
Multiparty Differential Privacy via Aggregation of
Locally Trained Classifiers

Manas A. Pathak
Carnegie Mellon University

Pittsburgh, PA
manasp@cs.cmu.edu

Shantanu Rane
Mitsubishi Electric Research Labs

Cambridge, MA
rane@merl.com

Bhiksha Raj
Carnegie Mellon University

Pittsburgh, PA
bhiksha@cs.cmu.edu

Abstract

As increasing amounts of sensitive personal information finds its way into data
repositories, it is important to develop analysis mechanisms that can derive ag-
gregate information from these repositories without revealing information about
individual data instances. Though the differential privacy model provides a frame-
work to analyze such mechanisms for databases belonging to a single party, this
framework has not yet been considered in a multi-party setting. In this paper, we
propose a privacy-preserving protocol for composing a differentially private ag-
gregate classifier using classifiers trained locally by separate mutually untrusting
parties. The protocol allows these parties to interact with an untrusted curator to
construct additive shares of a perturbed aggregate classifier. We also present a
detailed theoretical analysis containing a proof of differential privacy of the per-
turbed aggregate classifier and a bound on the excess risk introduced by the per-
turbation. We verify the bound with an experimental evaluation on a real dataset.

1 Introduction

In recent years, individuals and corporate entities have gathered large quantities of personal data.
Often, they may wish to contribute the data towards the computation of functions such as various
statistics, responses to queries, classifiers etc. In the process, however, they risk compromising
the privacy of the individuals by releasing sensitive information such as their medical or financial
records, addresses and telephone numbers, preferences of various kinds which the individuals may
not want exposed. Merely anonymizing the data is not sufficient – an adversary with access to
publicly available auxiliary information can still recover the information about individual, as was
the case with the de-anonymization of the Netflix dataset [1].

In this paper, we address the problem of learning a classifier from a multi-party collection of such
private data. A set of parties P1, P2, . . . , PK each possess data D1, D2, . . . , DK . The aim is to
learn a classifier from the union of all the dataD1∪D2 . . .∪DK . We specifically consider a logistic
regression classifier, but as we shall see, the techniques are generally applicable to any classification
algorithm. The conditions we impose are that (a) None of the parties are willing to share the data
with one another or with any third party (e.g. a curator). (b) The computed classifier cannot be
reverse engineered to learn about any individual data instance possessed by any contributing party.

The conventional approach to learning functions in this manner is through secure multi-party com-
putation (SMC) [2]. Within SMC individual parties use a combination of cryptographic techniques
and oblivious transfer to jointly compute a function of their private data [3, 4, 5]. The techniques
typically provide guarantees that none of the parties learn anything about the individual data besides
what may be inferred from the final result of the computation. Unfortunately, this does not satisfy
condition (b) above. For instance, when the outcome of the computation is a classifier, it does not
prevent an adversary from postulating the presence of data instances whose absence might change

1

the decision boundary of the classifier, and verifying the hypothesis using auxiliary information if
any. Moreover, for all but the simplest computational problems, SMC protocols tend to be highly
expensive, requiring iterated encryption and decryption and repeated communication of encrypted
partial results between participating parties.

An alternative theoretical model for protecting the privacy of individual data instances is differential
privacy [6]. Within this framework, a stochastic component is added to any computational mecha-
nism, typically by the addition of noise. A mechanism evaluated over a database is said to satisfy
differential privacy if the probability of the mechanism producing a particular output is almost the
same regardless of the presence or absence of any individual data instance in the database. Dif-
ferential privacy provides statistical guarantees that the output of the computation does not carry
information about individual data instances. On the other hand, in multiparty scenarios where the
data used to compute a function are distributed across several parties, it does not provide any mech-
anism for preserving the privacy of the contributing parties from one another or alternately, from a
curator who computes the function from the combined data.

We provide an alternative solution: within our approach the individual parties locally compute an
optimal classifier with their data. The individual classifiers are then averaged to obtain the final ag-
gregate classifier. The aggregation is performed through a secure protocol that also adds a stochastic
component to the averaged classifier, such that the resulting aggregate classifier is differentially
private, i.e., no inference may be made about individual data instances from the classifier. This
procedure satisfies both criteria (a) and (b) mentioned above. Furthermore, it is significantly less
expensive than any SMC protocol to compute the classifier on the combined data.

We also present theoretical guarantees on the classifier. We provide a fundamental result that the
excess risk of an aggregate classifier obtained by averaging classifiers trained on individual subsets,
compared to the optimal classifier computed on the combined data in the union of all subsets, is
bounded by a quantity that depends on the size of the smallest subset. We prove that the addition of
the noise does indeed result in a differentially private classifier. We also provide a bound on the true
excess risk of the differentially private averaged classifier compared to the optimal classifier trained
on the combined data. Finally, we present experimental evaluation of the proposed technique on
a UCI Adult dataset which is a subset of the 1994 census database and empirically show that the
differentially private classifier trained using the proposed method provides the performance close to
the optimal classifier when the distribution of data across parties is reasonably equitable.

2 Differential Privacy

In this paper, we consider the differential privacy model introduced by Dwork [6]. Given any two
databases D and D′ differing by one element, which we will refer to as adjacent databases, a
randomized query function M is said to be differentially private if the probability that M produces
a response S on D is close to the probability that M produces the same response S on D′. As
the query output is almost the same in the presence or absence of an individual entry with high
probability, nothing can be learned about any individual entry from the output.

Definition A randomized function M with a well-defined probability density P satisfies ε-
differential privacy if, for all adjacent databases D and D′ and for any S ∈ range(M),∣∣∣∣log P (M(D) = S)

P (M(D′) = S)

∣∣∣∣ ≤ ε. (1)

In a classification setting, the training dataset may be thought of as the database and the algorithm
learning the classification rule as the query mechanism. A classifier satisfying differential privacy
implies that no additional details about the individual training data instances can be obtained with
certainty from output of the learning algorithm, beyond the a priori background knowledge. Differ-
ential privacy provides an ad omnia guarantee as opposed to most other models that provide ad hoc
guarantees against a specific set of attacks and adversarial behaviors. By evaluating the differentially
private classifier over a large number of test instances, an adversary cannot learn the exact form of
the training data.

2

2.1 Related Work

Dwork et al. [7] proposed the exponential mechanism for creating functions satisfying differential
privacy by adding a perturbation term from the Laplace distribution scaled by the sensitivity of the
function. Chaudhuri and Monteleoni [8] use the exponential mechanism [7] to create a differen-
tially private logistic regression classifier by perturbing the estimated parameters with multivariate
Laplacian noise scaled by the sensitivity of the classifier. They also propose another method to learn
classifiers satisfying differential privacy by adding a linear perturbation term to the objective func-
tion which is scaled by Laplacian noise. Nissim, et al. [9] show we can create a differentially private
function by adding noise from Laplace distribution scaled by the smooth sensitivity of the function.
While this mechanism results in a function with lower error, the smooth sensitivity of a function
can be difficult to compute in general. They also propose the sample and aggregate framework
for replacing the original function with a related function for which the smooth sensitivity can be
easily computed. Smith [10] presents a method for differentially private unbiased MLE using this
framework.

All the previous methods are inherently designed for the case where a single curator has access
to the entire data and is interested in releasing a differentially private function computed over the
data. To the best of our knowledge and belief, ours is the first method designed for releasing a
differentially private classifier computed over training data owned by different parties who do not
wish to disclose the data to each other. Our technique was principally motivated by the sample and
aggregate framework, where we considered the samples to be owned by individual parties. Similar
to [10], we choose a simple average as the aggregation function and the parties together release the
perturbed aggregate classifier which satisfies differential privacy. In the multi-party case, however,
adding the perturbation to the classifier is no longer straightforward and it is necessary to provide a
secure protocol to do this.

3 Multiparty Classification Protocol

The problem we address is as follows: a number of partiesP1, . . . , PK possess data setsD1, . . . , DK

whereDi = (x, y)|j includes a set of instances x and their binary labels y. We want to train a logistic
regression classifier on the combined data such that no party is required to expose any of its data,
and the no information about any single data instance can be obtained from the learned classifier.
The protocol can be divided into the three following phases:

3.1 Training Local Classifiers on Individual Datasets

Each party Pj uses their data set (x, y)|j to learn an `2 regularized logistic regression classifier with
weights ŵj . This is obtained by minimizing the following objective function

ŵj = argmin
w

J(w) = argmin
w

1

nj

∑
i

log
(
1 + e−yiw

T xi
)
+ λwTw, (2)

where λ > 0 is the regularization parameter. Note that no data or information has been shared yet.

3.2 Publishing a Differentially Private Aggregate Classifier

The proposed solution, illustrated by Figure 1, proceeds as follows. The parties then collaborate
to compute an aggregate classifier given by ŵs = 1

K

∑
j ŵj + η, where η is a d-dimensional

random variable sampled from a Laplace distribution scaled with the parameter 2
n(1)ελ

and n(1) =

minj nj . As we shall see later, composing an aggregate classifier in this manner incurs only a well-
bounded excess risk over training a classifier directly on the union of all data while enabling the
parties to maintain their privacy. We also show in Section 4.1 that the noise term η ensures that
the classifier ŵs satisfies differential privacy, i.e., that individual data instances cannot be discerned
from the aggregate classifier. The definition of the noise term η above may appear unusual at this
stage, but it has an intuitive explanation: A classifier constructed by aggregating locally trained
classifiers is limited by the performance of the individual classifier that has the least number of data
instances. This will be formalized in Section 4.2. We note that the parties Pj cannot simply take

3

their individually trained classifiers ŵj , perturb them with a noise vector and publish the perturbed
classifiers, because aggregating such classifiers will not give the correct η ∼ Lap

(
2/(n(1)ελ)

)
in

general. Since individual parties cannot simply add noise to their classifiers to impose differential
privacy, the actual averaging operation must be performed such that the individual parties do not
expose their own classifiers or the number of data instances they possess. We therefore use a private
multiparty protocol, interacting with an untrusted curator “Charlie” to perform the averaging. The
outcome of the protocol is such that each of the parties obtain additive shares of the final classifier
ŵs, such that these shares must be added to obtain ŵs.

curator

additive
secret
sharing

&

blind-and-
permute

Indicator vector with permuted
index of smallest database

curator

encryption

&

reverse
permutations

&

add noise
vectors

Encrypted Laplacian noise vector
added obliviously by smallest database

curator

additive
secret

sharing of
noise term

&

additive
secret

sharing of
local

classifers

perfectly private
additive shares of

Null

Stage 1 Stage 2 Stage 3

Figure 1: Multiparty protocol to securely compute additive shares of ŵs.

Privacy-Preserving Protocol

We use asymmetric key additively homomorphic encryption [11]. A desirable property of such
schemes is that we can perform operations on the ciphertext elements which map into known op-
erations on the same plaintext elements. For an additively homomorphic encryption function ξ(·),
ξ(a) ξ(b) = ξ(a + b), ξ(a)b = ξ(ab). Note that the additively homomorphic scheme employed
here is semantically secure, i.e., repeated encryption of the same plaintext will result in different
ciphertexts. For the ensuing protocol, encryption keys are considered public and decryption keys are
privately owned by the specified parties. Assuming the parties to be honest-but-curious, the steps of
the protocol are as follows.

Stage 1. Finding the index of the smallest database obfuscated by permutation.
1. Each party Pj computes nj = aj + bj , where aj and bj are integers representing

additive shares of the database lengths nj for j = 1, 2, ...,K. Denote the K-length
vectors of additive shares as a and b respectively.

2. The parties Pj mutually agree on a permutation π1 on the index vector (1, 2, ...,K).
This permutation is unknown to Charlie. Then, each party Pj sends its share aj to
party Pπ1(j), and sends its share bj to Charlie with the index changed according to the
permutation. Thus, after this step, the parties have permuted additive shares given by
π1(a) while Charlie has permuted additive shares π1(b).

3. The parties Pj generate a key pair (pk,sk) where pk is a public key for homomorphic
encryption and sk is the secret decryption key known only to the parties but not to
Charlie. Denote element-wise encryption of a by ξ(a). The parties send ξ(π1(a)) =
π1(ξ(a)) to Charlie.

4. Charlie generates a random vector r = (r1, r2, · · · , rK) where the elements ri are
integers chosen uniformly at random and are equally likely to be positive or negative.
Then, he computes ξ(π1(aj))ξ(rj) = ξ(π1(aj) + rj). In vector notation, he computes
ξ(π1(a) + r). Similarly, by subtracting the same random integers in the same order
to his own shares, he obtains π1(b) − r where π1 was the permutation unknown to
him and applied by the parties. Then, Charlie selects a permutation π2 at random

4

and obtains π2(ξ(π1(a) + r)) = ξ(π2(π1(a) + r)) and π2(π1(b) − r). He sends
ξ(π2(π1(a) + r)) to the individual parties in the following order: First element to P1,
second element to P2,...,K th element to PK .

5. Each party decrypts the signal received from Charlie. At this point, the parties
P1, P2, ..., PK respectively possess the elements of the vector π2(π1(a) + r) while
Charlie possesses the vector π2(π1(b) − r). Since π1 is unknown to Charlie and π2
is unknown to the parties, the indices in both vectors have been complete obfuscated.
Note also that, adding the vector collectively owned by the parties and the vector
owned by Charlie would give π2(π1(a) + r) + π2(π1(b) − r) = π2(π1(a + b)) =
π2(π1(n)). This situation in this step is similar to that encountered in the “blind and
permute” protocol used for minimum-finding by Du and Atallah [12].

6. Let π2(π1(a)+r) = ã and π2(π1(b)−r) = b̃. Then ni > nj ⇒ ãi+ b̃i > ãj+ b̃j ⇒
ãi − ãj > b̃j − b̃i. For each (i, j) pair with i, j ∈ {1, 2, ...,K}, these comparisons
can be solved by any implementation of a secure millionaire protocol [2]. When all
the comparisons are done, Charlie finds the index j̃ such that ãj̃ + b̃j̃ = minj nj . The
true index corresponding to the smallest database has already been obfuscated by the
steps of the protocol. Charlie holds only an additive share of minj nj and thus cannot
know the true length of the smallest database.

Stage 2. Obliviously obtaining encrypted noise vector from the smallest database.
1. Charlie constructs an K indicator vector u such that uj̃ = 1 and all other elements are

0. He then obtains the permuted vector π−12 (u) where π−12 inverts π2. He generates a
key-pair (pk′,sk′) for additive homomorphic function ζ(·) where only the encryption
key pk′ is publicly available to the parties Pj . Charlie then transmits ζ(π−12 (u)) =

π−12 (ζ(u)) to the parties Pj .

2. The parties mutually obtain a permuted vector π−11 (π−12 (ζ(u))) = ζ(v) where π−11
inverts the permutation π1 originally applied by the parties Pj in Stage I. Now that
both permutations have been removed, the index of the non-zero element in the indi-
cator vector v corresponds to the true index of the smallest database. However, since
the parties Pj cannot decrypt ζ(·), they cannot find out this index.

3. For j = 1, . . . ,K, party Pj generates ηj , a d-dimensional noise vector sampled from
a Laplace distribution with parameter 2

njελ
. Then, it obtains a d-dimensional vector

ψj where for i = 1, . . . , d, ψj(i) = ζ(v(j))ηj(i) = ζ(v(j) ηj(i)).
4. All partiesPj now compute a d-dimensional noise vectorψ such that, for i = 1, . . . , d,

ψ(i) =
∏
j ψj(i) =

∏
j ζ(v(j)ηj(i)) = ζ

(∑
j v(j)ηj(i)

)
.

The reader will notice that, by construction, the above equation selects only the
Laplace noise terms for the smallest database, while rejecting the noise terms for all
other databases. This is because v has an element with value 1 at the index correspond-
ing to the smallest database and has zeroes everywhere else. Thus, the decryption of
ψ is equal to η which was the desired perturbation term defined at the beginning of
this section.

Stage 3. Generating secret additive shares of ŵs.
1. One of the parties, say P1, generates a d-dimensional random integer noise vector s,

and transmits ψ(i)ζ(s(i)) for all i = 1, . . . , d to Charlie. Using s effectively prevents
Charlie from discovering η, and therefore still ensures that no information is leaked
about the database owners Pj . P1 computes w1 −Ks.

2. Charlie decrypts ψ(i)ζ(s(i)) to obtain η(i) + s(i) for i = 1, . . . , d. At this stage, the
parties and Charlie have the following d-dimensional vectors: Charlie has K(η + s),
P1 has ŵ1 −Ks, and all other parties Pj , j = 2, . . . ,K have ŵj . None of the K + 1
participants can share this data for fear of compromising differential privacy.

3. Finally, Charlie and the K database-owning parties run a simple secure function eval-
uation protocol [13], at the end of which each of the K + 1 participants obtains an
additive share of Kŵs. This protocol is provably private against honest but curious
participants when there are no collisions. The resulting shares are published.

5

The above protocol ensures the following (a) None of theK+1 participants, or users of the perturbed
aggregate classifier can find out the size of any database, and therefore none of the parties knows
who contributed η (b) Neither Charlie nor any of the parties Pj can individually remove the noise η
after the additive shares are published. This last property is important because if anyone knowingly
could remove the noise term, then the resulting classifier no longer provides differential privacy.

3.3 Testing Phase

A test participant Dave having a test data instance x′ ∈ Rd is interested in applying the trained
classifier adds the published shares and divides by K to get the differentially private classifier ŵs.
He can then compute the sigmoid function t = 1

1+e−ŵsT xi
and decide to classify x′ with label −1 if

t ≤ 1
2 and with label 1 if t > 1

2 .

4 Theoretical Analysis

4.1 Proof of Differential Privacy

We show that the perturbed aggregate classifier satisfies differential privacy. We use the follow-
ing bound on the sensitivity of the regularized regression classifier as proved in Corollary 2 in [8]
restated in the appendix as Theorem 6.1.
Theorem 4.1. The classifier ŵs preserves ε-differential privacy. For any two adjacent datasets D
and D′, ∣∣∣∣log P (ŵs|D)

P (ŵs|D′)

∣∣∣∣ ≤ ε.
Proof. Consider the case where one instance of the training dataset D is changed to result in an
adjacent dataset D′. This would imply a change in one element in the training dataset of one party
and thereby a change in the corresponding learned vector ŵsj . Assuming that the change is in the
dataset of the party Pj , the change in the learned vector is only going to be in ŵj ; let denote the new
classifier by ŵ′j . In Theorem 6.1, we bound the sensitivity of ŵj as ‖ŵj − ŵ′j‖1 ≤ 2

njελ
. Following

an argument similar to [7], considering that we learn the same vector ŵs using either the training
datasets D and D′, we have

P (ŵs|D)

P (ŵs|D′)
=

P (ŵj + η|D)

P
(
ŵ′j + η|D′

) =
exp

[
n(1)ελ

2 ‖ŵj‖1
]

exp
[
n(1)ελ

2 ‖ŵ′j‖1
] ≤ exp

[
n(1)ελ

2
‖ŵj − ŵ′j‖1

]

≤ exp

[
n(1)ελ

2

2

njλ

]
≤ exp

[
n(1)

nj
ε

]
≤ exp(ε),

by the definition of function sensitivity. Similarly, we can lower bound the the ratio by exp(−ε).

4.2 Analysis of Excess Error

In the following discussion, we consider how much excess error is introduced when using a per-
turbed aggregate classifier ŵs satisfying differential privacy as opposed to the unperturbed classifier
w∗ trained on the entire training data while ignoring the privacy constraints as well as the unper-
turbed aggregate classifier ŵ.

We first establish a bound on the `2 norm of the difference between the aggregate classifier ŵ and the
classifier w∗ trained over the entire training data. To prove the bound we apply Lemma 1 from [8]
restated as Lemma 6.2 in the appendix. Please refer to the appendix for the proof of the following
theorem.
Theorem 4.2. Given the aggregate classifier ŵ, the classifier w∗ trained over the entire training
data and n(1) is the size of the smallest training dataset,

‖ŵ− w∗‖2 ≤
K − 1

n(1)λ
.

6

The bound is inversely proportional to the number of instances in the smallest dataset. This indicates
that when the datasets are of disparate sizes, ŵ will be a lot different from w∗. The largest possible
value for n(1) is n

K in which case all parties having an equal amount of training data and ŵ will
be closest to w∗. In the one party case for K = 1, the bound indicates that norm of the difference
would be upper bounded by zero, which is a valid sanity check as the aggregate classifier ŵ is the
same as w∗.

We use this result to establish a bound on the empirical risk of the perturbed aggregate classifier
ŵs = ŵ + η over the empirical risk of the unperturbed classifier w∗ in the following theorem.
Please refer to the appendix for the proof.
Theorem 4.3. If all data instances xi lie in a unit ball, with probability at least 1− δ, the empirical
regularized excess risk of the perturbed aggregate classifier ŵs over the classifier w∗ trained over
entire training data is

J(ŵs) ≤ J(w∗) + (K − 1)2(λ+ 1)

2n2(1)λ
2

+
2d2(λ+ 1)

n2(1)ε
2λ2

log2
(
d

δ

)
+

2d(K − 1)(λ+ 1)

n2(1)ελ
2

log

(
d

δ

)
.

The bound suggests an error because of two factors: aggregation and perturbation. The bound
increases for smaller values of ε implying a tighter definition of differential privacy, indicating a
clear trade-off between privacy and utility. The bound is also inversely proportional to n2(1) implying
an increase in excess risk when the parties have training datasets of disparate sizes.

In the limiting case ε → ∞, we are adding a perturbation term η sampled from a Laplacian distri-
bution of infinitesimally small variance resulting in the perturbed classifier being almost as same as
using the unperturbed aggregate classifier ŵ satisfying a very loose definition of differential privacy.
With such a value of ε, our bound becomes

J(ŵ) ≤ J(w∗) + (K − 1)2(λ+ 1)

2n2(1)λ
2

. (3)

Similar to the analysis of Theorem 4.2, the excess error in using an aggregate classifier is inversely
proportional to the size of the smallest dataset n(1) and in the one party case K = 1, the bound
becomes zero as the aggregate classifier ŵ is the same as w∗. Also, for a small value of ε in the one
party case K = 1 and n(1) = n, our bound reduces to that in Lemma 3 of [8],

J(ŵs) ≤ J(w∗) + 2d2(λ+ 1)

n2ε2λ2
log2

(
d

δ

)
. (4)

While the previous theorem gives us a bound on the empirical excess risk over a given training
dataset, it is important to consider a bound on the true excess risk of ŵs over w∗. Let us denote the
true risk of the classifier ŵs by J̃(ŵs) = E[J(ŵs)] and similarly, the true risk of the classifier w∗ by
J̃(w∗) = E[J(w∗)]. In the following theorem, we apply the result from [14] which uses the bound
on the empirical excess risk to form a bound on the true excess risk. Please refer to the appendix for
the proof.
Theorem 4.4. If all training data instances xi lie in a unit ball, with probability at least 1 − δ, the
true excess risk of the perturbed aggregate classifier ŵs over the classifier w∗ trained over entire
training data is

J̃(ŵs) ≤ J̃(w∗) + 2(K − 1)2(λ+ 1)

2n2(1)λ
2

+
4d2(λ+ 1)

n2(1)ε
2λ2

log2
(
d

δ

)
+

4d(K − 1)(λ+ 1)

n2(1)ελ
2

log

(
d

δ

)
+

16

λn

[
32 + log

(
1

δ

)]
.

5 Experiments

We perform an empirical evaluation of the proposed differentially private classifier to obtain a char-
acterization of the increase in the error due to perturbation. We use the Adult dataset from the
UCI machine learning repository [15] consisting of personal information records extracted from

7

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

te
s
t

e
rr

o
r

ε

non-private all data
DP all data

DP aggregate n(1)=6512
DP aggregate n(1)=4884
DP aggregate n(1)=3256

Figure 2: Classifier performance evaluated for w∗, w∗ + η, and ŵs for different data splits vs. ε

the census database and the task is to predict whether a given person has an annual income over
$50,000. The choice of the dataset is motivated as a realistic example for application of data pri-
vacy techniques. The original Adult data set has six continuous and eight categorical features. We
use pre-processing similar to [16], the continuous features are discretized into quintiles, and each
quintile is represented by a binary feature. Each categorical feature is converted to as many binary
features as its cardinality. The dataset contains 32,561 training and 16,281 test instances each with
123 features.1 In Figure 2, we compare the test error of perturbed aggregate classifiers trained over
data from five parties for different values of ε. We consider three situations: all parties with equal
datasets containing 6512 instances (even split, n(1) = 20% of n), parties with datasets containing
4884, 6512, 6512, 6512, 8141 instances (n(1) = 15% of n), and parties with datasets containing
3256, 6512, 6512, 6512, 9769 instances (n(1) = 10% of n). We also compare with the error of
the classifier trained using combined training data and its perturbed version satisfying differential
privacy. We chose the value of the regularization parameter λ = 1 and the results displayed are
averaged over 200 executions.

The perturbed aggregate classifier which is trained using maximum n(1) = 6512 does consistently
better than for lower values of n(1) which is same as our theory suggested. Also, the test error for
all perturbed aggregate classifiers drops with ε, but comparatively faster for even split and converges
to the test error of the classifier trained over the combined data. As expected, the differentially
private classifier trained over the entire training data does much better than the perturbed aggregate
classifiers with an error equal to the unperturbed classifier except for small values of ε. The lower
error of this classifier is at the cost of the loss in privacy of the parties as they would need to share
the data in order to train the classifier over combined data.

6 Conclusion

We proposed a method for composing an aggregate classifier satisfying ε-differential privacy from
classifiers locally trained by multiple untrusting parties. The upper bound on the excess risk of
the perturbed aggregate classifer as compared to the optimal classifier trained over the complete
data without privacy constraints is inversely proportional to the privacy parameter ε, suggesting an
inherent tradeoff between privacy and utility. The bound is also inversely proportional to the size
of the smallest training dataset, implying the best performance when the datasets are of equal sizes.
Experimental results on the UCI Adult data also show the behavior suggested by the bound and
we observe that the proposed method provides classification performance close to the optimal non-
private classifier for appropriate values of ε. In future work, we seek to generalize the theoretical
analysis of the perturbed aggregate classifier to the setting in which each party has data generated
from a different distribution.

1The dataset can be download from http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/binary.html#a9a

8

References

[1] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks. In IEEE Sympo-
sium on Security and Privacy, pages 173–187, 2009.

[2] Andrew Yao. Protocols for secure computations (extended abstract). In IEEE Symposium on
Foundations of Computer Science, 1982.

[3] Jaideep Vaidya, Chris Clifton, Murat Kantarcioglu, and A. Scott Patterson. Privacy-preserving
decision trees over vertically partitioned data. TKDD, 2(3), 2008.

[4] Jaideep Vaidya, Murat Kantarcioglu, and Chris Clifton. Privacy-preserving naive bayes classi-
fication. VLDB J, 17(4):879–898, 2008.

[5] Jaideep Vaidya, Hwanjo Yu, and Xiaoqian Jiang. Privacy-preserving svm classification.
Knowledge and Information Systems, 14(2):161–178, 2008.

[6] Cynthia Dwork. Differential privacy. In International Colloquium on Automata, Languages
and Programming, 2006.

[7] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensi-
tivity in private data analysis. In Theory of Cryptography Conference, pages 265–284, 2006.

[8] Kamalika Chaudhuri and Claire Monteleoni. Privacy-preserving logistic regression. In Neural
Information Processing Systems, pages 289–296, 2008.

[9] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and sampling in
private data analysis. In ACM Symposium on Theory of Computing, pages 75–84, 2007.

[10] Adam Smith. Efficient, differentially private point estimators. arXiv:0809.4794v1 [cs.CR],
2008.

[11] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
EUROCRYPT, 1999.

[12] Mikhail Atallah and Jiangtao Li. Secure outsourcing of sequence comparisons. International
Journal of Information Security, 4(4):277–287, 2005.

[13] Michael Ben-Or, Shari Goldwasser, and Avi Widgerson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the ACM Symposium
on the Theory of Computing, pages 1–10, 1988.

[14] Karthik Sridharan, Shai Shalev-Shwartz, and Nathan Srebro. Fast rates for regularized objec-
tives. In Neural Information Processing Systems, pages 1545–1552, 2008.

[15] A. Frank and A. Asuncion. UCI machine learning repository, 2010.
[16] John Platt. Fast training of support vector machines using sequential minimal optimization. In

Advances in Kernel Methods — Support Vector Learning, pages 185–208, 1999.

9

Appendix

Theorem 6.1. Given a set of n training data instances lying in a ball of radius 1, the sensitivity
of regularized logistic regression classifier is at most 2

nλ . If w1 and w2 are classifiers trained on
adjacent datasets of size n with regularization parameter λ,

‖w1 − w2‖1 ≤
2

nλ
.

Lemma 6.2. Let G(w) and g(w) be two differentiable, convex functions of w. If w1 =
argminw G(w) and w2 = argminw G(w)+g(w), then ‖w1−w2‖ ≤ g1

G2
where g1 = maxw ‖∇g(w)‖

and G2 = minv minw vT∇2G(w)v for any unit vector v ∈ Rd.

Proof of Theorem 4.2. We formulate the problem of estimating the individual classifiers ŵj and the
classifier w∗ trained over the entire training data in terms of minimizing the two differentiable and
convex functions g(w) and G(w).

ŵj = argmin
w

J(w, x|j , y|j) = argmin
w

G(w),

w∗ = argmin
w

J(w, x, y) = argmin
w

L(w, x|j , y|j) +
∑

l∈[K]−j

L(w, x|l, y|l) + λ‖w‖2

= argmin
w

J(w, x|j , y|j) +
∑

l∈[K]−j

L(w, x|l, y|l) = argmin
w

G(w) + g(w).

∇g(w) =
∑

l∈[K]−j

1

nl

nl∑
i=1

−e−yi|lwT xi|l
1 + e−yi|lwT xi|l

yix
T
i ,

‖∇g(w)‖ =

∥∥∥∥∥∑
l

1

nl

∑
i

−e−yi|lwT xi|l
1 + e−yi|lwT xi|l

yix
T
i

∥∥∥∥∥ ≤∑
l

1

nl

∥∥∥∥∥∑
i

−e−yi|lwT xi|l
1 + e−yi|lwT xi|l

yix
T
i

∥∥∥∥∥ ≤∑
l

1

nl
,

g1 = max
w
‖∇g(w)‖ ≤

∑
l

1

nl
. (5)

∇2G(w) =
1

nj

∑
i

eyi|jwT xi|j

1 + eyi|jwT xi|j
xi|jxi|Tj + λ1, G2 ≥ λ. (6)

Substituting the bounds on g1 and G2 in Lemma 6.2,

‖ŵj − w∗‖ ≤ 1

λ

∑
l

1

nl
. (7)

Applying triangle inequality,

‖ŵ− w∗‖ =

∥∥∥∥∥∥ 1

K

∑
j

ŵj − w∗

∥∥∥∥∥∥ =
1

K

∥∥∥∥∥∥
∑
j

ŵj −Kw∗

∥∥∥∥∥∥ =
1

K
‖(ŵ1 − w∗) + . . .+ (ŵK − w∗)‖

≤ 1

K

∑
j

‖ŵj − w∗‖ = 1

Kλ

∑
j

∑
l∈[K]−j

1

nl
=
K − 1

Kλ

∑
j

1

nj
≤ K − 1

n(1)λ
.

where n(1) = minj nj .

Proof of Theorem 4.3. We use the Taylor series expansion of the function J to have

J(ŵs) = J(w∗) + (ŵs − w∗)T∇J(w∗) + 1

2
(ŵs − w∗)T∇2J(w)(ŵs − w∗)

for some w ∈ Rd. By definition,∇J(w∗) = 0.

10

Taking `2 norm on both sides and applying Cauchy-Schwarz inequality,

|J(ŵs)− J(w∗)| ≤ 1

2
‖ŵs − w∗‖2 ‖∇2J(w)‖. (8)

The second gradient of the regularized loss function for logistic regression is

∇2J(w) =
1

n

∑
i

eyiw
T xi

1 + eyiwT xi
xixTi + λ1 =

1

n

∑
i

1

1 + e−yiwT xi
xixTi + λ1.

Since the logistic function term is always less than one and all xi lie in a unit ball, ‖∇2J(w)‖ ≤
λ+ 1. Substituting this into Equation 8 and using the fact that J(w∗) ≤ J(w),∀w ∈ Rd,

J(ŵs) ≤ J(w∗) + λ+ 1

2
‖ŵs − w∗‖2. (9)

The classifier ŵs is the perturbed aggregate classifier, i.e., ŵs = ŵ + η, with the noise term η ∼
Lap

(
2

n(1)ελ

)
. We apply Lemma 6.3 to bound ‖η‖ with probability at least 1− δ. Substituting this

into Equation 9, we have

J(ŵs) ≤ J(w∗) + 1

2
‖ŵ− w∗ + η‖2 = J(w∗) +

λ+ 1

2

[
‖ŵ− w∗‖2 + ‖η‖2 + 2(ŵ− w∗)Tη

]
≤ J(w∗) + λ+ 1

2

[
(K − 1)2

n2(1)λ
2

+
4d2

n2(1)ε
2λ2

log2
(
d

δ

)]
+ (λ+ 1)|(ŵ− w∗)Tη|.

Using the Cauchy-Schwarz inequality on the last term,

J(ŵs) ≤ J(w∗) + λ+ 1

2

[
(K − 1)2

n2(1)λ
2

+
4d2

n2(1)ε
2λ2

log2
(
d

δ

)]
+ (λ+ 1)‖ŵ− w∗‖‖η‖

≤ J(w∗) + (K − 1)2(λ+ 1)

2n2(1)λ
2

+
2d2(λ+ 1)

n2(1)ε
2λ2

log2
(
d

δ

)
+

2d(K − 1)(λ+ 1)

n2(1)ελ
2

log

(
d

δ

)
.

Proof of Theorem 4.4. Let wr be the classifier minimizing the true risk J̃(w). By rearranging the
terms,

J̃(ŵs) = J̃(w∗) + [J̃(ŵs)− J̃(wr)] + [J̃(wr)− J̃(w∗)] ≤ J̃(w∗) + [J̃(ŵs)− J̃(wr)].

Sridharan, et al. [14] present a bound between the true excess risk of any classifier as an expres-
sion of bound on the regularized empirical risk for that classifier and the classifier minimizing the
regularized empirical risk. With probability at least 1− δ,

J̃(ŵs)− J̃(wr) ≤ 2[J(ŵs)− J(w∗)] + 16

λn

[
32 + log

(
1

δ

)]
. (10)

Substituting the bound from Theorem 4.3,

J̃(ŵs)− J̃(wr) ≤ 2(K − 1)2(λ+ 1)

2n2(1)λ
2

+
4d2(λ+ 1)

n2(1)ε
2λ2

log2
(
d

δ

)
(11)

+
4d(K − 1)(λ+ 1)

n2(1)ελ
2

log

(
d

δ

)
+

16

λn

[
32 + log

(
1

δ

)]
. (12)

Substituting this bound into Equation 10 gives us a bound on the true excess risk of the classifier ŵs
over the classifier w∗.

Lemma 6.3. Given a d-dimensional random variable η ∼ Lap(β) i.e., P (η) = 1
2β e
− ‖η‖1β , with

probability at least 1− δ, the `2 norm of the random variable is bounded as

‖η‖ ≤ 2dβ log

(
d

δ

)
.

The proof is similar to Lemma 5 of [8].

11

