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i

Abstract

Machine Learning (ML) is a powerful tool that can assist humans in doing a wide variety of tasks. How-

ever, typical ML paradigms tend to remove the human element from the equation as frequently as possible

in the name of automation. This approach may be useful for creating powerful solutions to a selection

of pre-defined tasks, but it has lead to a dearth of methods for quickly training a machine to assist a hu-

man domain expert in a task previously undefined for ML. This problem is compounded in cases where

data for the intended task are scarce or proprietary, since typical ML paradigms rely on large amounts

of training data. To address this and other related issues with typical ML paradigms, I propose an Inter-

active Machine Learning (IML) paradigm in which a machine classifier is trained to perform a new task

alongside a human domain expert as part of his or her operational workflow.

This proposal includes a description of the IML paradigm and how it differs from other existing

paradigms, as well as preliminary results showing the efficacy of the IML paradigm compared to typical

supervised training. It also includes three pieces of proposed work that build on the existing IML pipeline

to jointly optimize the performance of the classifier being trained and the amount of feedback required

of the domain expert. These include a mathematical formulation of the IML objective function based on

the joint optimization problem, a method for handling weighted error functions and imbalanced class

distributions, and methods for exploiting the temporal nature of the IML training process.
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Chapter 1

Introduction

The common approach adopted by many modern Machine Learning (ML) training paradigms is to train

classifiers on massive amounts of data with no intervention from the end user. The advantages of training

in this fashion are readily apparent, since reliable, off-the-shelf solutions to problems are much more

convenient to a user than something that must be configured or calibrated.

Despite this convenience, however, this type of solution is not optimal for every situation. Appli-

cations where a human expert is working alongside an ML classifier to perform a highly specialized,

error-sensitive task are a prime example of situations where the typical training paradigm is clearly dis-

advantaged. Classifiers trained on a massive amount of widely ranging data fall short for this type of

application in the following ways. First, these classifiers are not specialized, as they often sacrifice preci-

sion in a limited problem space for reasonable performance in the larger problem space, which can be a

significant risk for sensitive tasks. Second, off-the-shelf or pre-trained solutions do not allow for continual

adjustment. This can be a serious issue, as unseen or unexpected data will inevitably exploit weaknesses

in the pre-trained classifier if it is unable to adapt. Furthermore, the task itself may not be well-defined

before the expert begins working on it, requiring continued tuning and tweaking until it is defined. Fi-

nally, removing user input from the pipeline can be detrimental to classification performance because the

user, in this case, is a domain expert who defines the task and can provide crucial operational information

about the data.

To address these issues, I propose an Interactive Machine Learning (IML) paradigm (see Fig. 1.1)

which trains and continually adapts a classifier to perform a custom, specialized task given frequent feed-

back from a human domain expert working on the same task. This proposal is intended as a solution

for binary audio detection tasks, but it will lay the groundwork for application to any detection task. In

this paradigm, a seed classifier starts with a very limited ability to perform the task, then uses a series of

1
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Figure 1.1: A high-level view of the IML paradigm. Unlabeled data (X) from potentially different distri-
butions (Dn) for a single task (T1) are evaluated over time by the classifier. Some adaptation labels (Y) for
the operational data are provided by the domain expert. This way, the classifier is trained on a labeled
subset of the operational data, and then used to classify the rest.

periodic, limited interactions with the domain expert to shape itself incrementally into a tool that can ef-

fectively aid the domain expert in his or her work. Interactions with the domain expert include initializing

the classifier on a small bootstrap dataset prepared by the expert for the operating environment, querying

the expert about samples that might be informative (i.e., Active Learning (AL)), and collecting corrective

feedback from the expert about the classifier’s predictions (i.e., Corrective Feedback (CF)). The goal of

the paradigm is to optimize the tradeoff between classification performance (i.e., how much the classifier

reduces the domain expert’s workload) and the amount of human intervention required (i.e., how much

the training procedure increases the domain expert’s workload).

The IML paradigm is expected to be successful for two primary reasons. First and foremost, the data

used to train and adapt the classifier in the IML paradigm are sampled by the domain expert directly from

the evaluation data, which nearly eliminates any possibility of domain mismatch. Secondly, the paradigm

leverages pretrained embeddings, which provide a reliable representation on which a small classifier can

be initialized and adapted to perform each task quickly and precisely [1].

To guarantee the success of the IML paradigm, however, the question of how to optimize the tradeoff

between classifier performance and the amount of required human intervention must be answered. This

is a question unique to the IML paradigm and the primary research question my proposed thesis will

address. As such, work for the thesis will include contributions in several related areas, including the

characterization of the tradeoff with a mathematical classifier, methods for choosing AL queries to balance

false negative and false positive errors, and methods for adjusting AL queries over time in the IML pipeline

to optimize the tradeoff.
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The remainder of this document is organized as follows. Chapter 2 clarifies the difference between IML

and other similar ML paradigms. Chapter 3 describes the details of the IML paradigm in depth. Chapter

4 outlines the proposed work that will contribute to the thesis. Finally, Chapter 5 shows the timeline in

which the work will be completed.



Chapter 2

Related Work

The IML paradigm is similar to some existing ML training paradigms in many ways, but ultimately

unique. This chapter contrasts the IML paradigm with the three most similar existing paradigms, includ-

ing Continual Learning (CL), Domain Adaptation (DA), and Active Learning (AL).

2.1 Continual Learning

Figure 2.1: Contrasting CL (left) and IML (right). CL learns many tasks (Tn) over time and separates
unlabeled test data from labeled training data. IML only learns one task (T1) and obtains labels (Y) for a
subset of the training data from the domain expert.

CL, which is also frequently referred to as Lifelong Learning and Incremental Learning, is defined in

[2] as “an adaptive algorithm capable of learning from a continuous stream of information, with such

information becoming progressively available over time and where the number of tasks to be learned

(e.g., membership classes in a classification task) are not predefined. Critically, the accommodation of new

information should occur without catastrophic forgetting or interference.” Here, catastrophic forgetting

4
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refers to when performance on an old task drastically deteriorates when a new one is learned. Interference

is any significant decrease in performance on old tasks, whether large or small.

IML and CL share a similar conceptual goal, which is to allow a classifier to accrue knowledge and

ability over time. However, the two paradigms differ significantly in their definitions of knowledge and

ability, and, thus, how these traits are measured. Specifically, CL typically measures how well the classifier

has learned to perform a set of tasks over time, while IML tracks the classifier’s performance on a single

task over time. Additionally, CL is concerned with catastrophic forgetting. IML, on the other hand, can

still be considered successful if it forgets past knowledge, so long as forgetting does not affect future

performance.

It is also important to note that CL is not defined to include a human interaction component, but

human interaction is an integral part of IML, as shown in Fig. 2.1. IML also does not have a held-out test

set, since a subset of the operational data is used for supervised adaptation.

Despite the clear differences between CL and IML, some CL concepts may prove effective when applied

to the IML paradigm. For example, CL methods that address catastrophic forgetting by keeping the most

informative training samples in memory [3, 4, 5] could be useful in selecting samples to be labeled for the

IML adaptation cycle.

2.2 Domain Adaptation

Figure 2.2: Contrasting DA (left) and IML (right). DA usually transfers the classifier from the source
distribution (DS) to the target distribution (DT) in one step and does not obtain labels from a domain
expert.

DA is the process of adapting a classifier originally trained on a task on data from a source distribution

to perform the same task on data from a separate target distribution while mitigating any performance
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degradation caused by domain mismatch.

IML differs significantly from DA in that IML is an iterative process that occurs while the classifier is

being trained and used, while DA is generally a one-time process that occurs after the initial training on

the source distribution but before deployment of the classifier. The only significant similarity between IML

and DA is the concept of adapting to a new distribution which was previously unseen by the classifier.

It should be noted, however, that IML is quite similar to a related subfield of DA called Continuous

Domain Adaptation (CDA) [6, 7, 8]. In CDA, the classifier is adapted incrementally to handle a continu-

ously evolving data distribution. This type of incremental adaptation is a key piece of IML. Additionally,

CDA algorithms often include methods to automatically track potential drifts in the data distribution, a

feature which might greatly benefit IML. However, CDA still lacks the human interaction component of

IML, as many existing CDA methods are completely unsupervised.

2.3 Active Learning

Figure 2.3: Contrasting AL (left) and IML (right). AL queries an oracle for a limited set of labels (Y) to
optimize performance on fixed held-out test data for a single task (T1). IML uses AL as one method of
obtaining adaptation labels.

AL is an ML paradigm where an algorithm forms an optimal set of labeled training data from a larger

set of unlabeled training data by querying an oracle (e.g., human annotator) about a limited number of

labels. The goal of AL is to produce a classifier with a high level of accuracy using a small number of

queries [9, 10].

A survey of AL methods refers to the approach to sampling unlabeled data points about which to

query the oracle as the “query strategy" [9]. In this proposal, I refer to this algorithm as the AL sampling

method. According to the survey, there are a number of classes of AL sampling methods, including
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(but not limited to) uncertainty sampling, expected model change, variance reduction, and estimated

error reduction. Uncertainty sampling methods [11, 12, 13, 14], which are the most common method

for AL sampling, attempt to identify the samples which are most likely to be classified incorrectly by the

classifier, as measured by some objective metric. Expected model change methods [15] choose the samples

that would change the model parameters the most if the labels for those samples were known. Variance

reduction methods [16, 17, 18] leverage statistics to choose the samples that are predicted to minimize the

variance of the classifier. Finally, estimated error reduction methods [19, 20, 21] work the same way as

variance reduction methods, but the objective is to minimize the putative classification error rather than

variance.

AL methods are used extensively in the IML paradigm as one of the channels for interacting with the

domain expert. Note that IML contains AL in addition to other components (e.g., CF), so IML and AL are

indeed different concepts. Also note that IML operates on a continually evolving set of data that changes

as the domain expert finishes analysis and moves on. The assumption that the data are continually

changing is not typically present in AL, and training progress is usually tracked using a held-out test set.



Chapter 3

Formulating Interactive Machine Learning

In contrast to existing Machine Learning (ML) training paradigms, I propose an Interactive Machine

Learning (IML) paradigm for binary audio detection tasks. As stated in the introduction, IML is in-

tended to act as a framework to address the lack of human interaction, environmental specialization,

and adaptability in existing ML training paradigms. The IML paradigm serves as a method of training

ML classifiers to aid a human operator in the task he or she is performing, with the objective of jointly

minimizing classification error rate and the amount of feedback required of the operator.

This chapter describes the IML paradigm in detail.

3.1 Overview of the IML Paradigm

The IML paradigm is designed to train a classifier to perform a detection task as part of the operational

workflow of a human with expertise in the task. That human is denoted here as the domain expert. The

training paradigm allows the domain expert to define a task and teach a classifier to do that task precisely

enough to yield a significant reduction in his or her workload.

The domain expert interacts with a classifier and teaches it to perform a task by periodically providing

ground truth labels for the operational data in the specific operating environment where he or she is work-

ing. The operating environment is defined as a sensor in a constant location recording events that may or

may not be changing. In an audio detection task, for example, an operating environment would consist

of a microphone placed in a fixed location in an auditory scene with various auditory events happening

around it.

The labeled data provided by the domain expert are added to a growing pool of adaptation data used to

fine-tune the classifier during each session. A session is simply a predetermined length of audio presented

at one time. For each session, the domain expert provides two forms of feedback: Active Learning (AL)

8
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Figure 3.1: Overview of the IML paradigm.

feedback and Corrective Feedback (CF). AL feedback obtained as the domain expert responds to queries

made by the system about the current session. CF is provided by the domain expert after he or she has

seen the predictions. In operationally realistic conditions, the domain expert is expected to only review

samples predicted to be from the target class, so CF will only be provided for these samples. This is an

opportunity for the domain expert to correct repeating false positive errors. Since the focus of CF is the

non-target samples, AL is used to acquire labels for target samples.

At the beginning of operation in a new environment, the domain expert also provides a bootstrap corpus

of data for the purpose of initializing a classifier. The bootstrap corpus is characterized as being equally

representative of both classes of the binary detection task and serves as the seed for the adaptation data

pool.

The following subsections describe in detail the specifics of the IML paradigm and how it is used to

train classifiers for different tasks.

3.2 Specification of the IML Paradigm

Fig. 3.1 illustrates how each component of the IML paradigm fits together, the distinction between the

initialization phase and the adaptation phase, and the procedure for extracting task-related information

from the domain expert. This section provides a detailed explanation of each of these components.

The first step in the process is initializing the classifier to a point where it can be used to make

predictions in the operating environment that are not completely random. This is achieved by training a

seed classifier on the bootstrap corpus. Since the bootstrap corpus is taken directly from the first sessions
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of the operating environment, the seed classifier is expected to perform reasonably well on the early

sessions.

After the seed classifier has completed the initialization phase, it enters the incremental adaptation

phase. Incremental adaptation consists of performing a set series of steps for each session in the operating

environment. The first step is to add to the pool of labeled adaptation data by posing a limited number

of AL queries to the domain expert about the ground truth labels for data from the current session. The

subset of samples to be presented for queries is determined by an algorithm that is part of the IML

pipeline. Methods for efficient AL sampling are explored in detail in Section 3.7.

After AL sampling, the classifier is fine-tuned using labeled data from the adaptation data pool. The

classifier can be fine-tuned with all available data in the pool or selected data points from the pool.

The adapted classifier is then used to generate predictions for the current session. These predictions

may optionally be adjusted using unsupervised learning or posterior error correction methods. The clas-

sifier’s predictions for the current session are then presented to the domain expert for analysis.

In the course of their analysis, the domain expert will provide CF to the classifier, which serves as

another contribution to the pool of labeled adaptation data. CF may come in the form of explicit CF

from the domain expert as he or she attempts to correct repeated mistakes made by the classifier. It may

also come in the form of implicit CF based on how the domain expert interacts with the data on the

user interface. For example, the domain expert may skip a section of audio, indicating that it contains

no important information for the task, and therefore no target samples. Since the detection tasks are

constrained to be binary tasks, any indication of the class a sample does not belong to is just as good as

an indication of the true class.

3.3 Simulating Human Feedback

For the purposes of developing and testing the IML paradigm, it is far more convenient to simulate the

feedback a domain expert might provide than to have a domain expert present for every experiment.

Formulation of the bootstrap corpus, AL sampling, and CF can be reasonably simulated using fully

annotated development corpora.

The bootstrap corpus is intended to come from annotations made by the domain expert at the begin-

ning of the operational environment. It is also intended to contain representative samples from both the

target and non-target classes. Thus, a simulated bootstrap corpus can be created by looking up and stor-

ing the labels of the first N samples in the operating environment for each class, where N is a parameter

that can vary based on the task or the experiment being performed.
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For AL sampling, a response to a query can be simulated simply by looking up the corresponding

ground truth label of the sample in question. For each session, M AL samples will be labeled and added

to the adaptation data pool in this way, where M is a parameter that can vary depending on the task.

Implicit CF may take different forms in practice, depending on the task, the domain expert, and the

interface between the machine and the user. However, explicit CF can be simulated somewhat realistically

for a session by correcting sufficiently large regions of incorrect predictions in temporal order up to a

specified limit. Specifically, the first C clusters of L consecutive incorrect predictions will be corrected and

added to the adaptation data pool with the corresponding ground truth labels. If fewer than C clusters of

L incorrect predictions exist, then all such clusters are corrected. Again, C and L are parameters that can

be adjusted based on the task.

3.4 Application to Audio Detection Tasks

To show that the IML paradigm is practically useful, I intend to apply it to three different tasks: Voice-

type Discrimination (VTD), Sound Event Detection (SED), and Spoof Detection (SD). This section describes

each of these tasks and how they are adjusted to fit into the IML paradigm, as well as how a task trained

in the paradigm is evaluated.

3.4.1 Voice-type Discrimination

VTD is the relatively unexplored task of identifying regions in audio recordings that contain live speech.

Live speech is defined here as speech produced spontaneously by a person while he or she is in physical

proximity to the recording device. This means that speech being played through a loudspeaker into the

recording device is not considered live speech, whether that speech was pre-recorded or broadcast from

another location [22].

For VTD, the target class is composed of all samples containing live speech. Any sample that does not

contain live speech is considered to be part of the non-target class. Samples are pre-defined as abutting

segments of audio, five seconds in length. An operating environment for the VTD task is a single micro-

phone array location in a specific room. A session is defined to be one hour long, which means there are

720 samples per session.

Data for the VTD task come from two corpora: the SRI Corpus and the Lionbridge (LB) Corpus. The

SRI Corpus is composed of recordings made in four rooms, recorded from five microphone array locations

in each room, resulting in 20 operating environments. The LB Corpus comes from recordings made in

three rooms from seven microphones in each room, resulting in 21 operating environments. Between the
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two corpora, there are 4,583 hours of data split into 41 environments of varying length. The corpora

contain 896 hours of live speech audio produced by 75 unique speakers in the English, Mandarin Chinese,

Spanish, and Russian languages.

In the VTD task, it is much more detrimental to the operation to miss target speech than it is to

misclassify non-target audio. As such, the metric used for evaluation is the Detection Cost Function

(DCF) shown in the equation below, where the False Negative Rate (FNR) is weighted three times as

much as the False Positive Rate (FPR). To calculate an aggregated DCF over all sessions in a VTD operating

environment, the number of false positive and false negative errors and true positive and true negative

samples are accumulated after predictions are made for each session. These four numbers are used to

calculate FNR, FPR, and then DCF.

3.4.2 Sound Event Detection

SED is the task of identifying the temporal location (i.e., onset and offset time) of a sound event in an

audio recording [23]. A sound event can take the form of any type of sound, like a dog barking, water

running, or a gun firing. In some contexts, SED is viewed as a multi-class problem where both the type

of sound event and the temporal location of the sound event are to be identified. Here, SED is limited to

the binary classification problem of identifying whether a pre-specified type of sound event occurred in a

given audio region. Note that SED where the target sound event is live speech is essentially the same task

as VTD.

Operating environment, session, and target classes for SED are defined very similarly to VTD. The

target class consists of all samples containing the specified sound event; the non-target class is all the

samples that do not contain that type of sound event. The operating environment is a microphone array

in a fixed location within a single auditory scene. SED sessions are defined as sets of ten samples in a

fixed temporal order, where one sample is ten seconds of contiguous audio.

SED data comes from the SONYC Urban Sound Tagging (SONYC-UST) dataset [24], which is com-

posed of ten-second recordings of urban audio scenes by 60 different sensors placed throughout New

York City. SONYC-UST contains 51 hours of audio total (185,150 ten-second samples) spread across the 60

sensors (i.e., operating environments). This means each operating environment is composed of approxi-

mately 30 sessions on average. The dataset comes with annotations indicating the presence of eight coarse

classes of audio, any of which can be used as the target class.

The SED task is evaluated in the same way as VTD, using DCF aggregated over all sessions.
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3.4.3 Spoof Detection

Voice spoofing is the act of tricking a human listener or an Automatic Speaker Verification (ASV) system

by producing speech audio intended to sound identical to the speech of a specific speaker. SD is the task

of identifying whether a voice recording is bona fide speech produced by the intended speaker or spoofed

speech.

The ASVspoof 2019 physical attacks (PA) dataset [25] is used for the SD task. This dataset contains

bona fide samples from 107 different speakers and spoofed samples in the form of voice recordings from

the target speaker played back through a loudspeaker. Bona fide and spoofed samples are recorded in

27 different acoustic conditions, meaning that the dataset can be separated into 27 distinct operating

environments. There are approximately 200,000 utterances in the PA dataset. A session for this task

consists of 70 samples, resulting in 100 sessions per environment.

The evaluation metric for this task is the tandem Decision Cost Function (t-DCF) metric defined by the

ASVspoof challenge [26]. This metric adjusts the typical DCF function to fit the SD task by assigning a

higher weight to false positives than false negatives. t-DCF also combines the concepts of anti-spoofing

countermeasures (i.e., SD) and ASV into one metric.

3.5 Discussion on Architecture and Features

The classifier used in the IML paradigm should be lightweight, easy to adapt, and capable of achieving a

very low error in the operating environment given sufficient adaptation data. As such, I propose applying

the same simple neural network architecture to each task. This architecture, shown in Fig. 3.2, is composed

of a contrastive network and a classifier network. The contrastive network performs transfer learning on

the input features to project the representation into two distinct clusters using a contrastive loss [27]. The

rest of the network then classifies the projected features into the target and non-target classes.

A strong input representation is crucial for the success of such a simple classifier. It has already been

shown that x-vectors [28] work quite well for the VTD task. Since SED is not necessarily a speech-related

task, the generic audio representation CLAP [29] will be used as the input feature. SD, like VTD, is a

speech task, but it may benefit from information other than just speaker identity. Thus, WavLM [30]

embeddings will be used as the SD input feature.



CHAPTER 3. FORMULATING INTERACTIVE MACHINE LEARNING 14

Figure 3.2: The contrastive classifier architecture

3.6 Benchmarking

Typical ML solutions to each of the tasks outlined in Section 3.4 already exist. To substantiate the claim that

the IML paradigm is advantageous compared to these solutions, it is important to make a fair, objective

comparison in terms of performance and the amount of labeled data used for training or adaptation. Since

the IML paradigm uses a subset of the operational data for initialization and adaptation, it could be said

that IML is “testing on the training data". To handle this issue, all samples used for adaptation are not

counted during evaluation. That same set of data with adaptation samples removed is used to evaluate

both the baseline classifier and the IML-trained classifier.

In the next section, preliminary IML results for the VTD task are presented and compared to a strong

ML baseline classifier that is trained on a large amount of out-of-domain (OOD) data. The input to

this classifier is embeddings from three networks trained on the VTD task, including embeddings from

STRFNet [31], a WavLM-based network, and a pre-trained contrastive classifier that operates on x-vectors.

These embeddings are then fused together using feed-forward layers, as shown in Fig. 3.3.

3.7 Preliminary Results

The infrastructure required to train a classifier with the IML paradigm has already been implemented,

and preliminary experiments have been conducted on seven operating environments of the VTD task.

This section compares training the contrastive classifier with the IML paradigm to training with a typical

supervised paradigm on a large amount of out-of-domain (OOD) training data. The performance of the

fusion model referenced in Section 3.6 is also included as a stronger baseline.

Experiments were run on the VTD task where AL samples were chosen randomly. Additional VTD
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Figure 3.3: The architecture of the fusion classifier used as an ML baseline. Each of the embedding
extractor blocks represents a neural network pre-trained on the VTD task.

experiments were also run using AL sampling methods based on Softmax score and negative energy

certainty score. These methods are described in the following subsections. All numerical results are

displayed in Table 3.1, and the trends across time are shown in Fig. 3.4. The vertical axis of Fig. 3.4 refers

to the aggregated DCF accumulated across all sessions up to the corresponding session on the horizontal

axis.

Architecture Training paradigm Mean training set size (hours) DCF
Contrastive ML 2292 0.5514

Fusion ML 2292 0.0704
Contrastive IML, Random AL 1.2 0.0707
Contrastive IML, Softmax AL 1.2 0.0521
Contrastive IML, Negative energy AL 1.2 0.0591

Table 3.1: Comparing typical supervised training to IML training with various AL sampling methods.

The IML feedback parameters for the results reported here are 100 bootstrap samples (50 from each

class), and eight AL samples per session. CF was not used in these experiments for reasons discussed in

Section 4.2.

The IML paradigm has yet to be evaluated on tasks other than VTD. Thus, I will apply the paradigm

to both SED and SD according to the specifications above as part of the thesis work. The bulk of the

proposed research follows in Chapter 4.

3.7.1 Softmax Score AL Sampling

The Softmax score is an uncertainty sampling method that uses Softmax output as a basic measure of a

neural network classifier’s confidence in its predictions. Since the output of the final Softmax activation
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Figure 3.4: Aggregated DCF results using different AL sampling methods. Each line indicates the DCF
accumulated over all sessions up to the session indicated on the horizontal axis, averaged over the first 53
sessions of seven environments.

layer of a classifier is a probability distribution across all possible classes, the distributions with a single

clear maximum class probability are considered more confident, while distributions with maxima that are

less clear are considered less confident. Hence, a confidence score based on Softmax output distributions

can be defined for each data point as the maximum value of the distribution for that data point. Data

points with low scores do not have clear maxima, indicating that the network was less confident in the

decision [32].

3.7.2 Negative Energy Certainty Score AL Sampling

The negative energy certainty score is another uncertainty sampling method [33]. Here, rather than relying

on the Softmax activation to normalize the network output into a probability distribution, raw network

output from directly before the Softmax layer is used as a measure of energy produced by the network

for a given input. During training, neural networks maximize the amount of energy produced by samples

from the training distribution, but samples from outside that distribution are likely to yield less energy.

As such, it is likely most useful to query the samples with the lowest energy, since those are the samples

with which the network is least familiar.

Empirical studies show that negative energy certainty score outperforms Softmax score for OOD de-

tection [33]. It also works quite well as an AL sampling method [34].



Chapter 4

Proposed Work

The IML paradigm acts as a framework under which many additional scientific contributions can be

made. This chapter outlines the research topics related to IML that I intend to include in my thesis work.

4.1 Characterizing the ML Objective

As stated above, the objective of the IML paradigm is to jointly minimize the classification error and the

amount of effort required of the domain expert. These two aspects are in opposition to one another, as

more labeled data provided by the domain expert will inevitably lead to lower error, and less feedback

will lead to higher error. Thus, optimizing IML training equates to finding the desired tradeoff between

these two aspects.

A numerical measure of this objective has yet to be defined. An objective function must be defined

in order to evaluate the IML training procedure. An objective function is also key to predicting model

performance based on different parameter settings. This is especially important when deciding the size

of the bootstrap corpus, and in determining when the classifier is accurate enough to be trusted by the

domain expert.

This section proposes a simple objective function, as well as a mathematical model of the relationship

between this objective, classification error rate, and the amount of labeled data required of the user.

4.1.1 Defining the IML Objective

The objective function for IML can be stated as in Eq. 4.1, where L is the overall objective to be minimized,

LE is the classification error, and LF is the amount of required feedback. α is a weighting parameter that

can take values between 0 and 1. This weighting is highly dependent on the sensitivity of the operation.

As such, α should defined by the domain expert.

17
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L = αLE + (1 − α)LF (4.1)

4.1.2 Modeling Performance and Feedback

The objective function is useful as an evaluation metric. However, without considering the relationship

between error and feedback, the objective could be arbitrarily minimized to zero by setting both LE and

LF to zero. This, of course, is not possible because LE and LF are negatively correlated, which adds a

constraint to the objective function.

The relationship between LE and LF can likely be approximated with a mathematical model. Con-

ceptually, it must hold that when no feedback is provided, IML training will yield a model that achieves

completely random performance since it has not been trained. It must also hold that when an infinite

amount of feedback is provided, a sufficiently expressive classifier will achieve perfect performance. As

such, the relationship between error and feedback might look something like Eq. 4.2. Here, ϕ denotes

random performance (presumably 0.5 for binary classification tasks) and λ is the exponential rate at which

error drops as feedback increases.

LE = ϕe−λLF (4.2)

Weighted errors like DCF should also be considered. As such, the error rate can be rewritten in terms

of a weighted combination of false negative errors (En) and false positive errors (Ep), like in Eq. 4.3. In

the case of DCF, the weight parameter β would be set to 0.75.

LE = βEn + (1 − β)Ep (4.3)

False negatives and false positives may be influenced differently by the task, parameter settings, class

distribution, etc. Thus, it is advantageous to model the two error types separately, as below. Here, each

error type is controlled by its own decay parameter, λn or λp.

En = ϕe−λnLF (4.4)

Ep = ϕe−λpLF (4.5)

Finally, putting everything together, the function relating error and feedback can be written as

LE = βϕe−λnLF + (1 − β)ϕe−λpLF . (4.6)
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Figure 4.1: Example error vs. feedback curve modeled by Eq. 4.6.

An example curve with decay parameters calculated from experimental results is shown in Fig. 4.1.

Here, β is assumed to be 0.75 since the error metric for VTD is DCF, and ϕ is set to 0.5. λn and λp are

estimated based on the measured error rates and amount of feedback.

4.1.3 Optimizing the IML Objective

In IML, the primary tunable parameter is the amount of feedback to request. Since the classification error

is now defined as a function of feedback, the objective can be rewritten by substituting Eq. 4.6 into Eq.

4.1, as follows:

L = α
[

βϕe−λnLF + (1 − β)ϕe−λpLF
]
+ (1 − α)LF. (4.7)

Combining the objective function with the performance-feedback model in this way is meaningful,

since Eq. 4.7 can now be optimized by changing only the amount of feedback required. This is a differen-

tiable function with a clear minimum, as shown in Fig. 4.2. This minimum, which equates to about five

samples per hour, is much lower than the eight AL queries per hour that were requested in this example

run.

4.1.4 Proposed Work

I propose the above objective function to evaluate the IML paradigm, as well as the underlying mathemat-

ical model which can be used to predict IML performance and estimate the optimal amount of feedback

to request from the domain expert. As part of this proposed work, I intend to gather a wide range of

performance results to verify this model and adjust it as needed. The accuracy of the mathematical model

will be measured by goodness-of-fit for the collected data points.
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Figure 4.2: Objective function vs. feedback curve and suggested optimal feedback rate.

Once the mathematical model is verified, its practical applicability must be established. The model will

be useful in a real-world setting if the λ parameters can be estimated without oracle information outside

of what is provided via AL and CF. If the parameters can indeed be estimated based on the classification

error on adaptation labels, it can be directly applied to estimate the ideal size of the bootstrap corpus and

the ideal number of AL queries to pose per session during the adaptation cycle.

4.2 Controlling Errors with AL

One crucial missing piece of the IML puzzle is handling imbalance, both in the evaluation metric and

in the data distribution. All audio detection tasks discussed in Section 3.4 use some form of weighted

error function to punish either false negatives or false positives much more severely than the other. It is

also often the case that the target class occurs relatively rarely in the data, which necessitates automatic

detection methods to sort through the data in the first place.

The CF sampling piece of the IML pipeline contributes even more imbalance. While it does provide

valuable annotations for adapting the classifier, the annotations are only for false positive (i.e., non-target)

samples. This means that acquiring enough labeled target class samples to balance out the adaptation

data fall squarely on AL sampling.

Most AL methods do not directly account for these imbalances, but there are a few rare exceptions. For

example, [35] and [36] use AL to prune a labeled imbalanced dataset into an optimal balanced dataset.

The weighted error problem is addressed in [37] by a special AL objective function referred to as Cost

Overlapped Active Learning (COAL), which attempts to use regression to estimate the cost of each sample

directly. Additional work even breaks down the assumption that the oracle is a perfect annotator and

attempts to assign costs to certain samples accordingly [38].
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4.2.1 Observations

AL Method Metric Overall Score

Random
DCF 0.0707
FNR 0.0818
FPR 0.0375

Softmax
DCF 0.0521
FNR 0.0601
FPR 0.0282

Negative Energy
DCF 0.0591
FNR 0.0712
FPR 0.0227

Table 4.1: FNR is higher than FPR in even the best cases.

Table 4.1 shows that, even for the AL sampling methods that achieve competitive scores for the VTD

task, the FNR is always higher than the FPR, which is completely the opposite of the desired result. This is

likely a side effect of the significant class imbalance in the VTD data. Nevertheless, it should be noted that

not only is the FNR higher, the absolute number of false negative predictions is also consistently higher

than the number of false positives. This indicates that there is something fundamental missing from the

current AL formulation.

4.2.2 Preliminary Experiments

A massive class imbalance can be created by switching off the AL component of the pipeline, allowing

labeled data to enter the adaptation pool only via bootstrap corpus creation and CF. As expected, the

performance of this setup displayed in Table 4.2 is quite poor. While it does learn to reject non-target

samples, it does not learn to accept target samples, resulting in a very high FNR and DCF.

Sampling method DCF FNR FPR
AL Only 0.0521 0.0601 0.0282
CF Only 0.5446 0.7204 0.0172

Table 4.2: The effect of removing AL feedback.

4.2.3 Proposed Work

I propose an AL method that automatically adjusts for class imbalance in a way that optimizes classifica-

tion error for the task and data at hand. This adjustment will be achieved by making the sample selection

algorithm aware of the current class balance in the adaptation data pool.

This piece of proposed work will be accomplished in two parts. First, before the itself method can be

developed, experiments with various distributions of target and non-target samples in the adaptation pool
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Figure 4.3: The IML pipeline with sources of change highlighted.

will need to be performed to show the effect of different balances on the two error types and overall error.

Second, after the ideal balance has been illuminated by the experiments, the method will be developed

with the ideal balance as a target. AL will be used to achieve this target by selecting more samples from the

under-represented class based on the predictions of the model. For example, if more target class samples

are needed, the majority of AL queries will be made about putative target-class samples, as predicted by

the classifier.

The method will be evaluated by the IML objective function defined in Eq. 4.1 with a fixed α parameter.

In other words, if the proposed AL method reduces classification error using the same amount or less

feedback, the method will be considered a success.

4.3 Optimizing the Objective over Time

One of the unique aspects of IML is how it uses AL methods over an evolving set of data. Currently, this

aspect of the training process has only been used as a method of gathering feedback. However, it has

potential to become another significant advantage of IML if it is exploited properly.

This section describes the types of changes that occur during IML training, the tools available to

address the changes, and proposed methods of measuring and addressing the changes.

4.3.1 Sources of Change in IML

There are three expected sources of change in the IML paradigm, each of which is highlighted in Fig. 4.3.

Each type of change is described below.
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Classifier Changes

The classifier begins as a neural network with randomly initialized weights. As it is introduced first to the

bootstrap corpus and later to the adaptation data, the weights adjust to optimize the performance on the

classifier.

Tracking when the classifier has reached a level of reliable performance is of practical importance for

reasons discussed in Section 4.1. The performance of the model is also important to the AL sampling

process, since the model generates the scores that are used to select which samples to query.

The capability of the classifier can be tracked as a function of the amount of adaptation data available.

The average negative energy confidence score can also be used to estimate the general confidence of the

classifier on the current session data or the available adaptation data.

Current Session Data Changes

The type of change that is the most detrimental to overall performance is the change in the distribution of

data in the current session. Even within a single operating environment, the data distribution can change

significantly enough to cause a large upswing in classification error.

Unsupervised methods for tracking data drift are common in CDA. These methods could be applied

directly to the IML paradigm. However, methods for adapting the classifier when data drift is detected

have not yet been developed for IML.

Adaptation Pool Changes

As the adaptation cycle progresses, more and more data are added to the adaptation data pool. More

adaptation data often results in a more robust classifier. However, there may be cases where some sessions

are similar to some previous sessions and less similar to others. In such cases, it may be beneficial to track

the similarity between the data in the current session and the data in the adaptation pool. A simple metric

for similarity would be the cosine similarity between feature vectors.

4.3.2 Points of Control in IML

There are two points of direct control in the IML pipeline, both of which are highlighted in Fig. 4.4 and

further described below. All other pieces of the pipeline as it currently stands are affected either directly

or indirectly by these two points of control. If the effects of these two points of direct control can be

characterized, they can be automatically adjusted during training to optimize the process.
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Figure 4.4: The IML pipeline with points of direct control highlighted.

AL Sampling

AL sampling can be controlled by the method used to determine which samples to query, as well as the

number of samples queried. The observations that follow indicate ways in which the sampling method

can be used to address changes in the classifier’s performance, and how the sampling frequency can be

adjusted to handle changes in the session data.

First, consider the inconsistency in Fig. 4.5, which compares the average DCF in seven environments

over the first 53 sessions. While Softmax score-based sampling achieves the best performance overall, the

negative energy score-based method shows superior performance for a number of sessions. The reasons

for this discrepancy have yet to be explored thoroughly, but such a pattern could be exploited to optimize

the IML objective more efficiently.

Second, consider Fig. 4.6, which shows the DCF of each session for a model only initialized with the

bootstrap dataset (i.e., not adapted with AL or CF samples) in blue. Note that, while many sessions have

very high DCF scores, there are also a substantial proportion of the sessions that perform well without

any additional adaptation. As the classifier adapts to the operating environment, the number of future

sessions that will not need to be adapted will continue to increase, as seen in the increased number of

points below 0.05 DCF after just 20 sessions of adaptation. If the sessions that do not need adaptation can

be identified reliably, AL queries for these sessions can be limited or skipped completely to reduce the

amount of feedback required without sacrificing performance.
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Figure 4.5: A comparison of different AL methods over time. No single method is always best.

Figure 4.6: DCF over sessions from hotel mic 19 of the LB Corpus, with bootstrap only and with 20
sessions of adaptation.
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Data Used for Fine-tuning

As the adaptation data pool grows, the options for what to do with that data increase. Assuming a highly

expressive classifier, every one of the adaptation data points should be able to be classified correctly.

However, depending on the distribution of the data in the current session, it may be beneficial to weight

certain samples more heavily than others. For example, it would likely be advantageous to weight samples

more heavily during fine-tuning if they are very similar to samples in the current session. It also may

be useful to choose samples that will separate the classes more distinctly for the current session’s data

distribution.

4.3.3 Proposed Work

I propose the use of the identified points of control to address the potential changes during IML training.

Specifically, the change in the classifier will be exploited by adjusting the AL sampling method over time,

and the change in current session and adaptation data will be handled by adjusting the number of AL

queries and the how the adaptation data is used during fine-tuning.

For the first step in understanding when to switch between AL sampling methods, an experiment will

be performed in which all available AL sampling methods are used to choose adaptation samples at every

AL step. Then, using oracle labels, the sampling method that achieved the best error at each step will

be tracked. Based on trends found in the experimental results, a method based on classifier confidence

will be developed to automatically estimate which sampling method to choose at each step. For example,

experiments may indicate that the sum of negative energy scores across all samples in the session is a good

indicator of model confidence for that session. In that case, the AL sampling method could be toggled

based on the sum of the negative energy scores for data in the session at hand.

The number of AL queries needed for each session will be a function of how similar the session is to

data logged in the adaptation data pool. This similarity can be measured using a clustering algorithm

over both the embeddings of the labeled adaptation data and embeddings of the unlabeled session data.

If the unlabeled embeddings mostly fall into the same clusters as the labeled embeddings, then it is likely

that the current session data are similar to the adaptation data. In this case, fewer or no AL queries need

to be made for this session; otherwise, the default maximum number of AL queries will be made. The

correlation between data similarity and the number of queries required will be determined experimentally.

In the case that the temporal patterns revealed by the experiments proposed above are not obvious,

a meta active learning algorithm may be advantageous to optimize the objective over time. Some pre-

vious work has been done on applying meta-learning methods to learn an optimal AL query selection
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method [39, 40, 41], while other work has applied reinforcement learning to a similar effect [42, 43]. Such

approaches may be modified to fit the temporal changes that occur in IML.

Like the AL method proposed in Section 4.2.3, the proposed method will be evaluated by the IML

objective function (Eq. 4.1) with a fixed α parameter.

4.4 Summary of Proposed Contributions

This chapter has outlined three proposed contributions as part of the IML paradigm that will comprise

my thesis work. These contributions include:

1. A mathematical model that accurately characterizes the tradeoff between classifier performance and

user workload in the IML paradigm. This includes running a series of IML experiments on a variety

of tasks with a variety of different parameter settings to verify the model empirically. The model

will be evaluated in terms of goodness-of-fit for the collected data points.

2. A method for optimizing weighted error metrics and handling significant class imbalance by con-

trolling the false negative and false positive rates with AL sampling. The proposed method will be

evaluated by the IML objective function with a pre-defined α parameter.

3. Methods for controlling aspects of AL sampling and adaptation to handle the identified changes

that occur in the IML paradigm and further optimize the IML objective over time. These methods

will also be evaluated using the IML objective function with a fixed weight.



Chapter 5

Timeline

Jun 2023 • Thesis Proposal
Jun-Aug 2023 • Characterizing the IML Objective
Sep-Nov 2023 • Controlling Errors with AL

Dec 2023-Feb 2024 • Optimizing the Objective over Time
Mar-Apr 2023 • Thesis Writing

Apr 2024 • Thesis Defense
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