
1404 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 4, MAY 2007

A Framework for Secure Speech Recognition
Paris Smaragdis, Senior Member, IEEE, and Madhusudana Shashanka, Student Member, IEEE

Abstract—In this paper, we present a process which enables pri-
vacy-preserving speech recognition transactions between two par-
ties. We assume one party with private speech data and one party
with private speech recognition models. Our goal is to enable these
parties to perform a speech recognition task using their data, but
without exposing their private information to each other. We will
demonstrate how using secure multiparty computation principles
we can construct a system where this transaction is possible, and
how this system is computationally and securely correct. The pro-
tocols described herein can be used to construct a rudimentary
speech recognition system and can easily be extended for arbitrary
audio and speech processing.

Index Terms—Gaussian mixture models, hidden Markov
model (HMM), secure multiparty computation (SMC), speech
recognition.

I. INTRODUCTION

THE WIDESPREAD use of networking technology today
has spawned an industry of online services. Business

models based on client–server interactions are common place
and increasingly more prominent. Speech recognition could
easily be a part of this trend where servers can provide speech
recognition services for remote clients. The private nature
of speech data however is a stumbling block for such a de-
velopment. Individuals, corporations, and governments are
understandably reluctant to send private speech data through a
network to another party that cannot be trusted. In this paper,
we address this issue and show how such a cooperative model
can be realized with no privacy leaks from any involved party.

We will specifically focus on the realization of a hidden
Markov model (HMM) in a secure framework that allows
training and classification between multiple parties, some
owning speech data, and some owning HMM models for
speech recognition. Our formulation is shaped in such a way
that the providers of the speech will not have to share any in-
formation about their data, and the providers of the HMM will
not share any information on their model. After evaluation, the
results will only be revealed to the parties that have provided
the data, and not to the parties that provide the HMM models,
thereby providing privacy at both the data and the semantic
levels.

Manuscript received June 27, 2006; revised January 30, 2007. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Simon King.

P. Smaragdis is with the Mitsubishi Electric Research Laboratories, Cam-
bridge, MA 02139 USA (e-mail: paris@merl.com).

M. Shashanka is with the Department of Cognitive and Neural Systems and
the Hearing Research Center, Boston University, Boston, MA 02215 USA
(e-mail: shashanka@cns.bu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASL.2007.894526

We will demonstrate the use of this idea using two scenarios.
One scenario will involve the training of HMMs from data pro-
vided by multiple parties, and the other will deal with evaluating
already trained HMMs on data from another party. The utility
of these scenarios in collaborative speech recognition projects
is easy to see. The first scenario can enable model training on
multiple speech databases without requiring the disclosure of
actual speech data, whereas the other scenario can enable speech
recognition as a service model to remote customers who wish to
maintain privacy on their data and their transcription from both
the service provider and malicious network intruders.

Strange as these constraints might seem, they can be satisfied
using secure multiparty computation (SMC) protocols. SMC is
a field of cryptography that provides means to perform arbi-
trary computations between multiple parties who are concerned
with protecting their data. The field of SMC originated from the
work of Yao [1] who gave a solution to the millionaire problem:
two millionaires want to find which one has a larger fortune,
without revealing any specific numbers to each other. Recently,
this concept has been employed for simple machine learning
tasks such as multiple parties performing k-means [2], compu-
tation of means and related statistics from distributed databases
[3], and rudimentary computer vision applications [4]. See [5]
for a detailed treatment of the topic. In this paper, we present an
SMC formulation of training and evaluating HMMs as applied
on speech data. To our knowledge, this is the first application
of SMC concepts for privacy-constrained speech technology.
We will consider HMMs where the observations are modeled by
mixtures of Gaussians as is common in speech recognition ap-
plications. The main contributions in this paper are the creation
of privacy-preserving protocols that support Gaussian mixture
model and HMM learning and evaluation, as well as a secure
method to combine these protocols so as to ensure data privacy.

The remainder of this paper is organized as follows. In
Section II, we formally introduce the problem at hand and in
Section III we introduce the secure computation primitives that
are employed for this task. Using these primitives, we deal with
the problem of secure classification using Gaussian mixtures
in Section IV, and in Section V we extend that to present
protocols for secure HMMs. We provide a brief discussion
about security and efficiency of our protocols in Section VI.
Finally, in Section VII, we provide conclusions and directions
for future extensions.

II. PROBLEM FORMULATION

Hidden Markov models find use in a wide range of applica-
tions and have been successfully used in speech recognition.
There are three fundamental problems for HMM design,
namely: the evaluation of the probability (or likelihood) of a
sequence of observations given a specific HMM; the determi-
nation of a best sequence of model states; and the adjustment

1558-7916/$25.00 © 2007 IEEE

SMARAGDIS AND SHASHANKA: FRAMEWORK FOR SECURE SPEECH RECOGNITION 1405

of model parameters so as to best account for the observed
signal. The first problem is one of scoring how well a given
model matches a given observation sequence. The second
problem is one in which we attempt to uncover the hidden part
of the model. The third problem is the problem of “training.”
Algorithms for the above three problems are well known and
described in detail in [6].

We will consider these problems using a transaction between
two parties named Alice and Bob. Suppose Bob has a trained
HMM with all the model parameters learned. Let the HMM be
characterized as follows.

• states . Let the state at time be .
• The state transition probability distribution

where

(1)

• The observation symbol probability distribution in state
given by a mixture of Gaussians

(2)

where is the variable, is the mixture coefficient for
the th mixture in state , and is a Gaussian
with mean vector and covariance matrix .

• The initial state distribution where

(3)

We use to denote the entire parameter set of the model.
Consider the first two problems where Bob has a trained

HMM with all the model parameters learned. Let Alice have an
observation sequence . We will show how
Alice can securely compute , the probability of the
observation sequence given the model, using the forward–back-
ward procedure. We will also show how one can securely learn
the best sequence of model states using the viterbi algorithm.

Once there is a secure way of computing likelihoods, it is easy
to see how it can be extended to applications like speech recog-
nition. Suppose Bob has trained several HMMs which charac-
terize various speech sounds. Each HMM will correspond to a
speech recognition unit. Let Alice’s observation vector corre-
spond to a small snippet of speech sound (we assume that Alice
knows the features that Bob has used to train his HMMs on and
has represented her sound sample in terms of those features).
We then show how Alice and Bob can obtain additive shares of
the likelihood of Alice’s observation sequence for every speech
recognition unit of Bob and use them to find out the unit that
corresponds to Alice’s sound snippet.

Now consider the third problem of training. The problem of
security arises when Bob wants to train an HMM (or do data
mining in general) on combined data from private databases
owned by Alice and Charlie. We show how Bob can securely
reestimate parameters of his HMM without gaining knowledge
about the private data. The implicit assumption, of course, is that
Alice and Charlie are willing to let Bob learn about distributions
of their data.

Fig. 1. Implementing an algorithm securely. The algorithm takes in private in-
puts a and b. Algorithm is split into steps that can be implemented as secure
primitives (shown as gray boxes). Intermediate results are distributed as random
additive shares and feed into the following steps. Final result c is obtained by
both parties (or the designated receiver).

III. SECURE TWO-PARTY COMPUTATIONS—BACKGROUND

The speech-recognition example that we will present is a spe-
cific example of a secure two-party computation. Consider the
case where Alice and Bob have private data and , respec-
tively, and they want to compute the result of a function .
Consider a trusted third-party who can take the private data,
compute the result , and intimate the result to the
parties. Any protocol that implements an algorithm to calculate

is said to be secure only if it leaks no more information
about and than what one can gain from learning the result
from the trusted third-party. We assume a semi-honest model for
the parties where they follow the protocol but could be saving
messages and intermediate results to learn more about other’s
private data. In other words, the parties are honest but curious
and will follow the agreed-upon protocol but will try to learn as
much as possible from the data flow between the parties.1

To implement an algorithm securely, we will have to imple-
ment each step of the algorithm securely. If one of the steps is
insecurely implemented, either party could utilize the informa-
tion to work their way backwards to gain knowledge about the
other’s private data. In addition, one must also consider the re-
sults of intermediate steps. If such results of intermediate steps
are available, there is a possibility that one could also get back
to the original private inputs. To prevent this:

• we express every step of the algorithm in terms of a handful
of basic operations (henceforth called as primitives) for
which secure implementations are already known;

• we distribute intermediate results randomly between the
two parties such that neither party has access to the entire
result. For example, instead of obtaining the result of a
certain step, the parties receive random additive shares
and (). See Fig. 1 for a schematic illustration.

Secure protocols are often analyzed for correctness, security,
and complexity. Correctness is measured by comparing the pro-
posed protocol with the ideal protocol using a third party. If the
results are indistinguishable, the protocol is correct (note that

1In a malicious model, no such assumptions are made about the parties’ be-
havior. If both parties are malicious, security can be enforced by accompanying
the protocols with zero-knowledge proofs that protocols are being followed. If
only one of the parties is malicious, the other party can use conditional disclo-
sure of secrets protocols [7] to make sure he/she receives valid inputs from the
malicious party.

1406 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 4, MAY 2007

one can use secure approximation to an ideal algorithm). All the
protocols we present are exact protocols. For security, one needs
to show what can and cannot be learned from the data exchange.
For complexity, one shows the computational and communica-
tion complexity of the secure algorithm. Based on the choice of
primitives used and how they are implemented, one can achieve
different levels of security and computational/communication
efficiency. To evaluate the efficiency of protocols we propose in
later sections, we provide measures in terms of efficiency of the
primitives instead of absolute measures. Next, we describe the
primitives that we use and briefly discuss about their implemen-
tations.

A. Secure Inner Products (SIP)

The primitive which we use most often is for computing se-
cure inner products. If Alice has vector and Bob has vector ,
a secure inner product protocol produces two numbers and
such that . Alice will get the result , and Bob will
get the result . To simplify notation, we shall denote a secure
inner product computation as .

Many protocols have been proposed and they can be cate-
gorized as cryptographic protocols (e.g., [8], [9]) and algebraic
protocols (e.g., [10]–[14]). They provide different levels of se-
curity and efficiency. Most of the algebraic protocols leak some
information but are more straightforward and efficient than their
cryptographic counterparts. The properties and weaknesses of
some of these algebraic protocols have been analyzed in detail
([3], [9]). In this paper, we will be using cryptographic proto-
cols as they tend to be more secure. In Appendices I and II,
we provide a description of two of the cryptographic protocols
we have used. We have also included an algebraic protocol in
Appendix III for comparison.

B. Secure Maximum Index (SMAX)

Let Alice have a vector and Bob have the
vector ; they would like to compute the index
of the maximum of . At the
end of the protocol, Alice (and/or Bob) will receive the result,
but neither party will know the actual value of the maximum.
Notice that the same protocol can be used to compute the index
of the minimum. We denote this as .

For this primitive, we use the permute protocol proposed by
[15] (see Appendix IV). The protocol enables Alice and Bob to
obtain additive shares, and , of a permutation of the vector

, , where is chosen by Alice, and Bob has no
knowledge of . The idea is for Alice to send , where
is a random number chosen by her, to Bob. Bob sends back the
index of the maximum element of to Alice who then
computes the real index using the inverse of the permutation .
Neither party learns the value of the maximum element and Bob
does not learn the index of the maximum element.

If the security requirements of Alice are more strict, she can
encrypt elements of using a homomorphic encryption scheme
and send them to Bob along with the public key. Bob can make
comparisons among the encrypted values of using
protocols for Yao’s millionaire problem (e.g., [16], [17]) and
send back the index of the maximum element.

C. Secure Maximum Value (SVAL)

Let Alice have a vector and Bob have the
vector ; they would like to compute the value
of the maximum element in . After the protocol,
Alice and Bob receive additive shares of the result, and ,
but neither party will know the index of the maximum element.
Notice that the same protocol can be used to compute the value
of the minimum. Let us denote this as .

For this protocol, we can use the idea presented in [15]. Let
us first consider a naive approach. Notice that

. Alice and Bob can do such pairwise
comparisons and mimic any standard maximum finding algo-
rithm to learn the value of the maximum. To perform the com-
parisons securely, they can use a protocol for Yao’s millionaire
problem [1].

However, if Alice and Bob follow the above naive approach,
both will be able to also find the index of the maximum. Hence,
the idea is for Alice and Bob to obtain two vectors whose sum is
a random permutation of . Neither Alice nor Bob should know
the permutation. They can then follow the above naive approach
on their newly obtained vectors to compute additive shares of
the maximum element. See Appendix IV for a description of
the permutation protocol.

D. Secure Logsum (SLOG)

This primitive, unlike the other three which we have intro-
duced above, is not a cryptographic primitive. The main reason
we introduce it is because it simplifies the presentation of many
of the protocols we propose in future sections.

Let Alice have a vector and Bob have
the vector such that

. They would like to compute additive shares

and such that . Let us denote this

secure computation as .
One can compute logarithm of a sum from the logarithms of

individual terms as follows:

(4)

This suggests the following protocol.
1) Alice and Bob compute the dot product between vectors

and using where is a random
number chosen by Alice. Let Bob obtain , the result of
the dot product.

2) Notice that Bob has ,
and Alice has .

In step 1), Bob receives the entire result of a dot product.
However, this does not reveal any information to him about
due to the presence of the random number . In no other step
does either party receive the complete result of an operation.
Thus, the protocol is secure. In terms of efficiency, this primitive
is equivalent to using the SIP primitive once.

IV. SECURE CLASSIFICATION: GAUSSIAN MIXTURE MODELS

Alice has a -component data vector and Bob knows multi-
variate Gaussian distributions of classes

SMARAGDIS AND SHASHANKA: FRAMEWORK FOR SECURE SPEECH RECOGNITION 1407

that the vector could belong to. They would like to engage in a
protocol that lets Bob classify Alice’s data, but neither of them
wants to disclose data to the other person. We propose protocols
which enable such computations.

The idea is to evaluate the value of the discriminant function

(5)

for all classes and assign to class if for all
. Here, is the class-conditional probability density

function, and is the a priori probability of class . We
consider two cases where 1) each class is modeled as a single
multivariate Gaussian, and 2) each class is modeled as a mixture
of Gaussians.

A. Case 1: Single Multivariate Gaussian

We assume that the distribution of data is multivariate
Gaussian i.e., , where is the mean
vector, and is the covariance matrix of class . Hence, the
log-likelihood is given by

(6)
Ignoring the constant term , we can write (5) as

(7)

Simplifying, we have

(8)

where

and

(9)

Let us create the -dimensional vectors and by ap-
pending the value 1 to and appending to . By changing

into a matrix where the first com-
ponents of the last row are zeros and the last column is equal to

, we can express (8) in a simplified form

Expressing as for simplicity, we can write the above equa-
tion as

(10)

Henceforth, we shall use to denote a -dimensional
vector with the last component equal to 1 unless otherwise men-
tioned.

1) Protocol SMG: Single Multivariate Gaussian:

Input: Alice has vector , Bob has for .
We express the matrix as , where

is the th column of .
Output: Alice learns such that for all

. Bob learns nothing about .
1) For

a) For , Alice and Bob
perform to obtain the vectors

and ,
respectively. Alice then computes .

b) Alice and Bob perform to obtain and
, respectively.

2) Alice has vector , and
Bob has vector .

3) Alice and Bob perform the secure maximum index
protocol between the vectors , and and Alice obtains

.

Correctness: In step 1), and are vectors such that
. Also, . Hence, is

given by . is the value of for which
is maximum.

Efficiency: For a given , the above protocol has
calls. Hence, it would take calls

and one call of SMAX.

Security: If Bob gets to know the dot products of different
vectors with , he can learn completely. However, we see
that neither Bob nor Alice ever learn the complete result of
any dot product. Hence, if the protocols for SIP and SMAX are
secure, the above protocol is secure.

B. Case 2: Mixture of Gaussians

Let us now consider the case where each class is modeled as
a mixture of Gaussians. Let the mean vector and covariance ma-
trix of the th Gaussian in class be and , respectively.
Hence, we have , where is
the number of Gaussians describing class , and are the
mixture coefficients. The log likelihood for the th Gaussian in
the th class is given by

(11)

where

and

Expressing as a -dimensional vector and , ,
together as the matrix as done in the

previous case, we can simplify (11) as

(12)

1408 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 4, MAY 2007

Hence, the discriminant function for the th class can be
written as

(13)

1) Protocol MOG: Mixture of Gaussians:

Input: Alice has vector , Bob has and for
, and .

Output: Alice learns such that for all .
Bob learns nothing about .

1) For .
a) Alice and Bob engage in steps 1) and 2) of

Protocol SMG for the Gaussians in the th
mixture to obtain vectors
and . Notice that

.
b) Alice and Bob engage in the secure logsum protocol

with vectors and to obtain and , i.e.,
.

2) Bob computes the vector where
. Alice forms the vector

.
3) Alice and Bob perform the secure maximum index

protocol between vectors , and and Alice obtains
.

Correctness: If one follows the protocol carefully, it is easy to
see that is equal to .

Efficiency: For a given , there are calls.
Hence, in all, there are calls and
1 SMAX call.

Security: If Protocol SMG and the protocols for SIP, SVAL
and SMAX are secure, the above protocol is secure.

In case Alice and Bob want to compute additive shares of
the likelihood instead of the class label, they can use the SVAL
protocol instead of SMAX in the last step.

C. Training Gaussian Mixture From Data

We now focus on a related problem. Let us suppose Alice has
-component vectors . And she wants to learn

a mixture of Gaussians from the data. She can use the itera-
tive expectation-maximization (EM) algorithm to estimate the
parameters of the Gaussians and the mixture weights. Now,
consider the scenario when Bob wants to learn the parameters
but Alice does not want to disclose her data to Bob. One solution
is for Alice to estimate the parameters herself and then give them
to Bob. Another approach is for Alice and Bob to engage in a se-
cure protocol which lets Bob learn the parameters while Alice’s
data remain private. The latter approach becomes necessary in a
scenario where Bob wants to do data mining on combined data
from private databases owned by Alice and Charlie. Below, we
describe a secure protocol which lets two parties perform such
computations.

1) EM Algorithm: We denote the estimate of a particular
parameter after the th iteration by using a superscript. Thus, ,

and denote the mean vector, covariance matrix, and
the mixture weight for the th Gaussian after the th iteration.
For convenience, let us denote the entire parameter set after the
th iteration by . At any given iteration, Alice has access to

her data and Bob has access to the parameter . Alice and Bob
have additive shares , , and , such that

and . We can write the steps
of the EM algorithm as follows.

E Step:

(14)

Input: Alice has , and ; Bob has , and
, .

Output: Alice and Bob obtain and such that
.

1) Bob forms matrices for with ,
as described in Section IV-A and (9) (using
instead of to compute). With as
Alice’s input and for as Bob’s input and

, Alice and Bob engage in steps 1) and 2) of Protocol
SMG (Section IV-A.I) to obtain vectors and .
• Log-likelihood is given by (6).

Notice that using in place of and
in place of in (6) yields the same result as using
and .

• The sum of the th elements, , is equal to
.

2) Alice and Bob obtain vectors and , where for each
, and .

• Notice that is the logarithm of the numerator
in (14).

3) Alice and Bob engage in the secure logsum protocol
with the vectors and to obtain and i.e.,

.
• Notice that is the logarithm of the denominator

of (14) [follows from (4)].
4) Alice forms vector , where . Bob

forms the vector , where .
• .

M Step:

(15)

SMARAGDIS AND SHASHANKA: FRAMEWORK FOR SECURE SPEECH RECOGNITION 1409

Input: Alice has . Alice and Bob have
-vectors and such that .

Output: Alice obtains , ; Bob obtains , and
. (and).

1) Alice and Bob engage in the secure logsum protocol
with vectors and to obtain and i.e.,

.
2) Alice computes , and Bob computes

.
3) For :

Let be the -vector formed by the th elements
of . Alice and Bob engage in the secure
logsum protocol with vectors and to
obtain and i.e., .
• Notice that , the th

element of .
Alice and Bob obtain the th elements of

and , respectively, as a result of
.

4) Consider the evaluation of , the th element of
the matrix . We first consider evaluating the th
element of . As mentioned
earlier, this is equivalent to evaluating the th term of

, where and
. Let the th elements of and be and

, respectively. Notice that Alice has access to and
Bob had access to .
• For , Alice and Bob engage

in the secure inner product protocol with
vectors and

, where is a random scalar
chosen by Alice. Let Bob obtain the result .

• Alice forms the -vector and Bob
forms the vector .

Alice and Bob engage in the secure logsum protocol with
vectors and to obtain and , i.e.,

.
• Notice that , the th

element of .
Alice sends to Bob so that he can calculate .

At the end of all iterations, Alice sends her shares and
to Bob so that he can calculate the mean and the mixture

weight for .

Efficiency: We only consider the cost of computations that
occur between Alice and Bob. In the E-step, for a given
and for all classes , there are calls with

-dimensional vectors and one SIP call involving a
-vector. In the M-step, to compute a mixture weight, there is

a SIP call involving a -vector. To calculate a single mean
vector, there are calls involving -vectors and
calls with scalars. To calculate each element of the covariance
matrix for a given class, there are calls involving
4-dimensional vectors and one SIP call with a -vector.

Security: We assume that and . Until the end of
the last iteration, Bob does not learn values of the means or the
mixture weights. He does not learn the values of likelihoods or

posterior probabilities during the iterations. He does learn the
value of the covariance matrix with every iteration. This does
leak some information about the distribution of Alice’s data
vectors but Bob’s aim is to learn the distributions. The goal
of Alice is to prevent Bob from knowing her individual data
vectors and without the mean, Bob cannot gain any knowledge
about the data vectors. Another important constraint is that
Alice does not learn the values of the parameters, and following
the protocol closely shows that this holds true.

V. HIDDEN MARKOV MODELSs

A. Forward–Backward Procedure

Consider the forward variable defined as

(16)

We can solve for inductively and calculate as
follows.

1) Initialization:

Input: Bob has the Gaussian mixture distribution that de-
fines and the initial state distribution ; Alice
has an observation .
Output: Alice and Bob obtain vectors and such that

.
a) Bob forms the matrices as mentioned in

Section IV-B. With matrices and mixture
weights as Bob’s inputs and as Alice’s input,
they perform steps 1) and 2) of the protocol MoG of
Section IV-B. Alice and Bob obtain vectors and

. Notice that .
b) Alice forms the vector . Bob forms vector ,

where for each , . Thus,
.

2) Induction:

where

Input: Alice and Bob have vectors and such that
. Alice and Bob have and such

that . Bob has the vector
.

Output: Alice and Bob obtain and such that
.

a) Alice and Bob engage in the secure logsum protocol
with vectors and to obtain and
i.e., .

b) Alice obtains and Bob obtains
.

3) Termination:

1410 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 4, MAY 2007

Input: Alice and Bob have vectors and such that
.

Output: Alice and Bob obtain and such that
.

a) Alice and Bob engage in the secure logsum protocol
with vectors and to obtain and i.e.,

.

Efficiency: In the initialization step, there are
calls and calls

involving -dimensional vectors. In the induction step, for
every and for every , there is one SIP call with an -vector.
In the termination step, there is one SIP call with an -vector.

Security: Bob does not learn any and Alice does not learn
any of Bob’s parameters. Hence, if the primitives SIP, SMAX,
and SVAL are secure, the protocol is secure.

We can obtain a similar procedure for a backward variable
defined as

(17)

We can solve for inductively as follows.
1) Initialization:

2) Induction:

where

Input: Alice and Bob have vectors and such that
. Alice and Bob have and

such that . Bob has the vector
.

Output: Alice and Bob obtain and such that
.

a) Alice and Bob engage in the secure logsum protocol
with vectors and to obtain
and , i.e., .

B. Viterbi Algorithm

Consider the quantity

(18)
is the best score (highest probability) along a single path,

at time , which accounts for the first observations and ends in
state . The procedure for finding the best state sequence can
be stated as follows.

1) Initialization:

The procedure is evaluating is analogous to the
initialization step of the forward backward procedure.

After this step, Alice and Bob will have additive shares of
.

2) Recursion:

where

Input: Alice and Bob have vectors and such that
. Alice and Bob have and

such that . Bob has the vector
.

Output: Alice and Bob obtain and such that
. Alice obtains .

a) Alice and Bob engage in the secure maximum value
protocol with vectors and to obtain
and . They also perform on the same vectors
and Alice obtains the result which is equal to .

b) Alice computes and Bob computes
.

3) Termination:

Alice and Bob will use on their additive shares of
for all to evaluate . Similarly, they engage

in on their shares and Alice obtains the result .
4) Path backtracking:

Alice, who has access to and , can evaluate the path
sequence. Notice that Bob could be made to get this result
instead of Alice if we let Bob learn the values of and
in steps 2) and 3) instead of Alice.

Security and efficiency considerations for this protocol are sim-
ilar to what was discussed with regard to the forward–backward
procedure (Section V-A).

C. HMM Training

In the above formulation, we assumed that Bob had already
trained his HMMs. Let us consider the case when Alice has all
the training data, and Bob wants to train an HMM using her data.
Below, we show how Bob can securely reestimate parameters of
his HMM.

Consider the variables

In the previous subsections, we have shown how Alice and
Bob can obtain additive shares of (and),
(and), (and), (, and)

SMARAGDIS AND SHASHANKA: FRAMEWORK FOR SECURE SPEECH RECOGNITION 1411

and (and). It is easy to see that using these shares,
Alice and Bob can compute additive shares , and , such
that and . Alice computes

and . Bob computes
and .

The variables and can then be reestimated as follows:

Input: Alice and Bob have -vectors and such that
. They also have vectors and such

that .

Output: Bob obtains .
1) Alice and Bob engage in secure logsum protocol with

vectors and to obtain and . They also engage in the
secure logsum protocol with vectors and to obtain

and , respectively.
2) Alice sends to Bob. Bob computes

to obtain .

Notice that instead of Bob obtaining the final result, Alice
and Bob can have additive shares of . Protocols for
forward–backward and viterbi algorithms will then have to
modified so that Alice and Bob have additive shares of the
vector .

As for the Gaussian mixture distributions , Bob can
learn them from Alice’s data securely as we have shown in
Section IV-C. We emphasize here that Bob does not learn all
the parameters in every iteration. He learns the mean vector for
every component Gaussian only after the last iteration. He does
learn the covariance matrix in every iteration but quantities used
to calculate the covariance matrix are additive shares which
does not help him in inferring Alice’s data. The example shown
in Section IV-C uses two parties but it can be generalized to
the case where Bob learns from multiple parties. In that case,
learned statistics are averaged and provide an additional layer
of security for the data providers.

VI. DISCUSSION

In this section, we discuss the computational efficiency con-
siderations of protocols presented above. As mentioned earlier,
efficiency of the protocols was evaluated in terms of primitives
and absolute measures were not provided. This is due to the fact
that efficiency of the primitives themselves varies widely and
depends on how the primitives are implemented.

If one follows all the protocols carefully, efficiency mainly
depends on the computational complexity of the SIP primitive.
We shall focus on one particular implementation of this primi-
tive: secure inner product using homomorphic encryption pro-
posed by [9] (see Appendix I, the reference provides proof that
the protocol is correct and secure).

To validate the secure model, we ran experiments performing
learning and classification. The experiments were run using a

MATLAB implementation and tested both the Gaussian mix-
ture models and the hidden Markov models. Simulations were
performed twice using the secure and the nonsecure (traditional)
methods. In all cases, the results from both the secure and non-
secure simulations were numerically identical as we have pre-
dicted. The secure versions were obviously less efficient due
to the increased computational cost of the cryptographic oper-
ations and the increased network traffic. We did not study the
communications complexity in these experiments and rather fo-
cused on the computational load, which is the primary bottle-
neck [18]. One simulation used a generalized version [19] of
the Paillier public-key scheme [20]. We used cryptographic keys
of 1024 bits and the cryptosystem was implemented in Java.
The computational load of this algorithm coupled with a nonop-
timal implementation resulted into a processing time per input
vector in the order of a few seconds. An alternative implemen-
tation using algebraic primitives, which leak some information
but are more computationally efficient, resulted into a signifi-
cant speedup of less than a second’s time processing per input
vector. As shown by the last experiment, the choice of imple-
mentation for a primitive (for example, SIP using algorithm in
Appendix I instead of SIP using algorithm in Appendix II) sig-
nificantly impacts performance, communication complexity and
security. A wise choice will have to balance tradeoffs such as
computational efficiency and network bandwidth as opposed to
security/privacy. A discussion of these issues is out of the scope
of this paper since it is a lengthy research project of its own and
a moving target given the continuous discoveries of increasingly
efficient protocols by the cryptography community.

The figures we have obtained were using nonoptimized im-
plementations, as noted by [18] careful implementation can pro-
duce significant speedups in computation. For practical imple-
mentations it is also possible (and recommended) that special-
ized hardware is used for the cryptography layer which can re-
sult into dramatic performance improvements.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented an implementation of pri-
vacy preserving hidden Markov model and Gaussian mixtures
computations. We first proposed a simple privacy-preserving
protocol for computing logsums. Using primitives for com-
puting scalar products and maxima, we proposed secure
protocols for classification using Gaussian mixture models.
We then proposed secure protocols for the forward–backward
algorithm, the viterbi algorithm, and HMM training. The proto-
cols are defined modularly in terms of primitives so that future
advances in cryptography, which will hopefully provide more
robust and efficient protocols, can be readily employed in our
framework by straightforward replacement. The approach we
have taken also illustrates the process required to transform a
signal processing algorithm to its privacy preserving version.
Other data processing and classification algorithms can also be
described in terms of secure primitives and easily reformulated
for secure multiparty computations.

This paper is intended to be a starting point for secure audio
frameworks, and because of that it exposes a lot of new re-
search directions which warrant more attention. One of these

1412 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 4, MAY 2007

directions includes the design of alternative classifiers and algo-
rithms using this process, and there is still ongoing work on the
building block primitives (SIP, SMAX, SVAL, etc) themselves.
These are all topics that present plenty of opportunities to ex-
plore efficiency and security and their tradeoffs. We expect these
to be fruitful areas of research in the near future. It is our hope
that a migration towards secure algorithms can help promote
a more open collaboration setting where parties can freely ex-
change data and algorithms without legal and privacy issues.

APPENDIX I
SECURE INNER PRODUCT USING HOMOMORPHIC ENCRYPTION

The following protocol is based on homomorphic encryp-
tion and was proposed by [9]. Let the triple
denote a public-key homomorphic cryptosystem (probabilistic
polynomial time algorithms for key-generation, encryption,
and decryption). The key generation algorithm generates a
valid pair of private and public keys for a secu-
rity parameter . The encryption algorithm takes as an
input a plaintext , a random value , and a public key

and outputs the corresponding ciphertext .
The decryption algorithm takes as an input a ciphertext

and a private key (corresponding to the public key
) and outputs a plaintext . It is required that

. A public-key cryptosystem
is homomorphic if

, where is a group operation
and is a groupoid operation.

Inputs: Private vectors and with Bob and Alice,
respectively.

Outputs: Shares and such that .
1) Setup phase. Bob:

• generates a private and public key pair .
• sends to Alice.

2) For , Bob:
• generates a random new string .
• sends to Alice.

3) Alice:
• sets .
• generates a random plaintext and a random nonce .
• sends to Bob.

4) Bob computes .

See [9] for a proof that the protocol is correct and secure.

APPENDIX II
SECURE INNER PRODUCT FROM OBLIVIOUS

POLYNOMIAL EVALUATION

[8] proposes an elegant protocol for oblivious evaluation
of multivariate polynomials using oblivious transfer [21] as
a cryptographic primitive. It can be easily modified to se-
curely evaluate dot products. Let Alice represent each as

with . Let . Notice
that for each , , . The idea is to
have Bob prepare and have Alice get those with
in some secret way. This is achieved as follows: Bob prepares

the pair for randomly chosen and Alice runs
independent oblivious transfer with Bob to get if
and otherwise. At the end of the protocol, Alice will
obtain . Bob will
have . Thus, Alice and Bob will have additive shares
of the desired dot product.

[8] proves that this protocol is secure when the parties are
semi-honest. The efficiency of the protocol depends on the im-
plementation of oblivious transfer.

APPENDIX III
SECURE INNER PRODUCT USING LINEAR TRANSFORMATION

[11] proposes an algebraic approach which assumes that the
dimensionality is even. Let us define as the dimensional
vector consisting of the first elements of and as the
vector consisting of the last elements of . We observe that

. Alice and Bob jointly generate a random
invertible matrix . Alice computes , splits it
as and , and sends to Bob. Bob computes ,
splits it as and , and sends to Alice. Alice computes

, and Bob computes so that their sum is equal to the
desired result.

This protocol has little communication and computational
overhead compared to the cryptographic protocols, but it comes
at the cost of security. Alice and Bob learn linear equations
for the unknowns that constitute the other party’s vector which
leaks a lot of information. Hence, it is important that the same
matrix should be used when this protocol is used multiple
times with the same vector (or). [3] has analyzed this pro-
tocol which showed serious security flaws, and hence this is not
practical when security is crucially important.

APPENDIX IV
PERMUTE PROTOCOL

This protocol was proposed in [15].

Input: Alice and Bob have -component vectors and . Bob
has a random permutation .

Output: Alice and Bob obtain and such that
.

1) Alice generates public and private keys for a homomorphic
cryptosystem and sends the public key to Bob. Let
denote encryption with Alice’s public key.

2) Alice encrypts each element of and sends the resulting
vector to Bob.

3) Bob generates a random vector and computes a
new vector where , for

.
4) Bob permutes and sends to Alice. Alice decrypts

the vector to obtain .
5) Bob computes and then permutes it using to

obtain .

Alice and Bob engage in the above permute protocol twice,
the second time with their roles interchanged. After this is
done, Alice and Bob will have two vectors whose sum will be
a random permutation of the original sum but neither of them
will know what the permutation is.

SMARAGDIS AND SHASHANKA: FRAMEWORK FOR SECURE SPEECH RECOGNITION 1413

ACKNOWLEDGMENT

The authors would like to thank S. Avidan for his help and
influence in the making of this work. The authors also would
also like to thank the anonymous reviewers for their comments
and suggestions.

REFERENCES

[1] A. C.-C Yeo, “Protocols for secure computation,” in Proc. 23rd IEEE
Symp. Foundations Comput. Sci., 1982, pp. 160–164.

[2] J. Vaidya and C. Clifton, “Privacy preserving k-means clustering over
vertically partitioned data,” in Proc. ACM SIGKDD Conf. Knowledge
Discovery Data Mining, 2003, pp. 206–215.

[3] E. Kiltz, G. Leander, and J. Malone-Lee, “Secure computation of the
mean and related statistics,” in Proc. Theory Cryptography Conf., 2005,
vol. 3378, Lecture Notes in Computer Science, pp. 283–302.

[4] S. Avidan and M. Butman, “Blind Vision,” in Proc. ECCV, 2006, vol.
3, pp. 1–13.

[5] O. Goldreich, “Secure multi-party computation,” Working Draft, 2000
[Online]. Available: http://citeseer.ist.psu.edu/goldreich98secure.html

[6] L. R. Rabiner, “A tutorial on hidden Markov models and selected appli-
cations in speech recognition,” Proc. IEEE, vol. 77, no. 2, pp. 257–286,
Feb. 1989.

[7] S. Laur and H. Lipmaa, “Additive conditional disclosure of secrets and
applications,” Cryptology ePrint Archive, 2005, Rep. 2005/378.

[8] Y.-C. Chang and C.-J. Lu, “Oblivious polynomial evaluation and obliv-
ious neural learning,” in Proc. Adv. Cryptol–Asiacrypt’01, 2001, vol.
2248, Lecture Notes in Computer Science, pp. 369–384.

[9] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen, C. Park and S.
Chee, Eds., “On private scalar product computation for privacy-pre-
serving data mining,” in Proc. Int. Conf. Inf. Security Cryptol., 2004,
vol. 2506, Lecture Notes in Computer Science, pp. 104–120.

[10] W. Du and M. J. Atallah, “Privacy-preserving cooperative statistical
analysis,” in Proc. 17th Annu. Comput. Security Applicat. Conf., New
Orleans, LA, Dec. 2001, pp. 102–110.

[11] W. Du and Z. Zhan, “A practical approach to solve secure multi-party
computation problems,” in Proc. New Security Paradigms Workshop,
Virginia Beach, VA, Sep. 23–26, 2002, pp. 127–135.

[12] I. Ioannidis, A. Grama, and M. Atallah, “A secure protocol for com-
puting dot-products in clustered and distributed environments,” in
Proc. Int. Conf. Parallel Process., Vancouver, BC, Canada, 2002, pp.
379–384.

[13] P. Ravikumar, W. W. Cohen, and S. E. Fienberg, “A secure protocol
for computing string distance metrics,” in Proc. Workshop Privacy and
Security Aspects of Data Mining, Brighton, U.K., 2004, pp. 40–46.

[14] J. Vaidya and C. Clifton, “Privacy preserving association rule mining
in vertically partitioned data,” in Proc. Int. Conf. Knowledge Discovery
and Data Mining, Edmonton, AB, Canada, 2002, ACM SIGKDD.

[15] M. J. Atallah, F. Kerschbaum, and W. Du, “Secure and private se-
quence comparisons,” in Proc. Workshop Privacy Electron. Soc., Wash-
ington, DC, Oct. 2003, pp. 39–44.

[16] I. F. Blake and V. Kolesnikov, “Strong conditional oblivious transfer
and computing on intervals,” in Proc. Adv. Cryptol.–Asiacrypt’04, P.
J. Lee, Ed. New York: Springer-Verlag, 2004, vol. 3329, LNCS, pp.
515–529.

[17] H.-Y. Lin and W.-G. Tzeng, “An efficient solution to the millionaires’
problem based on homomorphic encryption,” in Proc Int. Conf. Appl.
Cryptography Network Security, 2005, vol. 3531, LNCS, pp. 456–466.

[18] Z. Yang, R. Wright, and H. Subramaniam, “Experimental analysis of a
privacy-preserving scalar product protocol,” Int. J. Comput. Syst. Sci.
Eng., vol. 21, no. 1, pp. 47–52, 2006.

[19] I. Damgard and M. Jurik, “A generalisation, simplification and some
applications of Paillier’s probabilistic public-key system,” in Proc. Int.
Workshop Practice Theory Public Key Cryptography, 2001, vol. 1992,
Lecture Notes in Computer Science, pp. 119–136.

[20] P. Paillier, J. Stern, Ed., “Public-key cryptosystems based on composite
degree residuosity classes,” in Proc. Adv. Cryptol.–Eurocrypt’99, 1999,
vol. 1592, Lecture Notes in Computer Science, pp. 223–238.

[21] M. Naor and B. Pinkas, “Oblivious transfer and polynomial evalu-
ation,” in Proc. 31st Annu. ACM Symp. Theory Comput., 1999, pp.
245–254.

Paris Smaragdis (SM’06) is a member of the re-
search staff at Mitsubishi Electric Research Labora-
tories, Cambridge, MA. Prior to that position, he was
at the Massachusetts Institute of Technology, Cam-
bridge, where he completed his graduate and post-
doctoral training. His interests are computational au-
dition, scene analysis, and the intersection of machine
learning with signal processing.

Madhusudana Shashanka (S’06) received the B.E.
degree (hons) in computer science from the Birla In-
stitute of Technology and Science, Pilani, India, in
2003. He is currently pursuing the Ph.D. degree at the
Department of Cognitive and Neural Systems and the
Hearing Research Center, Boston University, Boston,
MA.

