
2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 21-24, 2007, New Paltz, NY

PRIVACY-PRESERVING MUSICAL DATABASE MATCHING

Madhusudana Shashanka∗

Boston University Hearing Research Center
677 Beacon St, Boston, MA 02215

shashanka@cns.bu.edu

Paris Smaragdis

Mitsubishi Electric Research Laboratories
201 Broadway, Cambridge, MA 02139

paris@merl.com

ABSTRACT

In this paper we present an illustratory process which al-
lows privacy-preserving transactions in the context of mu-
sical databases. In particular we address the problem of
matching a piece of music audio to a service database in
such a way such that the database provider will not directly
observe the query, nor its result, thereby preserving the pri-
vacy of the inquirer. We formulate this process within the
field of secure multiparty computation and show how such a
transaction can be achieved once we derive secure versions
of basic signal processing operations.

1. INTRODUCTION

With the advent of digital music formats stored in networked
computers we have seen the birth of an extensive industry
offering online services. As networking efficiency increases
we will undoubtedly see more and more musical services
offered as online transactions. However this model suffers
from the fundamental limitation that data needs to be ex-
changed in the clear thereby raising privacy concerns.

In this paper we examine this problem and present a
framework within which one can allow other parties to per-
form signal processing operations on private data without
raising any privacy concerns. We will demonstrate this prin-
ciple using a simplified music database query example. We
will show how to lookup a song title of an audio stream from
another party’s database without having to share the stream
and without allowing the database owner to see the result of
the matching.

Although such a constraint seems unrealistic we will
show how it can be satisfied using Secure Multiparty Com-
putation (SMC) protocols. These protocols arose from the
cryptography community and allow multiple parties to per-
form arbitrary collaborative computations while guarantee-
ing the privacy of their data. This field originated from the
millionaire problem where two millionaires want to com-
pare their fortunes but are reluctant to disclose specific num-
bers to each other. A solution to this problem was first

∗This work was done during an internship at Mitsubishi Electric Re-
search Laboratories

proposed by Yao [1] in the early 80s and since then we
have seen the development of multiple variants of this idea
in escalating complexity. The machine learning commu-
nity has embraced this concept and employed it for vari-
ous tasks such as multiple parties performing k-means [2],
computation of means and related statistics from distributed
databases [3] and rudimentary computer vision applications
[4]. See [5] for a detailed treatment of the topic.

In this paper we present the application of SMC princi-
ples on the simple signal processing task facilitating song
matching. We show how this can be a viable approach for a
secure collaborative signal processing and how it can bene-
fit online transactions where privacy is required.

The rest of the paper is organised as follows. In sec-
tion 2 we introduce the problem at hand, the desired form
of the solution, and the privacy constraints that need to be
satisfied. In section 3 we provide a description of the field of
SMC and the fundamental principles that we employ, and in
section 4 we show the exact process used to solve the prob-
lem we pose in section 2. Finally we conclude and offer
some pointers on how this particular example can be used
for other kinds of privacy-preserving transactions involving
audio processing.

2. PROBLEM FORMULATION

Consider two parties Alice and Bob. Alice has a CD record-
ing but no information regarding the song title, artist, album
name etc. Bob on the other hand has an extensive database
of CDs which includes audio data alongside the kind of in-
formation that Alice seeks. Ultimately Alice wants to com-
pare her audio file to Bob’s collection and obtain the track
information she seeks.

Let us assume for a moment that both parties trust each
other and have no privacy concerns with regards to sharing
their data. We denote Alice’s audio information by x =
{x1, x2, . . . , xT } and we assume that Bob has K songs the
k-th of which we denote by yk = {yk

1 , yk
2 , . . . , yk

T k}. In
this case Alice can send over a snippet of x to Bob, Bob
can cross-correlate that with all yk and return to her the
information of the best match. More formally:



2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 21-24, 2007, New Paltz, NY

• Alice sends x to Bob and for every k = {1, 2, . . . ,K},
Bob computes

ck
n =

∑
r

xry
k
n+r (1)

Let ck denote the entire cross-correlation.

• Alice obtains vector C of K elements, where the k-th
element Ck is equal to the maximum value of ck.

• The index of the maximum element in vector C indi-
cates the index of Alice’s song in Bob’s catalog. Alice
accesses his catalog and gets the relevant information.

Now let us consider the fact that Alice and Bob have
privacy constraints. Alice does not want to send x to Bob
and likewise Bob doesn’t want to share yk with Alice. This
means that the cross-correlation step cannot be completed.
Even if this was somehow possible using a trusted third
party, Alice would still have to obtain the data she seeks
from Bob in which case Bob would know what song Alice
has in her possession. In the remainder of this paper we will
show how Alice and Bob can complete this collaboration
and also satisfy their privacy constraints using SMC.

3. BACKGROUND

Before we tackle the problem, we briefly present some back-
ground ideas from the cryptography literature. First, we in-
troduce the concept of Secure Two-party Computations. We
then introduce the concept of a Homomorphic Cryptosystem
which plays a fundamental role in the proposed method.

3.1. Secure two-party computations

The secure application that we present is a specific exam-
ple of a secure two-party computation. Consider the case
where Alice and Bob have private data a and b respectively
and they want to compute the result of a function f(a,b).
Consider a trusted third-party who can take the private data,
compute the result c = f(a,b), and intimate the result to
the parties. Any protocol that implements an algorithm to
calculate f(a,b) is said to be secure only if it leaks no more
information about a and b than what one can gain from
learning the result c from the trusted third-party. We as-
sume a semi-honest model for the parties where they follow
the protocol but could be saving messages and intermediate
results to learn more about other’s private data.

The general strategy that we use to create a secure ver-
sion of an algorithm is as follows:

• we express every step of the algorithm in terms of
a handful of basic operations (henceforth called as
primitives) for which secure implementations are al-
ready known, and

• we distribute intermediate results randomly between
the two parties such that neither party has access to
the entire result. For example, instead of obtaining
the result z of a certain step, the parties receive ran-
dom additive shares z1 and z2 (z1 + z2 = z).

The second step ensures that neither party can work his/her
way back to private data by utilizing intermediate results.
Based on how the primitives are implemented, one can achieve
different levels of security and computational/communication
efficiency.

3.2. Homomorphic public-key cryptosystem

A public-key cryptosystem is a triple (GE, EN, DE) of
probabilistuc polynomial time algorithms for key-generation,
encryption and decryption respectively.

• The key-generation algorithm GE generates a valid
pair (sk, pk) of private and public keys.

• The encryption algorithm EN , given a public key pk
and an input (or plaintext) m , outputs EN(m, pk),
the ciphertext (encryption) of m.

• The decryption algorithm DE, given the private key
sk and encrypted text EN(m, pk), returns the origi-
nal input m.

A cryptosystem is called homomorphic if one can indirectly
perform specific algebraic operations on the unencrypted
data by manipulating the ciphertext. One particular case
of homomorphic encryption which we will employ is using
the property:

EN(a, pk)× EN(b, pk) = EN(a + b, pk). (2)

This implies that a party can add encrypted plaintexts by
doing simple computations with ciphertexts, without having
the secret key. We exploit this property for the protocols we
propose in the next section. The Paillier Cryptosystem [6] is
an example of one such semantically secure1 homomorphic
cryptosystem.

4. SECURE MUSIC COMPARISON

In this section, we describe how Alice and Bob can inter-
act and perform cooperative computations that enable Alice
to identify her song without either party disclosing private
data.

1Semantic Security, in simple terms, implies that it must be infeasible to
derive information about a message given only its ciphertext and the public
encryption key. This requirement is equivalent to ciphertext indistinguisha-
bility, which means an adversary will be unable to distinguish whether a
pair of ciphertexts encode the same message or two different messages.



2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 21-24, 2007, New Paltz, NY

To start, we should identify steps in the algorithm for
which secure primitives are available. From Section 2, we
know that there are three steps involved. The first step in-
volves the computation of cross-correlations, the second step
involves finding the value of the maximum element in a vec-
tor and the last step involves finding the index of the maxi-
mum element in a vector. We shall take one step at a time.

4.1. Step 1: Cross-correlating the music signals

The first step involves finding the cross-correlation between
Alice’s music snippet x and each of Bob’s songs yk, k =
{1, . . . ,K}. Now, consider the k-th computation given by
equation (1). Alice and Bob would like to perform this com-
putation without disclosing their vectors and this is where
the homomorphic cryptosystem plays a role. We use the
idea proposed in [7].

1. Alice generates a private and public key pair (sk, pk),
and sends the public key to Bob.

2. Alice encrypts each sample of her time series and
sends it to Bob. Formally, Alice sends et = EN(xt, pk)
to Bob for t ∈ {1, . . . , T}.

3. Consider the computation of ck
n - the n-th element of

the cross-correlation.

• Bob sets z ←
∏T

t=1 e
yk

n+t

t . Notice that due to
the homomorphic property, z represents the en-
crypted value of ck

n.
• Bob generates a random number bk

n and sends
z′ = z×EN(−bk

n, pk) to Alice. bk
n will become

Bob’s share of the result of the dot product.
• Alice decrypts z′ with her private key to obtain

her share of the result i.e. she computes ak
n =

DE(z′, sk) =
∑

t xty
k
n+t − bk

n.

4. After the calculation of all elements, Alice and Bob
have vectors ak and bk such that ak + bk = ck.

Alice and Bob repeat items (3) and (4) of the above list
for all the K song clips of Bob so that at the end, each party
has K vectors.

4.2. Step 2: Obtaining the cross-correlation peaks

The second step is to find peaks in the computed cross-
correlation vectors. But instead of one vector ck, the re-
sults are distributed as private additive shares ak and bk.
Notice that ck

i ≥ ck
j ⇐⇒ (ak

i − ak
j ) ≥ (bk

j − bk
i ). Alice

and Bob can do such pairwise comparisons and mimic any
standard maximum finding algorithms to learn the value (as
additive shares) of the maximum. To perform the compar-
isons securely, they can use a protocol for Yao’s millionaire
problem [1, 8].

Once they find the shares corresponding to the peak for
all of Bob’s songs, they construct two new K-vectors A
and B. Alice assigns ak

i as the k-th element of A and
Bob assigns bk

i as the k-th elements of B, where i is the
index of the peak. Notice that at this stage, the sum of k-
th elements of A and B is equal to the peak value of the
cross-correlation between x and yk. And we have arrived
at this stage without Alice or Bob learning anything about
the other’s data.

4.3. Step 3: Finding the most likely song index

Alice’s song corresponds to the index for which the sum of
A and B is the highest. And we have an additional con-
straint that Alice doesn’t want Bob to know the result of
this step. Again, we exploit the property of homomorphic
encryption.

We use the concept of a permute protocol proposed in
[9]. The protocol enables Alice and Bob to obtain additive
shares, Ā and B̄, of a permutation of the vector A + B,
π(A + B), where π is chosen by Alice and Bob has no
knowledge of the permutation π. The idea is for Alice to
send Ā − R to Bob, where R is a random number chosen
by her. Bob sends back the index of the maximum element
of Ā + B̄ − R to Alice who then computes the real index
using the inverse of the permutation π. Since Bob does not
know the permutation π, he does not learn the index of the
song which Alice has, preserving her privacy. The random
number R chosen by Alice guarantees that Bob does not
learn the value of the maximum.

The essence of this strategy - the permute protocol - is
based on homomorphic encryption and can be described as
follows. Given vectors A and B, and permutation π known
only to Alice, the desired result is additive shares Ā and B̄
such that Ā + B̄ = π(A) + π(B).

• Bob generates a private and public key pair (sk, pk),
and sends the public key to Alice.

• Bob encrypts each element of B using his public key
pk and sends the resulting vector to Alice.

• Alice generates a random vector S and computes a
new vector θ where θi = EN(Bi, pk)EN(Si, pk),
for i = 1, . . . ,K. The homomorphic property im-
plies that θi is the encryption of Bi + Si.

• Alice permutes θ and sends π(θ) to Bob. Bob de-
crypts the vector using private key sk to obtain B̄.
This implies that B̄ is a permutation of the vector
B + S. Bob cannot try to compare this with the orig-
inal vector B to work out permutation since S is a
random vector chosen by Alice that he doesn’t know.

• Alice computes A − S and then permutes it using π
to obtain Ā = π(A− S).



2007 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 21-24, 2007, New Paltz, NY

4.4. Final Step: Obtaining the desired information

Once Alice knows the index, it is quite straightforward for
her to learn information about the song if we assume that
Bob’s catalog is publicly available. She can check the cata-
log for the index she is interested in and obtains the relevant
information. If Bob’s catalog is private and he doesn’t want
Alice to know its entire contents, we will have to use a cryp-
tographic primitive called oblivious transfer [10].

Let σ denote the index of the song, known only to Alice.
Let Bob’s catalog be encoded as a vector µ = {µ1, . . . , µK}.
Alice should receive µσ from the database and Bob should
not get to know what was transferred. Below is an overview
of one [11] of the several cryptographic protocols proposed
for this application.

• Alice generates a homomorphic secret/public key pair
(sk, pk) and sends pk to Bob. She encrypts σ and
sends z = EN(σ, pk) to Bob.

• For k = {1, . . . ,K}, Bob chooses a random rk, com-
putes dk ← EN(µk, pk) · (z · EN(−k, pk))rk , and
sends dk to Alice. Notice that this is equal to the en-
cryption of µk + rk(σ − k).

• Alice decrypts dσ to obtain µσ .

5. DISCUSSION AND CONCLUSIONS

In this paper we have shown how a simple privacy-preserving
database lookup can be performed using cryptographic prin-
ciples. Although this is a simple and illustrative computa-
tional model of how one can perform this particular task,
extending it to more complex song matching algorithms is
very easy. Most signal processing operations eventually
break down to dot products and other simple numerical op-
erations which are extensively covered in the SMC litera-
ture. These SMC algorithms are readily available and are
easy to combine to form complex processing chains. They
offer various levels of protection and features which are
valuable for many different kinds of computations. As an
example a detailed description of a more elaborate privacy-
preserving audio application is shown in [12]. It is our hope
that as we observe a rising need for privacy-preserving sig-
nal computations, such principles will be more widely used
in order to alleviate any privacy concerns, and to facilitate
the development of more online services relating to collab-
orative signal processing.

6. REFERENCES

[1] A. C.-C. Yao, “Protocols for secure computation,” in
Proc. of the 23rd IEEE Symposium on Foundations of
Computer Science, 1982, pp. 160–164.

[2] J. Vaidya and C. Clifton, “Privacy preserving k-means
clustering over vertically partitioned data,” in ACM
SIGKDD Conf on Knowledge Discovery and Data
Mining, 2003.

[3] E. Kiltz, G. Leander, and J. Malone-Lee, “Secure com-
putation of the mean and related statistics,” in Pro-
ceedings of the Theory of Cryptography Conference,
ser. Lecture Notes in Computer Science, vol. 3378,
2005, pp. 283–302.

[4] S. Avidan and M. Butman, “Blind vision,” in ECCV,
2006.

[5] O. Goldreich, “Secure multi-party computation,”
Working Draft, 2000. [Online]. Available: cite-
seer.ist.psu.edu/goldreich98secure.html

[6] P. Paillier, “Public-key cryptosystems based on com-
posite degree residuosity classes,” in Proceedings of
Advances in Cryptology - EUROCRYPT ’99, ser. Lec-
ture Notes in Computer Science, J. Stern, Ed., vol.
1592, 1999, pp. 223–238.

[7] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen,
“On private scalar product computation for privacy-
preserving data mining,” in Intl. Conference on Infor-
mation Security and Cryptology, ser. Lecture Notes in
Computer Science, C. Park and S. Chee, Eds., vol.
2506, 2004, pp. 104–120.

[8] H.-Y. Lin and W.-G. Tzeng, “An efficient solution to
the millionaires’ problem based on homomorphic en-
cryption,” in Proc of Intl. Conf. on Applied Cryptog-
raphy and Network Security, ser. LNCS, vol. 3531.
Springer-Verlag, 2005, pp. 456–466.

[9] M. J. Atallah, F. Kerschbaum, and W. Du, “Secure
and private sequence comparisons,” in Proceedings of
Workshop on Privacy in the Electronic Society, Wash-
ington, DC, USA, October 2003.

[10] M. Naor and B. Pinkas, “Oblivious transfer and poly-
nomial evaluation,” in Proceedings of the thirty-first
annual ACM symposium on Theory of computing,
1999, pp. 245–254.

[11] W. Aiello, Y. Ishai, and O. Reingold, “Priced oblivious
transfer: How to sell digital goods,” in Advances in
Cryptology - EUROCRYPT, 2001.

[12] P. Smaragdis and M. Shashanka, “A framework for se-
cure speech recognition,” IEEE Transactions on Au-
dio, Speech and Language Processing, vol. 15, no. 4,
2007.


