network Architecture. We use standard encoder networks for viewpoint, shape and

illumination predictions, and a network similar to U-Net [105] for reflectance prediction.

The detailed configurations are given in Table 4.1. Parameter d is 7 for viewpoint net-

work fv and 9 for illumination network fℓ. Conv 3/2,1 denotes convoluitonal layer with

kernel size of 3, where the stride and padding are 2 and 1, respectively. Each convolu-

tional layer is followed by a Batch Normalization (BN) [57] layer and Rectified Linear

Units (ReLU). Bilinear interpolation is adopted for the upsampling operation. Specifi-

cally, in Table 4.1, the layers in brackets are residual blocks. In Table 4.2, we use shortcut

to connect the feature maps of encoder and decoder, but different from U-Net, we use

addition rather than concatenation to integrate information in the feature maps. For
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Table 4.1: CNN architectures for viewpoint, illumination, and shape networks: details.

Viewpoint & Illumination Network Shape Network
Layer Act. Output shape Layer Act. Output shape
Input - 256 × 256 × 3 Input - 256 × 256 × 3

Conv 4 × 4/2,1 BN + ReLU 128 × 128 × 32 Conv 4 × 4/2,1 BN + ReLU 128 × 128 × 64
Conv 4 × 4/2,1 BN + ReLU 64 × 64 × 32 Conv 4 × 4/2,1 BN + ReLU 64 × 64 × 64
Conv 4 × 4/2,1 BN + ReLU 32 × 32 × 64 Conv 4 × 4/2,1 BN + ReLU 32 × 32 × 128
Conv 4 × 4/2,1 BN + ReLU 16 × 16 × 64 Conv 4 × 4/2,1 BN + ReLU 16 × 16 × 128[
Conv3 × 3/1,1

Conv3 × 3/1,1

]
BN + ReLU
BN + ReLU

16 × 16 × 64
16 × 16 × 64

[
Conv3 × 3/1,1

Conv3 × 3/1,1

]
BN + ReLU
BN + ReLU

16 × 16 × 128
16 × 16 × 128

Conv 4 × 4/2,1 BN + ReLU 8 × 8 × 128 Conv 4 × 4/2,1 BN + ReLU 8 × 8 × 256[
Conv3 × 3/1,1

Conv3 × 3/1,1

]
BN + ReLU
BN + ReLU

8 × 8 × 128
8 × 8 × 128

[
Conv3 × 3/1,1

Conv3 × 3/1,1

]
BN + ReLU
BN + ReLU

8 × 8 × 256
8 × 8 × 256

Conv 4 × 4/2,1 BN + ReLU 4 × 4 × 128 Conv 4 × 4/2,1 BN + ReLU 4 × 4 × 256
Conv 4 × 4/2,1 - 1 × 1 × d Conv 4 × 4/2,1 - 1 × 1 × 228

those encoder output shapes in brackets (e.g. “[128 × 128 × 64]”), the feature map will

be added as a shortcut to the decoder feature map (also with the same brackets).

Table 4.2: CNN architectures for reflectance networks: details. The layers in the decoder
(from input to output) are listed from bottom to top.

Reflectance Network
U-Net Encoder (↓) U-Net Decoder (↑)

Encoder Layer Act. Output shape Decoder Layer Act. Output shape
Input - 256 × 256 × 3 Output - 256 × 256 × 3

- - - Conv 3 × 3/1,1 Tanh 256 × 256 × 3
- - - Conv 3 × 3/1,1 BN + ReLU 256 × 256 × 3

Conv 4 × 4/2,1 BN + ReLU 128 × 128 × 64 Upsample (2×) - 256 × 256 × 64
Conv 3 × 3/1,1 BN + ReLU [128 × 128 × 64] Conv 3 × 3/1,1 BN + ReLU [128 × 128 × 64]

- - - Conv 3 × 3/1,1 BN + ReLU 128 × 128 × 64
Conv 4 × 4/2,1 BN + ReLU 64 × 64 × 64 Upsample (2×) - 128 × 128 × 64
Conv 3 × 3/1,1 BN + ReLU [64 × 64 × 64] Conv 3 × 3/1,1 BN + ReLU [64 × 64 × 64]

- - - Conv 3 × 3/1,1 BN + ReLU 64 × 64 × 64
Conv 4 × 4/2,1 BN + ReLU 32 × 32 × 128 Upsample (2×) - 64 × 64 × 128
Conv 3 × 3/1,1 BN + ReLU [32 × 32 × 128] Conv 3 × 3/1,1 BN + ReLU [32 × 32 × 128]

- - - Conv 3 × 3/1,1 BN + ReLU 32 × 32 × 128
Conv 4 × 4/2,1 BN + ReLU 16 × 16 × 128 Upsample (2×) - 32 × 32 × 128
Conv 3 × 3/1,1 BN + ReLU [16 × 16 × 128] Conv 3 × 3/1,1 BN + ReLU [16 × 16 × 128]

- - - Conv 3 × 3/1,1 BN + ReLU 16 × 16 × 128
Conv 4 × 4/2,1 BN + ReLU 8 × 8 × 256 Upsample (2×) - 16 × 16 × 256
Conv 3 × 3/1,1 BN + ReLU [8 × 8 × 256] Conv 3 × 3/1,1 BN + ReLU [8 × 8 × 256]
Conv 4 × 4/2,1 BN + ReLU 4 × 4 × 256 Conv 3 × 3/1,1 BN + ReLU 8 × 8 × 256
Conv 3 × 3/1,1 BN + ReLU 4 × 4 × 256 Upsample (2×) - 8 × 8 × 256

Training. For the training with VoxCeleb1, the minibatch consists of 128 video frames
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Figure 4.4: Ablation studies with different constraints.

from 32 clips. For each video clip, we randomly selected 4 video frames. The training

is completed at 50K iterations. For the training with 300W-LP, the minibatch consisted

128 randomly selected images, and the total iteration is 20K. For both models, we used

Adam [72] optimizer with learning rate of 0.001. λ1 and λ2 are 1 and 0.1 unless stated

otherwise.

4.4.2 Ablation Experiments

The results of ablation study are shown in Fig. 4.4. We first present the original and

reconstructed image (overlay) for comparison, following by the reflectance, illuminated

texture, facial shape (geometry), and illumination in canonical view. The results are (a)

CEST with two constraints; (b) uncoupled CEST with two constraints; (c) CEST with only

reflectance consistency constraint; (d) CEST with reflectance symmetry constraint (the

number of video frames is 1); (e) CEST with no constraint on reflectance; (f) reflectance

consistency is applied to videos, not video clips.

CEST and IEST. IEST is trained with the same settings as CEST, except the facial
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parameters are estimated independently from image during training and testing. The

results are shown in Fig. 4.4 (a) and (b), respectively. We can see that CEST produces

realistic overlay, disentangled reflectance and illumination, and geometry with personal

characteristics and expressions. Compared to CEST, IEST achieves reasonable results,

but the reflectances are not as detailed as those from CEST, resulting in inferior overlays

and illuminated textures. It validates our hypothesis that the coupled estimation can

better formulate the problem and facilitate the learning.

Reflectance symmetry and consistency constraints. We train multiple variants of

CEST with only symmetry constraint, only consistency constraints, and without the

two constraints, and show their results in Fig. 4.4 (c), (d), and (e), respectively. Com-

pared (a) and (c) we observe that the reflectance symmetry constraint leads to better

reflectance and illumination separation. This is because the horizontally flipped video

frames can provide more illumination variations to the training set, enabling CEST to

learn to model different illuminations properly. On the other hand, if the reflectance con-

sistency in video clip is not used, the decomposition of reflectance and illumination is

not performed well. Some illumination remains around the eyes region in the reflectance

(see the right hand side of the Fig. 4.4 (d)). Lastly, if we do not use any constraints on

reflectance, CEST learns the degraded solution (Fig. 4.4(e)), where the reflectance sim-

ply copies the pixel values from the image, and illumination is an isotropic radiator,

radiating the same intensity of radiation in all directions. Moreover, we note that the

degraded solution also affects the learned facial shape, which has less personal charac-

teristics in Fig. 4.4 (e). Fig. 4.4 (f) shows the results from CEST trained with reflectance

consistency across video. The performance is comparable to those from CEST trained

with default setting (reflectance consistency across video clip). It shows that consistency

constraint can be generalized to longer videos if the recording environments are not

changed dramatically.
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Figure 4.5: Comparisons with MoFA. (a) and (c) are results from CEST. (b) and (d) are
results from MoFA.

4.4.3 Qualitative Results

In this section, we compare CEST to most relevant state-of-art methods with qualitative

results.

Comparison to MoFA [5]. MoFA is a fully model-based framework. Its represen-

tation power is limited by the linear 3DMM model. In addition, all facial parameters

from MoFA are independently predicted from the original image. On the contrary, we

use a model-free method for reflectance, and the whole inference process is based on

coupled estimation. We visualize the overlay, reflectance, geometry, illumination , as

well as the errors between input and rendered image (overlays) in Fig. 4.5. As can be ob-

served, results from MoFA suffer from out-of-subspace reflectance variations. Compared

to MoFA, we obtain comparable shape, but significantly better reflectance, illumination,

and rendered face by capturing more details.

Comparison to N3DMM [83]. N3DMM generalizes 3DMM model to a nonlinear

space and improves the quality of rendered faces. However, N3DMM also infers the

reflectance from the input image only, and uses too many heuristic constraints, e.g.

reflectance constancy, shape smoothness, supervised pretraining, etc. So their models

can only capture low-frequency variations on reflectance. For example, in Fig. 4.6 (b)
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Figure 4.6: Comparisons with nonlinear 3DMM. (a), (c), and (e) are results from CEST.
(b), (d), and (f) are results from N3DMM.

the lip stick is missing in the reflectance, and the skin colors in reflectances are almost

identical for different persons. These limitations lead to higher reconstruction error. In

contrast, our results produce realistic reconstruction, with more accurate reflectance and

illumination, as well as lower reconstructed error (Fig. 4.6).

Comparison to FML [7]. FML properly incorporates video clues in training and can

render realistic faces. However, its reconstructed reflectances are prone to an average

skin color. In comparison, CEST yields more accurate skin color (see Fig. 4.7 (a), (c), and

(e)) by incorporating the learned shape and viewpoint in the estimation of reflectance.

Qualitative results clearly show that our results have more reasonable disentanglement

between reflectance and illumination. They also contribute to better visual quality of

rendered faces. Notably, there are considerable differences in the eye and nose regions

from the overlay in Fig. 4.7.

Relighting. Since CEST predicts the reflectances of faces, they can be easily re-lighted

with different lighting conditions. Fig. 4.8 shows the re-lit faces in canonical view.
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Figure 4.7: Comparisons with FML. (a), (c), and (e) are results from CEST. (b), (d), and
(f) are results from FML. Images are from the video frames in VoxCeleb1 dataset [3]

In particular, the last two target faces are under harsh lighting, which also examines

the illumination removal ability of CEST. The re-lit results again validate that CEST is

capable of estimating well-disentangled facial parameters and capturing the reflectance

and illumination variations in real-world face images.

4.4.4 Quantitative Results

We first perform quantitative evaluations on the AFLW2000-3D dataset, including 2,000

unconstrained face images with large pose variations. The ground truth of AFLW2000-

3D is given by the results from 3DMM fitting, which may be somewhat noisy. The second

evaluation is on MICC Florence 3D Face dataset, which consists of high-resolution 3D

scans from 53 subjects. We follow the practices in [104] to render 2,550 testing images

using the provided 3D scans. Each subject is rendered in 20 difference poses using a

pitch of -15, 20 or 25 degrees and a yaw of -80, -40, 0, 40 or 80 degrees.

In order to compare with previous work, NME is computed based on a set of 19,618
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Figure 4.8: Lighting transfer results.

vertices defined by [104] in their evaluation. The point correspondences are determined

by the iterative closest point (ICP) algorithm [106]. We compute the cumulative er-

rors distribution (CED) curves and compare it to current prevailing methods such as

3DDFA [90], DeFA [107], and PRN [103] on AFLW2000-3D. For MICC, we compare

CEST to 3DDFA [90], VRN [104], and PRN [103]. The results are given in Fig. 4.9. CEST

achieves 3.37 and 3.14 NME on AFLW2000-3D and MICC datasets, respectively. More

interestingly, our method performs better than the fully supervised techniques for shape

estimation, e.g. 3DDFA (5.37 on AFLW2000-3D and 6.38 on MICC) and PRN (3.96 on

AFLW2000-3D and 3.76 on MICC). Additionally, our method can also estimate facial re-

flectance and illumination, while both 3DDFA and PRN can not. Compared to N3DMM

on MICC dataset, CEST achieves slightly lower NME (3.14 vs. 3.20). Notably, N3DMM

uses dense landmarks for supervised pretraining while CEST only uses the 68 sparse

landmarks.

Qualitative comparisons. we show more comparisons to the state-of-art methods

[8, 9, 6, 108]. Since there is no publicly available implementations for these methods, we
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(a) CED Curves on AFLW2000-3D dataset (b) CED Curves on MICC dataset

Figure 4.9: CED curves on AFLW2000-3D and MICC datasets. For example, a point at
(4, 63) means that 63% of images have NME less than 4.
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Figure 4.10: Comparisons to [4]. (a) and (c) Results from CEST. (b) and (d) Results from
[4].

compare to the results presented in their papers.

Overall, CEST produces more stable and reasonable geometries, detailed reflectances,

and realistic reconstructions of the 3D faces. As shown in Fig. 4.10 (a) (b), Fig. 4.11, Fig.

4.12, and Fig. 4.13, the facial shapes predicted by CEST are more accurate in facial

expressions and lip closure. In addition, the predicted reflectances show more personal

characteristics, but less remaining illumination, as illustrated in Fig. 4.12. Lastly, CEST

yields faithful 3D reconstructions, capturing more details than the other methods (see

Fig 4.11).

Challenging Cases. We present some examples with dark skin in Fig. 4.14. Although

most people in the training set (VoxCeleb) are Caucasian, CEST still produces reasonable

illumination and albedo for these examples. One limitation is that the reconstruction of

the non-lambertian surface is inaccurate, e.g. eyes with unusual gaze directions.
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Figure 4.11: Comparisons to MoFA [5] and [6]. Our estimated shapes show more accu-
rate expressions.
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Figure 4.12: Comparing CEST to FML [7] and [8].
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Figure 4.13: Comparing the estimated shapes from CEST to those from [6], [9], [5], [7],
[10], and [11] (from left to right). Our estimated shapes are more stable and accurate.

Photometric Error. We compare CEST, IEST, FML [7] and Garrido [109] on overlay

face reconstruction. To measure the quality of the overlay images, we compute the aver-

age photometric error (R,G,B pixel values are from 0 to 255) between the input face image

and the overlay face image. We experiment on 1,000 images in CelebA dataset [110]. Ta-

ble 4.3 shows that the conditional estimation is beneficial for reconstructing the 3D face,

and the proposed CEST outperforms existing methods by a large margin.
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Figure 4.14: Some challenging examples.

Table 4.3: Photometric errors obtained by different methods.

Method CEST IEST FML [7] Garrido16 [109]
Photometric Error 10.74 13.76 20.65 21.95

4.5 Discussion

We have proposed a conditional estimation framework, called CEST, for 3D face recon-

struction from single-view images. CEST addresses the reconstruction problem with a

more general formulation, which does not assume conditional independence. We have

also proposed a specific decomposition for the conditional probability of different 3D

facial parameters. Together with the reflectance symmetry and consistency constraints,

CEST can be trained efficiently with video datasets. Both qualitative and quantitative

results prove that the conditional estimation is useful. CEST is able to produce high

quality and well-disentangled facial parameters for single-view images.

The proposed CEST can be improved from many aspects. Firstly, more accurate and

unambiguous facial parameters can be obtained by exploring the temporal information

in video. Second, the performance of shape estimation can be boosted by a more ad-

vanced morphable model, which also benefits the subsequent estimations of other facial

parameters. Moreover, adding perceptual loss could also be an effective way to improve

the visual quality of the facial parameters.



Chapter 5

3D Facial Shape Reconstruction from

Voice

So far, we are able to generate visually plausible 2D face images from voice, and the gen-

erated faces do have common demographic attributes with the true speakers. However,

image representation has several inevitable limitations. First, there are many voice-

unrelated aspects in the reconstructed images, such as hair, glasses, make-up, hat, etc.

The varying viewpoints, illuminations, and background also introduce unexpected vari-

ations to the reconstruction, making the results even less explainable. Second, it is

nontrivial to compare the generated and real faces objectively. The most commonly

used metrics for image reconstruction are Fréchet inception distance (FID) [111] and in-

ception score (IS) [112]. These metrics compare the differences of generated and real

images, rather than the faces, so they can not serve as objective metrics to quantify how

close the generated faces are to the ground truths. Motivated by the limitations of image

representations, we propose to reconstruct 3D facial shapes from voice.

69
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5.1 Introduction

General 3D facial shape is represented by the 3D coordinates of a number of points on

its surface called vertices [76]. We can visually perceive the facial characteristics from

these vertices, like nose, eyes, mouth, jaw, etc. This representation inherently excludes

the identity-unrelated factors like expressions1, hairs, glasses, illumination, background,

etc. More importantly, since the topology of 3D facial shape is predefined and consistent

across different faces, we can easily measure the reconstruction accuracy with distances

between the predicted vertices and their ground truths.

However, reconstructing 3D facial shapes from voice is a challenging problem. The

exact association between voice and 3D facial shape is still unknown. The information

in voices may only encode some key characteristics of the 3D facial shape, and we do

not know which they are. Even if this were not the case, which voice features have

higher correspondence to reconstruct the 3D face remains an open question. On the

other hand, there is no large-scale publicly available dataset with paired voice record-

ings and accurate 3D facial shapes. Learning or discovering audiovisual associations

is impractical by a purely data-driven method, which further complicates the problem.

Suppose we directly apply voice-to-vertex regression on a mixed-gender dataset (includ-

ing male and female samples). In that case, the learned regressor takes a shortcut [113]

– disambiguating 3D facial shape by the gender information in voice, as shown on the

left of Fig. 5.1(b). Subsequently, we perform two follow-up experiments, where we

perform regressions on male and female subsets, respectively. The slight improvement

on the mixed-gender dataset immediately disappears. These results clearly show the

challenges of learning audiovisual associations beyond gender.

Given these challenges, we take an alternative view on the reconstruction problem.

Instead of directly reconstructing the entire 3D facial shapes from voice, we consider
1Note that the 3D facial shapes refer to those of neutral expressions since this thesis focuses on the

identity-related associations between voices and faces, rather than the instantaneous expression informa-
tion.
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① ③

AMs summarized from literature

...

AMs predictable from voice

②

② Estimate AMs from voice

③ Select AMs by hypothesis testing

④ Reconstruct 3D facial shapes from the predictable AMs

...

(a) (b)

voice to female
anthropometric measurements (AMs)

(c)

④

① Summarize AMs (distances, proportions, and angles) and compute them from 3D facial shape

voice to vertices

Figure 5.1: (a)(c) Comparison of the voice-to-vertex regression and the proposed SfV. (b)
Improvements of voice-to-vertex regression (left) and SfV (right). 0 indicates the chance
level performance.

its prerequisite: what features in 3D facial shape can be estimated from voice? By

explicitly exploring the features that are predictable from voice and can be used in the

reconstruction, we can effectively prevent the data-driven model from taking unintended

shortcuts and improve the generalization.

In this chapter, we propose an anthropometry-guided framework for reconstructing

3D facial shapes from voice. The method, called shape from voice (SfV), is motivated by

the voice production mechanism [75], in which studies have shown the anthropometric
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measurements (AMs) like the dimensions of nasal cavities [114] or cranium [115, 116]

directly influence the speaker’s voices. SfV first identifies which AMs are predictable

from voice, and reconstruct the 3D facial shape from those predictable AMs. The pre-

dictable AMs act as intermediate variables that bridge the gap between the voice and

3D facial shape. In addition, the AMs are more robust than 3D coordinates since they

are invariant to any rigid transformation, which is neither predictable from voice nor of

interest to this work.

The proposed SfV is illustrated in Fig. 5.1(c), including four key steps. First, we

summarize and compute a number of AMs that are potentially correlated with voice

production from the anthropometry literature [117, 118, 119, 120, 121]. Second, we pre-

dict the AMs from voice by training estimators with uncertainty learning. The reliability

of the estimators can be significantly enhanced with the ability to predict the uncertainty

[122]. Third, we select the AMs predictable from voice by hypothesis testing. The null

hypothesis is made for each AM and states the AM is unpredictable from voice. We

can successfully reject the corresponding null hypothesis if any AM estimation is better

than chance on a held-out validation set with statistical significance. We present several

predictable AMs on the right of the Fig. 5.1 (b). Last, we reconstruct the 3D facial shapes

by a fitting process [76] based on the predictable AMs. This is done by adjusting a set of

coefficients in low-dimensional space, such that the differences between the AMs of the

generated 3D facial shape and the predicted AMs are minimized. Intuitively, if there are

more predictable AMs spanning different locations of a face, the reconstruction can be

more indistinguishable.

In the experiments stratified by gender, we discover a number of female AMs that

are predictable from voice. We visualize the predictable AMs and find that most of

them are located around noses. Moreover, the accuracy of the AM estimation is greatly

improved by filtering out a proportion of voice samples with high uncertainties. The fur-

ther improvements suggest that more AMs are discovered to be predictable from voice,

including a few male AMs. With the discovered AMs, we achieve visible improvements
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in the reconstructed 3D facial shapes, especially the noses of the female speakers.

5.2 The Proposed Framework

Our objective is to reconstruct any speaker’s 3D facial shape from their voice recordings.

In this section, we first formulate our problem and introduce some necessary notations.

Subsequently, we describe the proposed SfV method in detail, followed by discussions

on the results.

Our problem is formulated as follows. We are given a set of paired voice recordings

and 3D facial shapes {(v1, f1), (v2, f2), ...} from different people, where vi is a voice

recording spoken by the i-th person and fi is a 3D facial shape scanned from the speaker

of vi. Our goal is to reconstruct the 3D facial shape f of any speaker from their voice

recording v. To do so, we leverage a set of AMs {m(1), m(2), ..., m(K)} that are computed

from f , where K is a positive integer and m(k) (k ∈ [1, K]) represents the k-th AM.

Accordingly, the overall dataset is denoted as D = {(v1, f1, m1), (v2, f2, m2), ...}, where

each triplet consists of a voice recording, a scanned 3D facial shape, and K AMs from

the same person.

SfV addresses the problem of reconstructing 3D facial shapes from voice by a 4-step

pipeline: (i) compute the ground truth AMs from 3D facial shapes; (ii) estimate AMs

from voices; (iii) identify which AMs are predictable from voice; (iv) reconstruct 3D fa-

cial shapes from the predictable AMs. Unlike regular regression, SfV does not assume

the dependency between the input (voice) and output (AM) of the estimators. For this

reason, we construct an additional validation set for empirically validating the depen-

dency. Specifically, we split the dataset D into a training set Dt for estimator learning,

a validation set Dv1 for estimator selection, a validation set Dv2 for AM selection, and

an evaluation set (or testing set) De for evaluating the reconstructed 3D facial shapes,

among which there is no overlapping.
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Figure 5.2: The selected landmarks.

5.2.1 Training AM estimators

There is a large body of literature on anthropometry. Many AMs of human faces are

discovered and have been shown to associate with voice production [117, 118, 119, 120,

121]. We summarize the most commonly used AMs in Fig. 5.2 and Table 5.1. The

chosen AMs are categorized as distance, proportion, and angles. For example, "11-

15" denotes the distance between the 11-th and 15-th landmarks, and "32-38 / 28-31"

denotes the proportion of two distances. For angle "57-58-59", the arms are the line

segments of 57-58 and 59-58, and the vertex is the 58-th landmark. These features are

more robust than 3D coordinate representations since the variations caused by spatial

misalignment are completely eliminated. As a comparison, 3D coordinates encode the

position, orientation, and shape information of the 3D face, of which the first two might

introduce unexpected noises.

In SfV, we use convolutional neural networks (CNNs) to estimate the AM from voice.

Let Fk(v; θk) : v 7→ R be an estimator that maps any voice recording v into the k-th

predicted AM2, where θk is the learnable CNN parameters. This is a regular regression
2While each estimator is assumed to predict one AM here, they can be easily extended to predict

multiple AMs.
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Table 5.1: The summarized AMs.

distance proportion angle
11-15 19-23 15-19 11-23 5-6 32-38 / 28-31 33-37 / 28-31 58-62 / 28-31 57-58-59 56-57-58
1-10 3-8 59-61 58-62 57-63 57-63 / 28-31 56-64 / 28-31 55-65 / 28-31 55-56-57 54-55-56

56-64 55-65 32-38 33-37 34-36 39-45 / 28-31 32-38 / 60-54 33-37 / 60-54 65-54-55 64-65-54
49-47 41-43 55-54 54-65 39-45 58-62 / 60-54 57-63 / 60-54 56-64 / 60-54 63-64-65 62-63-64
49-47 40-44 42-48 13-17 21-25 55-65 / 60-54 39-45 / 60-54 59-61 / 58-62 61-62-63 32-30-38
60-28 60-31 60-35 60-51 60-52 58-62 / 57-63 57-63 / 56-64 56-64 / 55-65 32-31-38 28-31-35
60-54 28-31 27-51 31-35 31-52 58-62 / 32-38 57-63 / 32-38 56-64 / 32-38 52-53-54 28-31-32
31-53 31-54 35-51 42-48 52-53 59-61 / 32-38 55-65 / 32-38 39-45 / 32-38 38-31-28 38-51-32
53-54 51-54 55-56 56-57 57-58 60-54 / 28-31 52-53 / 53-54 51-52 / 51-54 64-54-56 30-31-35
58-59 61-62 62-63 63-64 64-65 28-31 / 28-54

problem, so the learning objective for the k-th AM is

θ∗k = arg min
θk

1
|Dt| ∑

(v,m(k))∈Dt

(Fk(v; θk)− m(k))2, (5.1)

where |Dt| is the number of the triplets (voice, face, and AMs) in dataset Dt. By in-

corporating uncertainty into the estimator learning, the prediction becomes a random

variable, rather than a singe value. Following [122], Gaussian distribution is employed

to the prediction. Now estimator Fk(v; θk) maps v into the mean of the i-th predicted

AM. Similarly, we define an uncertainty estimator Gk(v; ϕk) : v → R+ ∪ {0} that v into

the variance of the k-th predicted AM. Again, ϕk is the learnable CNN parameters. The

predicted AM and its ground truth become N (Fk(v), Gk(v)) and N (m(k), 0), respectively

[122]. Given two random variables, a more reasonable learning objective is to minimize

their KL divergence [122].

{θ∗k , ϕ∗
k} = arg min

θk,ϕk

1
|Dt| ∑

(v,m(k))∈Dt

(Fk(v; θk)− m(k))2

Gk(v; ϕk)
+ ln Gk(v; ϕk), (5.2)

As can be observed from Eqn. 5.2, for a fixed (Fk(v; θk) − m(k))2, there is an optimal

variance Gk(v; ϕk) = (Fk(v; θk) − m(k))2 such that the loss function is minimized. So

the uncertainty estimator Gk is learned to produce a small variance if the prediction

error is small, and vice versa. On the contrary, a smaller variance indicates that the

predicted AM is more likely to yield small prediction error, i.e. closed to the ground

truth. Therefore, we can choose to trust the predicted AMs when the predicted variances
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are small, and defer the voice recordings to human experts otherwise. An extreme case

is Gk(v) ≡ 1, where the uncertainty learning model (Eqn. 5.2) degrades to the regular

regression model (Eqn. 5.1).

Fusion. In practice, a long voice recording v is fed into CNNs (Fk and Gk) in the

form of multiple short segment inputs {v(1), v(2), ..., v(L)}. So we obtain a sequence of

means and variances for the predicted AM. In the training phase, we compute the loss

for each segment individually and average them as the training loss. While in the testing

phase, the predicted AM and its uncertainty are given by aggregating the predictions

from all voice segments. Assuming the short segments from a long voice recording are

class-conditionally independent, the formulations of aggregation are

m̂(k) =
L

∑
l=1

w(k)

Gk(v(l))
· Fk(v(l)),

1
w(k)

=
L

∑
l=1

1
Gk(v(l))

,

(5.3)

where m̂(k) is the aggregated mean and also the predicted k-th AM. However, the ag-

gregated variance w(k) is not used as the uncertainty of the predicted k-th AM. Since

the conditional independence assumption does not always hold in cases such as noises,

silences, the computed aggregated variance will be biased by the number of voice seg-

ments in the long recording. So we calibrate the uncertainty as ŵ(k) = L · w(k).

5.2.2 Identifying predictable AMs

We have collected a number of AMs and trained estimators for predicting them. How-

ever, only few of the AMs are actually predictable from voice, which we had anticipated

while designing the task. To identify those AMs, we use hypothesis testing to them

individually. Formally, we can write the null and alternative hypotheses for the k-th AM
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as

H0 : the AM m(k) is NOT predictable from voice

H1 : the AM m(k) is predictable from voice

In order to reject H0, we only need to find an counterexample to show that voice is

indeed useful in predicting AM m(k). An effective example is to compare the estimators

with and without the voice input. If there exists a learned estimator Fk(v) performing

better than the chance-level estimator Ck without using voice input and the results are

statistically significant, we can successfully reject H0 and accept H1. Here the chance-

level estimator for the k-th AM is a constant Ck = 1
|Dt| ∑m(k)∈Dt

m(k), which is the mean

m(k) of the training set Dt. So the null and alternative hypotheses can be rewritten as

H0 : µ(Ek/EC
k ) ≥ 1

H1 : µ(Ek/EC
k ) < 1,

where Ek and EC
k are the mean square errors of estimators with and without voice inputs

on validation set Dv2 , respectively. The formulations of Ek and EC
k are given below.

Ek =
1

|Dv2 |
∑

m(k)∈Dv2

(m̂(k) − m(k))2,

EC
k =

1
|Dv2 |

∑
m(k)∈Dv2

(Ck − m(k))2.
(5.4)

To ensure the statistical significance, we perform multiple experiments, where the Dt,

Dv1 , and Dv2 are obtained by different random splits. Since the true variance of Ek/EC
k

is unknown, the type of hypothesis testing is one-sided paired-sample t-test. The upper

bound of the confidence interval (CI) is given by

CIl = µ(Ek/EC
k )− t1−α,ν ·

σ(Ek/EC
k )√

N

CIu = µ(Ek/EC
k ) + t1−α,ν ·

σ(Ek/EC
k )√

N

(5.5)

where µ(·) and σ(·) are functions for computing mean and standard deviation, respec-

tively. N is the number of the repeated experiments and here we use N = 100. α and
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ν = N − 1 are the significance level and the degree of freedom, respectively. For the

purpose of this section, we adopt the significance level of 5%, then we can immediately

read t0.95,N−1 from t-distribution table (or t table). Now we can determine whether to

reject H0 by inspecting the computed CIu. Specifically, CIu < 1 implies that we can suc-

cessfully reject H0 and accept H1, i.e. the AM m(k) is predictable from voice. According

to the experimental results, the probability that the aforementioned decision is correct

is higher than 95%, i.e. statistically significant. In contrast, CIu ≥ 1 implies that we fail

to reject H0, for the current experimental results are not statistically significant enough.

Note that failing to reject H0 does not imply we accept H0.

In a nutshell, we define a set of indicators z = {z(1), z(2), ...z(K)}. z(k) is 1 if the k-th

AM is predictable from voice. Otherwise z(k) is 0, as given in Eqn. 5.6.

z(k) =


1, if CIu < 1.

0, otherwise.
(5.6)

Discussion. We emphasize that it is necessary to compute EC
k and Ek on Dv2 , rather

than Dt or Dv1 . This is because our estimators are trained on Dt and selected by the

errors on Dv1 , we can easily get significantly lower Ek than EC
k on these datasets. In this

case, type I error (false positive) happens, where an AM is actually not predictable from

voice, but we reject H0 and accept H1. On the contrary, if we evaluate the estimator

on Dv2 , the type I error is less likely to happen. Type II error (false negative) happens

when an AM is actually predictable from voice, but we fail to reject H0. It is very likely

to happen due to the small scale of the dataset, noises in data capturing, imperfect

learning model, or even the improper hyperparameters, which indicates there remains

considerable room for future exploration.

5.2.3 Reconstructing 3D Facial Shape

To reconstruct the 3D facial shape, we need to predict AMs of the voice recordings in

De first. Each predicted AM is given by the ensemble of the trained estimators from the
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repeated experiments in 5.2.2.

Subsequently, we generate the 3D facial shapes based on the predicted AMs by an

optimization-based method. To do so, we first project the 3D facial shapes into a low-

dimensional linear space [76]. By adjusting the coefficients in low-dimensional space,

we obtain different re-projected 3D facial shapes. The learning objective is to find a set

of coefficients, such that the differences between the AMs of the re-projected 3D facial

shape and the predicted AMs are minimized. Specifically, we construct a big matrix

B = [b1, b2, ...] ∈ R3T×|Dt| where each column bi ∈ R3T×1 is a long vector obtained by

flattening a 3D facial shape fi ∈ RT×3. T is the number of vertices on 3D faces. Since

3T ≫ |Dt|, we compute the projection matrix P ∈ R3T×d(d ≫ 3T) using eigenfaces

[123] on B. Now any flattened 3D facial shape b can be approximated by re-projecting a

low-dimensional vector β ∈ Rd×1 in the form of Pβ.

We define the computation of AM as Qk(b) : b 7→ R, which maps any flattened 3D

facial shape b into the k-th AM of b. Since Qk(·) computes a distance, a proportion, or

an angle of the 3D facial shape, it is a differentiable function. The optimizing objective

is given below.

β∗ = arg min
β

λ∥β∥2
2 +

K

∑
k=1

(Qk(Pβ)− m̂(k))2 · z(k) (5.7)

where λ is the loss weight balancing two terms. The reconstructed 3D facial shape is

given by b̂ = Pβ∗. The pipeline of SfV is summarized in Algorithm 2.

5.3 Experiments

Dataset. We perform experiments on an audiovisual dataset D collected by researchers

from Penn State University. The dataset consists of paired voice recordings and scanned

3D facial shapes from 1,026 people, with 364 males and 662 females. To prevent the

estimation models from taking the gender shortcuts, we split the dataset D by gender,

and experiments are individually performed on male and female subsets. For each

subset, we adopt 7/1/1/1 splitting for Dt/Dv1/Dv2/De. In training, the voice recordings
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Algorithm 2 The experiment pipeline of SfV

1: randomly split the audiovisual dataset D into Dt ∪Dv1 ∪Dv2 , and De.
2: for k ∈ [1, 2, ..., K] do
3: repeat
4: randomly split Dt ∪Dv1 ∪Dv2 into Dt, Dv1 , and Dv2

5: train and select estimators (Fk and Gk) on Dt and Dv1 , respectively (Eqn. 5.2)
6: compute EC

k and Ek on Dv2 (Eqn. 5.3 and Eqn. 5.4)
7: until µ(Ek/EC

k ) is converged
8: compute the upper bound of confidence interval CIu (Eqn. 5.5)
9: compute the indicator z (Eqn. 5.6).

10: end for
11: predict AMs of the voice recordings in De. Each prediction is given by the ensemble

of the trained estimators from the repeated experiments (Eqn. 5.3).
12: reconstruct 3D facial shapes with the predicted AMs (Eqn. 5.7)

are randomly trimmed to segments of 6 to 8 seconds, while we use the entire recordings

in testing. The ground truth AMs are normalized to zero mean and unit variance.

For voice features, we extract 64-dimensional log Mel-spectrograms using an analysis

window of 25ms, with the hop of 10ms between frames. We perform mean and variance

normalization of each Mel-frequency bin.

Training. The CNN architectures are given in Table 5.2. Fk and Gk share the back-

bone’s learnable parameters but have individual parameters for their heads. Moreover,

we adopt exp activation for the last layer of Gk to ensure the non-negative output. The

numbers within the parentheses represent the size and number of filters, while the sub-

scripts represent the stride and padding. So, for example, (3, 64)/2,1 denotes a 1D con-

volutional layer with 64 filters of size 3, where the stride and padding are 2 and 1,

respectively. Modules in brackets are equipped with shortcut connections. For the vari-

ance head, we add an exponential activation to the last layer of Gk for non-negative

positive output.

We follow the typical settings of stochastic gradient descent (SGD) for optimization.

Minibatch size is 64. The momentum, learning rate, and weight decay values are 0.9, 0.1,

and 0.0005, respectively. The training is completed at 5k iterations. To ensure statistical

significance, we perform N = 100 repeated experiments to compute the CIu.
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Table 5.2: CNN architectures for Fk and Gk: details.

voice feature backbone head

Fk Spectrogram()

Melscale()

Log()

(3, 64)/2,1[
(3, 64)/1,1

(3, 64)/1,1

] (3, 96)/2,1[
(3, 96)/1,1

(3, 96)/1,1

] (3, 144)/2,1[
(3, 144)/1,1

(3, 144)/1,1

] (3, 216)/2,1[
(3, 216)/1,1

(3, 216)/1,1

] (64, 1)(1,0)

Gk
(64, 1)(1,0)

Exp()

5.3.1 The AM Prediction and Selection

For AM prediction, the estimation models are trained on Dt and selected based on their

performance on Dv1 (hyperparameter tuning). For AM selection, the predictable AMs

are selected based on the upper bound of the CI (CIu) on Dv2 . The performance can be

evaluated by the mean error of each AM and its CI.

The Fig. 5.3 shows the results, including 20 AMs with highest 1−CIu and 4 AMs with

lowest 1−CIu. The gray bars are the results on the entire validation set Dv2 , while the red

and yellow ones are the results of 75% and 50% voice samples with lowest uncertainty

ŵ in Dv2 , respectively. The self-constructed female subset has the same size as the male

subset. Higher 1 − CIu indicates better results and the normalized error of 0 indicates

the chance-level performance. As suggested by our hypothesis testing formulation, the

AMs with 1 − CIu > 0 are considered predictable from voice. In this sense, we have

discovered a number of predictable female AMs (see the gray bars and their CIs in Fig.

5.3(b)). By filtering out the voice samples with high uncertainties, we achieve even higher

1−CIu (see the red and yellow bars and their CIs). The improved performance indicates

that more AMs are discovered as predictable from voice, including a few male AMs.

The complete results of all AMs are given in Fig. 5.4 and 5.5. The results empirically

demonstrate that the information of 3D facial shape is indeed encoded in the voices and

can be discovered by the proposed SfV.

To intuitively locate the predictable AMs on the 3D face, we visualize them in Fig.

5.6. We clearly observe that most of the predictable AMs are around the nose and mouth,

and many of them are shared between male and female subsets. This is consistent with
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(a) Results on the male subset

(b) Results on the female subset

(c) Results on the self-constructed female subset

Figure 5.3: The normalized errors and CIs of 24 AMs on (a) male subset, (b) female
subset, and (c) a smaller female subset.

the fact that the nose and mouth shapes affect pronunciation.

We also notice that the performance of the female dataset is much better than that of

the male dataset. To investigate whether the improvements come from the larger data

scale (364 males v.s. 662 females), we perform another set of repeated experiments on

a self-constructed female dataset, which has the same size as the male subset, i.e. 362

females. Surprisingly, the results on the new dataset are still better than those on the male

subset, as shown in Fig. 5.3(c). This is possibly because the female subjects have higher

nasalance scores on the nasal sentences [124] among other things, which provides useful

information for predicting the AMs around the nose. Here we note that our experiments
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Figure 5.4: The normalized errors and CIs of 96 AMs on the male subset.

have revealed that measurements around the nose are highly correlated to voice. More

investigations are left for future work.

On the other hand, some AMs have not been shown to be predictable from voice.

This observation suggests that voices may only associate with a few specific regions of

the 3D facial shape, like the nose and mouth. For the AMs with higher errors than

chance-level, we do not claim they are not predictable from voice. Instead, we fail to
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Figure 5.5: The normalized errors and CIs of 96 AMs on the female subset.

demonstrate their predictability based on our current empirical results. The possible

reasons include imperfect modeling, limited data, data noise, etc. Here we illustrate

the noises of landmark labeling in 3D facial shapes in Fig. 5.7. These noises may be

detrimental to model learning and generalization.
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Figure 5.6: Visualization of the predictable AMs. Blue box: male, Red box: female.

(a) (c)(b) (d) (e) (f)

Figure 5.7: (a)(c)(e) are three samples with incorrect landmark labeling. (b)(d)(f) are the
zoom-in views of (a)(c)(e), respectively. Red: the noisy label. Blue: the correct label.

5.3.2 The Reconstruction of 3D Facial Shape

In the last subsection, we have discovered a number of predictable AMs, from which we

choose 10 AMs with the highest 1− CIu for the subsequent reconstructions on male and

female subsets.

To evaluate the performance, we compute the per-vertex errors between the recon-

structed 3D facial shape and their ground truths. We also filter out a portion of voice

samples with the highest uncertainties and evaluate the errors in the remaining data.

The filter out rate is from 0% to 50%, as shown from left to right in Fig. 5.8.

Unsurprisingly, we achieve the lowest errors around the nose region for male and

female subsets, consistent with the AM estimations. Moreover, the reconstruction errors

decrease significantly by filtering out the voice samples with the highest uncertainties.

This indicates that the learned uncertainty is effectively associated with the reconstruc-

tion quality and allows the system to decide whether to trust the model or not.
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Figure 5.8: Error maps of the reconstructed 3D facial shapes for the male and female
subsets. From left to right: the error maps corresponding to 100% (i.e. the entire test set)
to 50% of the test set.

5.4 Discussion

We have proposed a shape from voice method, called SfV, for 3D facial shape recon-

struction from voice. SfV bridges the gap between voices and faces by discovering the

predictable AMs. Specifically, SfV consists of three key steps: (i) predicting AMs with

uncertainty learning, (ii) selecting AMs with hypothesis testing, (iii) reconstructing 3D

facial shapes with an optimization-based method. We have discovered a number of

AMs that are predictable from voice. These AMs are mostly located around noses and

mouths, which matches the voice production mechanism very well. We also achieved

improved reconstruction on female noses based on the predictable AMs.



Chapter 6

Conclusions and Future Directions

6.1 Conclusions

In this thesis, we have focused on the problem of reconstructing human faces from

voices. Specifically, we have presented how we approach this goal in a step-by-step

fashion, summarized as follows.

• We have presented a disjoint mapping framework, called DIMNet, for matching

voices to 2D face images. DIMNet can be viewed as a nonparametric approach

for generating faces from voice. It can recognize the associations between voices

and faces with high accuracy. Our experiments on several stratified evaluation sets

have demonstrated that this approach achieves human-level performance.

• We have proposed a generative approach for reconstructing 2D face images from

voice. The reconstructed faces are perceptually plausible and have identity associ-

ations with the true speakers. We have also illustrated the use of this approach in

a real world application for public education.

• We have proposed a conditional estimation framework, called CEST, for 3D face

reconstruction from video. CEST achieves more accurate reconstructions than state

87
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of art techniques, and can be used for building audiovisual datasets with paired

voices and 3D faces from online video data.

• We have presented a framework for reconstructing 3D facial shapes from voice

based on anthropometric measurements. We have discovered many interesting

associations between voices and faces. In particular, we observe strong identity

associations between voices and the shapes of noses, which are different from the

linguistic or affective associations. We hope our work can be insightful in under-

standing the associations between voices and faces and encourage more progress

in this research topic.

6.2 Future Directions

The performance of face reconstruction from voice can be further improved from many

perspectives. We summarize some of them below.

6.2.1 Data

More data. Reconstructing faces from voice is still at a very early stage, as illustrated

in the Fig. 6.1. The largest dataset that we have used is still limited to only several

hundred speakers. We believe that the performance of our proposed approaches can be

significantly improved if we scale the dataset to several thousand speakers (or more).

In the meantime, it is also important to balance the datasets by including sufficient

samples from different demographic groups. This would be useful in the performance

of stratified experiments and investigations of fairness issues.

Completed facial topology. The current topology of the 3D face does not include the

tongue and neck. It would be interesting to include these as well, since they are highly

important articulators. Discovering predictable measurements on them is expected to

improve the quality and accuracy of the reconstruction. This will obviously reveal more
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Figure 6.1: Illustration of the current stage of research.

audiovisual associations between voices and faces. By including more and more articu-

lartors in our framework, the facial topology can be accurately completed.

6.2.2 Method

Robust voice features. In this work, we adopt log Mel-spectrograms as the inputs to

CNNs. These voice features yield the current best performance in our experimental

settings. However, the Mel-spectrogram only contains the magnitudes of the frequency

response, and the phase information is lost. So it is worth exploring the raw waveform

as input, and using a voice encoder like SincNet [125] with it.

On the other hand, it is also promising to consider signal processing based acoustic

features derived from the temporal domain (signal energy, zero-crossing rate, loudness,

etc.), spectral domain (fundamental frequency, harmonics, spectral flux, etc.), composite

domain (rhythm, melody, etc.), or even from the perceptual domain (voice qualities such

as nasality, raspiness, breathiness, roughness, etc.).

Robust facial features. The anthropometric measurements that we used fall into

distance, proportion, and angle categories. These categories are sensitive to the accuracy

of 3D shape registration. If we can calibrate the registration or develop features (e.g.

curve-based or surface-based features) that are less sensitive to noise in it, we should be

able to discover more predictable facial features through empirical experiments.

It is also helpful to explore what facial features affect the reconstruction most and

conversely, what reconstruction methods can fully make use of such facial features.
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These directions can be explored even without any voice data. Observations in this

context are expected to be very useful for enhancing the quality of reconstruction.

Self-supervised pretraining. In recent years, self-supervised pretraining has been an

emerging topic and has demonstrated significant performance improvements on many

speech and vision problems, especially those tasks with limited data. We can adopt a

pretrained model in AM estimation to improve the model generalization and discover

more predictable AMs.

6.2.3 Evaluation

Evaluation metrics. There are currently no objective measures for evaluating the ac-

curacy of 2D face reconstruction. In this thesis, we have focused on the problem of

evaluating 3D face reconstruction instead. The most commonly used metric for evaluat-

ing 3D facial shapes is either based on vertex-to-vertex or vertex-to-mesh comparisons.

Such comparative metrics are sensitive to vertex permutation and are often not in agree-

ment with human perception of shape, which is very subjective. For this reason, we

can consider alternative representations for 3D facial shapes, e.g. implicit function [126],

volumetric representation [127], etc. More importantly, it is necessary to develop robust

quantitative metrics to evaluate the visual similarity of 3D facial shapes.

Voice analysis. So far, what aspects of the voice signal are useful for face reconstruc-

tion is not fully explored. Future research will explore how the generated face changes

with evidences in different durations of the voice signal, and with different articulatory

units such as phonemes, syllables, etc. It is desirable to associate the reconstructed faces

with specific voice features, since these associations can provide more insights for under-

standing the connections between voices and faces. The effect of reverberation, different

kinds of noises and channel conditions on the quality of facial reconstruction can also

be explored.
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6.2.4 Reconstruction of Voices from Face

It is interesting to explore the reverse problem: that of generating voices from facial

images, or face-based voice conversion [128]. We believe that more identity associations

between voices and faces can be discovered by studying the problem from this perspec-

tive. The face-to-voice pipeline can also be incorporated into the existing voice-to-face

framework, enabling cycle consistency for paired learning.
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